Spaces:
Sleeping
Sleeping
File size: 68,133 Bytes
5b6c556 c1cc5c3 5b6c556 7f9ac5c 5b6c556 c3beb1b 5b6c556 e8099ac 5b6c556 7f4b753 5b6c556 7f9ac5c 5b6c556 c1cc5c3 e8099ac c1cc5c3 e8099ac c1cc5c3 5b6c556 7f9ac5c 5b6c556 c1cc5c3 5b6c556 c1cc5c3 5b6c556 e8099ac 5b6c556 e8099ac 5b6c556 7f9ac5c 5b6c556 7f9ac5c 5b6c556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 |
import streamlit as st
import inseq
import torch
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
from inseq.models.huggingface_model import HuggingfaceDecoderOnlyModel
import base64
from io import BytesIO
from PIL import Image
import plotly.graph_objects as go
import re
import markdown
from utilities.localization import tr
import faiss
from sentence_transformers import SentenceTransformer, util
from sentence_splitter import SentenceSplitter
import html
from utilities.utils import init_qwen_api
from utilities.feedback_survey import display_attribution_feedback
from thefuzz import process, fuzz
import gc
import time
import sys
from pathlib import Path
# A dictionary to map method names to translation keys.
METHOD_DESC_KEYS = {
"integrated_gradients": "desc_integrated_gradients",
"occlusion": "desc_occlusion",
"saliency": "desc_saliency"
}
# Configuration for the influence tracer.
sys.path.append(str(Path(__file__).resolve().parent.parent))
INDEX_DIR = os.path.join("influence_tracer", "influence_tracer_data")
INDEX_PATH = os.path.join(INDEX_DIR, "dolma_index_multi.faiss")
MAPPING_PATH = os.path.join(INDEX_DIR, "dolma_mapping_multi.json")
TRACER_MODEL_NAME = 'paraphrase-multilingual-mpnet-base-v2'
class CachedAttribution:
# A mock object to mimic inseq's Attribution object for cached results.
def __init__(self, html_content):
self.html_content = html_content
def show(self, display=False, return_html=True):
return self.html_content
def load_all_attribution_models():
# Loads all the attribution models.
try:
# Set the device to MPS, CUDA, or CPU.
device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
# Path to the local model.
model_path = "./models/OLMo-2-1124-7B"
hf_token = os.environ.get("HF_TOKEN")
# Load tokenizer and model.
tokenizer = AutoTokenizer.from_pretrained(model_path, token=hf_token, trust_remote_code=True)
tokenizer.model_max_length = 512
# Load the model with half precision to save memory.
base_model = AutoModelForCausalLM.from_pretrained(
model_path,
token=hf_token,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True
)
# Move the model to the selected device.
base_model = base_model.to(device)
# Add missing special tokens if necessary.
if tokenizer.bos_token is None:
tokenizer.add_special_tokens({'bos_token': '<s>'})
base_model.resize_token_embeddings(len(tokenizer))
# Patch the model config.
if base_model.config.bos_token_id is None:
base_model.config.bos_token_id = tokenizer.bos_token_id
attribution_models = {}
# Set up the Integrated Gradients model.
attribution_models["integrated_gradients"] = HuggingfaceDecoderOnlyModel(
model=base_model,
tokenizer=tokenizer,
device=device,
attribution_method="integrated_gradients",
attribution_kwargs={"n_steps": 10}
)
# Set up the Occlusion model.
attribution_models["occlusion"] = HuggingfaceDecoderOnlyModel(
model=base_model,
tokenizer=tokenizer,
device=device,
attribution_method="occlusion"
)
# Set up the Saliency model.
attribution_models["saliency"] = HuggingfaceDecoderOnlyModel(
model=base_model,
tokenizer=tokenizer,
device=device,
attribution_method="saliency"
)
return attribution_models, tokenizer, base_model, device
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return None, None, None, None
def load_influence_tracer_data():
# Loads the data needed for the influence tracer.
if not os.path.exists(INDEX_PATH) or not os.path.exists(MAPPING_PATH):
return None, None, None
index = faiss.read_index(INDEX_PATH)
with open(MAPPING_PATH, 'r', encoding='utf-8') as f:
mapping = json.load(f)
device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(TRACER_MODEL_NAME, device=device)
return index, mapping, model
@st.cache_data(persist=True)
def get_influential_docs(text_to_trace: str, lang: str):
# Finds influential documents from the training data for a given text.
faiss_index, doc_mapping, tracer_model = load_influence_tracer_data()
if not faiss_index:
return []
# Get the embedding for the input text.
doc_embedding = tracer_model.encode([text_to_trace], convert_to_numpy=True, normalize_embeddings=True)
# Search the FAISS index for the top k documents.
k = 3
similarities, indices = faiss_index.search(doc_embedding.astype('float32'), k)
# Find the most similar sentence in each influential document.
results = []
query_embedding = tracer_model.encode([text_to_trace], normalize_embeddings=True)
for i in range(k):
doc_id = str(indices[0][i])
if doc_id in doc_mapping:
doc_info = doc_mapping[doc_id]
file_path = os.path.join("influence_tracer", "dolma_dataset_sample_1.6v", doc_info['file'])
try:
full_doc_text = ""
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
try:
line_data = json.loads(line)
line_text = line_data.get('text', '')
# Use fuzzy matching to find the text snippet.
if fuzz.partial_ratio(doc_info['text_snippet'], line_text) > 95:
full_doc_text = line_text
break
except json.JSONDecodeError:
continue
# Skip if the document text wasn't found.
if not full_doc_text:
print(f"Warning: Could not find document snippet for doc {doc_id} in {file_path}. Skipping.")
continue
# Find the most similar sentence in the document.
splitter = SentenceSplitter(language=lang)
sentences = splitter.split(text=full_doc_text)
if not sentences:
sentences = [full_doc_text]
# Set a batch size to avoid memory issues.
sentence_embeddings = tracer_model.encode(sentences, batch_size=64, show_progress_bar=False, normalize_embeddings=True)
cos_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0]
best_sentence_idx = torch.argmax(cos_scores).item()
most_similar_sentence = sentences[best_sentence_idx]
results.append({
'id': doc_id,
'file': doc_info['file'],
'source': doc_info['source'],
'text': full_doc_text,
'similarity': float(similarities[0][i]),
'highlight_sentence': str(most_similar_sentence)
})
except (IOError, KeyError) as e:
print(f"Could not retrieve full text for doc {doc_id}: {e}")
continue
return results
# --- Qwen API for Explanations ---
@st.cache_data(persist=True)
def _cached_explain_heatmap(api_config, img_base64, csv_text, structured_prompt):
# Makes a cached API call to Qwen to get an explanation for a heatmap.
headers = {
"Authorization": f"Bearer {api_config['api_key']}",
"Content-Type": "application/json"
}
content = [{"type": "text", "text": structured_prompt}]
if img_base64:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{img_base64}"
}
})
data = {
"model": api_config["model"],
"messages": [
{
"role": "user",
"content": content
}
],
"max_tokens": 1200,
"temperature": 0.2,
"top_p": 0.95,
"seed": 42
}
response = requests.post(
f"{api_config['api_endpoint']}/chat/completions",
headers=headers,
json=data,
timeout=300
)
# Raise an exception if the API call fails.
response.raise_for_status()
result = response.json()
return result["choices"][0]["message"]["content"]
@st.cache_data(persist=True)
def generate_all_attribution_analyses(_attribution_models, _tokenizer, _base_model, _device, prompt, max_tokens, force_exact_num_tokens=False):
# Generates text and runs attribution analysis for all methods.
# Generate the text first.
inputs = _tokenizer(prompt, return_tensors="pt").to(_device)
generation_args = {
'max_new_tokens': max_tokens,
'do_sample': False
}
if force_exact_num_tokens:
generation_args['min_new_tokens'] = max_tokens
generated_ids = _base_model.generate(
inputs.input_ids,
**generation_args
)
generated_text = _tokenizer.decode(generated_ids[0], skip_special_tokens=True)
# Run attribution analysis for all methods.
all_attributions = {}
methods = ["integrated_gradients", "occlusion", "saliency"]
for method in methods:
attributions = _attribution_models[method].attribute(
input_texts=prompt,
generated_texts=generated_text
)
all_attributions[method] = attributions
return generated_text, all_attributions
def explain_heatmap_with_csv_data(api_config, image_buffer, csv_data, context_prompt, generated_text, method_name="Attribution"):
# Generates an explanation for a heatmap using the Qwen API.
try:
# Convert the image to base64.
img_base64 = None
if image_buffer:
image_buffer.seek(0)
image = Image.open(image_buffer)
buffered = BytesIO()
image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
# Clean the dataframe to handle duplicates.
df_clean = csv_data.copy()
cols = pd.Series(df_clean.columns)
if cols.duplicated().any():
for dup in cols[cols.duplicated()].unique():
dup_indices = cols[cols == dup].index.values
new_names = [f"{dup} ({i+1})" for i in range(len(dup_indices))]
cols[dup_indices] = new_names
df_clean.columns = cols
if df_clean.index.has_duplicates:
counts = {}
new_index = list(df_clean.index)
duplicated_indices = df_clean.index[df_clean.index.duplicated(keep=False)]
for i, idx in enumerate(df_clean.index):
if idx in duplicated_indices:
counts[idx] = counts.get(idx, 0) + 1
new_index[i] = f"{idx} ({counts[idx]})"
df_clean.index = new_index
# --- Rule-Based Analysis ---
unstacked = df_clean.unstack()
unstacked.index = unstacked.index.map('{0[1]} -> {0[0]}'.format)
# Get the top 5 individual scores.
top_5_individual = unstacked.abs().nlargest(5).sort_index()
top_individual_text_lines = ["\n### Top 5 Strongest Individual Connections:"]
for label in top_5_individual.index:
score = unstacked[label]
top_individual_text_lines.append(f"- **{label}**: score {score:.2f}")
# Get the top 5 average input scores.
avg_input_scores = df_clean.mean(axis=1)
top_5_average = avg_input_scores.abs().nlargest(5).sort_index()
top_average_text_lines = ["\n### Top 5 Most Influential Input Tokens (on average over the whole generation):"]
for input_token in top_5_average.index:
score = avg_input_scores[input_token]
top_average_text_lines.append(f"- **'{input_token}'**: average score {score:.2f}")
# Get the top output token sources.
top_output_text_lines = []
if not df_clean.empty:
avg_output_scores = df_clean.mean(axis=0)
top_3_output = avg_output_scores.abs().nlargest(min(3, len(df_clean.columns))).sort_index()
if not top_3_output.empty:
top_output_text_lines.append("\n### Top 3 Most Influenced Generated Tokens:")
for output_token in top_3_output.index:
# Find which input tokens influenced this output token the most.
top_sources_for_output = df_clean[output_token].abs().nlargest(min(2, len(df_clean.index))).sort_index().index.tolist()
if top_sources_for_output:
top_output_text_lines.append(f"- **'{output_token}'** was most influenced by **'{', '.join(top_sources_for_output)}'**.")
data_text_for_llm = "\n".join(top_individual_text_lines + top_average_text_lines + top_output_text_lines)
# Get method-specific context from the translation files.
desc_key = METHOD_DESC_KEYS.get(method_name, "unsupported_method_desc")
method_context = tr(desc_key)
# Format the instruction for the LLM.
instruction_p1 = tr('instruction_part_1_desc').format(method_name=method_name.replace('_', ' ').title())
# Create the prompt for the LLM.
structured_prompt = f"""{tr('ai_expert_intro')}
## {tr('analysis_details')}
- **{tr('method_being_used')}** {method_name.replace('_', ' ').title()}
- **{tr('prompt_analyzed')}** "{context_prompt}"
- **{tr('full_generated_text')}** "{generated_text}"
## {tr('method_specific_context')}
{method_context}
## {tr('instructions_for_analysis')}
{tr('instruction_part_1_header')}
{instruction_p1}
{tr('instruction_synthesis_header')}
{tr('instruction_synthesis_desc')}
{tr('instruction_color_coding')}
## {tr('data_section_header')}
{data_text_for_llm}
{tr('begin_analysis_now')}"""
# Call the cached function to get the explanation.
explanation = _cached_explain_heatmap(api_config, img_base64, data_text_for_llm, structured_prompt)
return explanation
except Exception as e:
# Catch errors from data prep or the API call.
st.error(f"Error generating AI explanation: {str(e)}")
return tr("unable_to_generate_explanation")
# --- Faithfulness Verification ---
@st.cache_data(persist=True)
def _cached_extract_claims_from_explanation(api_config, explanation_text, analysis_method):
# Makes a cached API call to Qwen to get claims from an explanation.
headers = {"Authorization": f"Bearer {api_config['api_key']}", "Content-Type": "application/json"}
# Dynamically set claim types based on the analysis method.
claim_types_details = tr("claim_extraction_prompt_types_details")
claim_extraction_prompt = f"""{tr('claim_extraction_prompt_header')}
{tr('claim_extraction_prompt_instruction')}
{tr('claim_extraction_prompt_context_header').format(analysis_method=analysis_method, context=analysis_method)}
{tr('claim_extraction_prompt_types_header')}
{claim_types_details}
{tr('claim_extraction_prompt_example_header')}
{tr('claim_extraction_prompt_example_explanation')}
{tr('claim_extraction_prompt_example_json')}
{tr('claim_extraction_prompt_analyze_header')}
"{explanation_text}"
{tr('claim_extraction_prompt_instruction_footer')}
"""
data = {
"model": api_config["model"],
"messages": [
{
"role": "user",
"content": [{"type": "text", "text": claim_extraction_prompt}]
}
],
"max_tokens": 1500,
"temperature": 0.0, # Set to 0 for deterministic output.
"seed": 42
}
response = requests.post(
f"{api_config['api_endpoint']}/chat/completions",
headers=headers,
json=data,
timeout=300
)
response.raise_for_status()
claims_text = response.json()["choices"][0]["message"]["content"]
try:
# The response might be inside a markdown code block, so we try to extract it.
if '```json' in claims_text:
claims_text = re.search(r'```json\n(.*?)\n```', claims_text, re.DOTALL).group(1)
# Parse the JSON string into a Python list.
return json.loads(claims_text)
except (AttributeError, json.JSONDecodeError):
return []
@st.cache_data(persist=True)
def _cached_verify_token_justification(api_config, analysis_method, input_prompt, generated_text, token, justification):
# Uses an LLM to verify if a justification for a token's importance is sound.
headers = {"Authorization": f"Bearer {api_config['api_key']}", "Content-Type": "application/json"}
verification_prompt = f"""{tr('justification_verification_prompt_header')}
{tr('justification_verification_prompt_crucial_rule')}
{tr('justification_verification_prompt_token_location')}
{tr('justification_verification_prompt_special_tokens')}
{tr('justification_verification_prompt_evaluating_justifications')}
{tr('justification_verification_prompt_linguistic_context')}
{tr('justification_verification_prompt_collective_reasoning')}
**Analysis Method:** {analysis_method}
**Input Prompt:** "{input_prompt}"
**Generated Text:** "{generated_text}"
**Token in Question:** "{token}"
**Provided Justification:** "{justification}"
{tr('justification_verification_prompt_task_header')}
{tr('justification_verification_prompt_task_instruction')}
{tr('justification_verification_prompt_json_instruction')}
{tr('justification_verification_prompt_footer')}
"""
data = {
"model": "qwen2.5-vl-72b-instruct",
"messages": [{"role": "user", "content": verification_prompt}],
"max_tokens": 400,
"temperature": 0.0,
"seed": 42,
"response_format": {"type": "json_object"}
}
response = requests.post(
f"{api_config['api_endpoint']}/chat/completions",
headers=headers,
json=data,
timeout=300
)
response.raise_for_status()
try:
result_json = response.json()["choices"][0]["message"]["content"]
return json.loads(result_json)
except (json.JSONDecodeError, KeyError):
return {"is_verified": False, "reasoning": "Could not parse the semantic justification result."}
def verify_claims(claims, analysis_data):
# Verifies the extracted claims against the analysis data.
verification_results = []
# Pre-calculate thresholds and rankings for efficiency.
all_scores_flat = analysis_data['scores_df'].abs().values.flatten()
# Average influence of each input token.
avg_input_scores_abs = analysis_data['scores_df'].mean(axis=1).abs().sort_values(ascending=False)
avg_input_scores_raw = analysis_data['scores_df'].mean(axis=1) # Keep signs for specific value checks
# Average influence on each generated token.
avg_output_scores = analysis_data['scores_df'].mean(axis=0).abs().sort_values(ascending=False)
input_tokens = analysis_data['scores_df'].index.tolist()
generated_tokens = analysis_data['scores_df'].columns.tolist()
for claim in claims:
is_verified = False
evidence = "Could not be verified."
details = claim.get('details', {})
claim_type = claim.get('claim_type')
try:
# Clean tokens in the claim's details, as the LLM sometimes includes extra quotes.
if 'token' in details and isinstance(details['token'], str):
details['token'] = re.sub(r"^\s*['\"]|['\"]\s*$", '', details['token']).strip()
if 'tokens' in details and isinstance(details['tokens'], list):
details['tokens'] = [re.sub(r"^\s*['\"]|['\"]\s*$", '', t).strip() for t in details['tokens']]
if claim_type == 'attribution_claim':
tokens_claimed = details.get('tokens', [])
qualifier = details.get('qualifier', 'significant') # Default to the lower bar
score_type = details.get('score_type', 'peak')
# Calculate the correct scores based on the claim's score_type.
if score_type == 'average':
score_series = analysis_data['scores_df'].abs().mean(axis=1)
score_name = "average score"
else: # peak
# Check both influence GIVEN (input) and RECEIVED (output)
# We use fillna(0) to handle cases where a token is not in that axis
input_peaks = analysis_data['scores_df'].abs().max(axis=1)
output_peaks = analysis_data['scores_df'].abs().max(axis=0)
combined_scores = {}
all_tokens = set(input_peaks.index) | set(output_peaks.index)
for t in all_tokens:
s1 = input_peaks.get(t, 0.0)
s2 = output_peaks.get(t, 0.0)
combined_scores[t] = max(s1, s2)
score_series = pd.Series(combined_scores)
score_name = "peak score"
if score_series.empty:
evidence = "No attribution data available to verify claim."
else:
all_attributions = sorted(
[{'token': token, 'attribution': score} for token, score in score_series.items()],
key=lambda x: x['attribution'],
reverse=True
)
max_score = all_attributions[0]['attribution'] if all_attributions else 0
if qualifier == 'high':
threshold = 0.70 * max_score
threshold_name = "high"
else: # 'significant' or default
threshold = 0.50 * max_score
threshold_name = "significant"
token_scores_dict = {item['token'].lower().strip(): item['attribution'] for item in all_attributions}
unverified_tokens = []
verified_tokens_details = []
for token in tokens_claimed:
# New, more robust matching logic.
# First, check for a direct match for specific claims like ', (1)'.
token_lower = token.lower().strip()
if token_lower in token_scores_dict:
matching_keys = [token_lower]
else:
# If no direct match, fall back to a generic search for claims like ','.
# This finds all instances: ', (1)', ', (2)', etc.
matching_keys = [
k for k in token_scores_dict.keys()
if re.sub(r'\s\(\d+\)$', '', k).strip() == token_lower
]
if not matching_keys:
unverified_tokens.append(f"'{token}' (not found in analysis)")
continue
# Check each matching instance against the threshold.
for key in matching_keys:
actual_score = token_scores_dict.get(key)
if abs(actual_score) < threshold:
unverified_tokens.append(f"'{key}' ({score_name}: {abs(actual_score):.2f})")
else:
verified_tokens_details.append(f"'{key}' ({score_name}: {abs(actual_score):.2f})")
is_verified = not unverified_tokens
if is_verified:
evidence = f"Verified. All claimed tokens passed the {threshold_name} threshold (> {threshold:.2f}). Details: {', '.join(verified_tokens_details)}."
else:
fail_reason = f"the following did not meet the {threshold_name} threshold (> {threshold:.2f}): {', '.join(unverified_tokens)}"
if verified_tokens_details:
evidence = f"While some tokens passed ({', '.join(verified_tokens_details)}), {fail_reason}."
else:
evidence = f"The following did not meet the {threshold_name} threshold (> {threshold:.2f}): {', '.join(unverified_tokens)}."
elif claim_type in ['token_justification_claim', 'token_begruendung_anspruch']:
token_val = details.get('token') or details.get('tokens')
if isinstance(token_val, list):
token = ", ".join(map(str, token_val))
else:
token = token_val
justification = details.get('justification') or details.get('begruendung')
input_prompt = analysis_data.get('prompt', '')
generated_text = analysis_data.get('generated_text', '')
if not all([token, justification, input_prompt, generated_text]):
evidence = "Missing data for justification verification (token, justification, or prompt)."
else:
api_config = init_qwen_api()
if api_config:
verification = _cached_verify_token_justification(api_config, analysis_data['method'], input_prompt, generated_text, token, justification)
is_verified = verification.get('is_verified', False)
evidence = verification.get('reasoning', "Failed to get semantic reasoning for justification.")
else:
is_verified = False
evidence = "API key not configured for semantic verification."
except Exception as e:
evidence = f"An error occurred during verification: {str(e)}"
verification_results.append({
'claim_text': claim.get('claim_text', 'N/A'),
'verified': is_verified,
'evidence': evidence
})
return verification_results
# --- End Faithfulness Verification ---
def create_heatmap_visualization(attributions, method_name="Attribution"):
# Creates a heatmap visualization from attribution scores.
try:
# Get the HTML content from the attributions.
html_content = attributions.show(display=False, return_html=True)
if not html_content:
st.error(tr("error_inseq_no_html").format(method_name=method_name))
return None, None, None, None
# Parse the HTML to extract the data table.
soup = BeautifulSoup(html_content, 'html.parser')
table = soup.find('table')
if not table:
st.error(tr("error_no_table_in_html").format(method_name=method_name))
return None, None, None, None
# A more structured approach to parsing the HTML.
header_row_element = table.find('thead')
if header_row_element:
headers = [th.get_text(strip=True) for th in header_row_element.find_all('th')[1:]]
else:
# Fallback if no <thead> is found.
first_row = table.find('tr')
if not first_row:
st.error(tr("error_table_no_rows").format(method_name=method_name))
return None, None, None, None
headers = [th.get_text(strip=True) for th in first_row.find_all('th')[1:]]
data_rows = []
row_labels = []
# Find all `<tbody>` elements and iterate through their rows.
table_bodies = table.find_all('tbody')
if not table_bodies:
# Fallback if no <tbody> is found.
all_trs = table.find_all('tr')
data_trs = all_trs[1:] if len(all_trs) > 1 else []
else:
data_trs = []
for tbody in table_bodies:
data_trs.extend(tbody.find_all('tr'))
for tr_element in data_trs:
all_cells = tr_element.find_all(['th', 'td'])
if not all_cells or len(all_cells) <= 1:
continue
row_labels.append(all_cells[0].get_text(strip=True))
# Convert text values to float, handling empty strings as 0.
row_data = []
for cell in all_cells[1:]:
text_val = cell.get_text(strip=True)
# Remove non-breaking spaces.
clean_text = text_val.replace('\xa0', '').strip()
if clean_text:
try:
row_data.append(float(clean_text))
except ValueError:
# Default to 0 if conversion fails.
row_data.append(0.0)
else:
row_data.append(0.0)
data_rows.append(row_data)
# Create the dataframe from the parsed data.
if not data_rows or not data_rows[0]:
st.error(tr("error_failed_to_parse_rows").format(method_name=method_name))
return None, None, None, None
# --- Make token labels unique for duplicates ---
def make_labels_unique(labels):
counts = {}
new_labels = []
# First, count all occurrences to decide which ones need numbering.
label_counts = {label: labels.count(label) for label in set(labels)}
for label in labels:
if label_counts[label] > 1:
counts[label] = counts.get(label, 0) + 1
new_labels.append(f"{label} ({counts[label]})")
else:
new_labels.append(label)
return new_labels
unique_row_labels = make_labels_unique(row_labels)
unique_headers = make_labels_unique(headers)
parsed_df = pd.DataFrame(data_rows, index=unique_row_labels, columns=unique_headers)
attribution_scores = parsed_df.values
# Clean tokens for display.
clean_headers = parsed_df.columns.tolist()
clean_row_labels = parsed_df.index.tolist()
# Use numerical indices for the heatmap to handle duplicate labels.
x_indices = list(range(len(clean_headers)))
y_indices = list(range(len(clean_row_labels)))
# Prepare custom data for hover labels.
custom_data = np.empty(attribution_scores.shape, dtype=object)
for i in range(len(clean_row_labels)):
for j in range(len(clean_headers)):
custom_data[i, j] = (clean_row_labels[i], clean_headers[j])
fig = go.Figure(data=go.Heatmap(
z=attribution_scores,
x=x_indices,
y=y_indices,
customdata=custom_data,
hovertemplate="Input: %{customdata[0]}<br>Generated: %{customdata[1]}<br>Score: %{z:.4f}<extra></extra>",
colorscale='Plasma',
hoverongaps=False,
))
fig.update_layout(
title=tr('heatmap_title').format(method_name=method_name),
xaxis_title=tr('heatmap_xaxis'),
yaxis_title=tr('heatmap_yaxis'),
xaxis=dict(
tickmode='array',
tickvals=x_indices,
ticktext=clean_headers,
tickangle=45
),
yaxis=dict(
tickmode='array',
tickvals=y_indices,
ticktext=clean_row_labels,
autorange='reversed'
),
height=max(400, len(clean_row_labels) * 30),
width=max(600, len(clean_headers) * 50)
)
# Save the plot to a buffer.
buffer = BytesIO()
try:
fig.write_image(buffer, format='png', scale=2)
buffer.seek(0)
except Exception as e:
print(f"Warning: Could not generate static image (Kaleido error?): {e}")
buffer = None
return fig, html_content, buffer, parsed_df
except Exception as e:
st.error(tr("error_creating_heatmap").format(e=str(e)))
return None, None, None, None
def start_new_analysis(prompt, max_tokens, enable_explanations):
# Clears old results and starts a new analysis.
# Clear old results from the session state.
keys_to_clear = [
'generated_text',
'all_attributions'
]
for key in keys_to_clear:
if key in st.session_state:
del st.session_state[key]
# Clear any old cached items.
for key in list(st.session_state.keys()):
if key.startswith('influential_docs_'):
del st.session_state[key]
# Update the text area with the new prompt.
st.session_state.attr_prompt = prompt
# Set parameters for the new analysis.
st.session_state.run_request = {
"prompt": prompt,
"max_tokens": max_tokens,
"enable_explanations": enable_explanations
}
def update_cache_with_explanation(prompt, method_name, explanation):
cache_file = os.path.join("cache", "cached_attribution_results.json")
if not os.path.exists(cache_file): return
try:
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
if prompt in cached_data:
if "explanations" not in cached_data[prompt]:
cached_data[prompt]["explanations"] = {}
cached_data[prompt]["explanations"][method_name] = explanation
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cached_data, f, ensure_ascii=False, indent=4)
print(f"Saved explanation for {method_name} to cache.")
except Exception as e:
print(f"Failed to update cache with explanation: {e}")
def update_cache_with_faithfulness(prompt, method_name, verification_results):
cache_file = os.path.join("cache", "cached_attribution_results.json")
if not os.path.exists(cache_file): return
try:
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
if prompt in cached_data:
if "faithfulness" not in cached_data[prompt]:
cached_data[prompt]["faithfulness"] = {}
cached_data[prompt]["faithfulness"][method_name] = verification_results
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cached_data, f, ensure_ascii=False, indent=4)
print(f"Saved faithfulness for {method_name} to cache.")
except Exception as e:
print(f"Failed to update cache with faithfulness: {e}")
def run_analysis(prompt, max_tokens, enable_explanations, force_exact_num_tokens=False):
# Runs the full analysis pipeline.
if not prompt.strip():
st.warning(tr('please_enter_prompt_warning'))
return
# Check for cached results first
cache_file = os.path.join("cache", "cached_attribution_results.json")
if os.path.exists(cache_file):
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
if prompt in cached_data:
print("Loading full attribution analysis from cache.")
cached_result = cached_data[prompt]
# Check if influential_docs are missing and update the cache if possible
if "influential_docs" not in cached_result:
try:
print(f"Updating cache for '{prompt}' with missing influence docs...")
lang = st.session_state.get('lang', 'en')
# This call should hit the Streamlit cache and be fast
missing_docs = get_influential_docs(prompt, lang)
if missing_docs:
cached_result["influential_docs"] = missing_docs
# Save updated cache back to file
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cached_data, f, ensure_ascii=False, indent=4)
print("Cache updated successfully.")
except Exception as e:
print(f"Could not update cache with influence docs: {e}")
# Populate session state from the comprehensive cache
st.session_state.generated_text = cached_result["generated_text"]
st.session_state.prompt = prompt
st.session_state.enable_explanations = enable_explanations
st.session_state.qwen_api_config = init_qwen_api() if enable_explanations else None
# Reconstruct attribution objects and store explanations/faithfulness
reconstructed_attributions = {}
for method, data in cached_result["html_contents"].items():
reconstructed_attributions[method] = CachedAttribution(data)
# Use a consistent key for caching in session state
cache_key_base = f"{method}_{cached_result['generated_text']}"
if "explanation" in data:
st.session_state[f"explanation_{cache_key_base}"] = data["explanation"]
if "faithfulness_results" in data:
st.session_state[f"faithfulness_check_{cache_key_base}"] = data["faithfulness_results"]
# Load new structured cache
if "explanations" in cached_result and method in cached_result["explanations"]:
st.session_state[f"explanation_{cache_key_base}"] = cached_result["explanations"][method]
if "faithfulness" in cached_result and method in cached_result["faithfulness"]:
st.session_state[f"faithfulness_check_{cache_key_base}"] = cached_result["faithfulness"][method]
st.session_state.all_attributions = reconstructed_attributions
# Store influential docs
if "influential_docs" in cached_result:
# Use a key that the UI part can check for
st.session_state.cached_influential_docs = cached_result["influential_docs"]
st.success(tr('analysis_complete_success'))
return
# If not in cache, check if models exist before trying to load
model_path = "./models/OLMo-2-1124-7B"
if not os.path.exists(model_path):
st.info("This live demo is running in a static environment. Only the pre-cached example prompts are available. Please select an example to view its analysis.")
return
# Load the models.
with st.spinner(tr('loading_models_spinner')):
attribution_models, tokenizer, base_model, device = load_all_attribution_models()
if not attribution_models:
st.error(tr('failed_to_load_models_error'))
return
st.session_state.qwen_api_config = init_qwen_api() if enable_explanations else None
st.session_state.enable_explanations = enable_explanations
st.session_state.prompt = prompt
# Generate text and attributions.
with st.spinner(tr('running_attribution_analysis_spinner')):
try:
generated_text, all_attributions = generate_all_attribution_analyses(
attribution_models,
tokenizer,
base_model,
device,
prompt,
max_tokens,
force_exact_num_tokens=force_exact_num_tokens
)
except Exception as e:
st.error(f"Error in attribution analysis: {str(e)}")
# Let the rest of the function know it failed.
generated_text, all_attributions = None, None
if not generated_text or not all_attributions:
st.error(tr('failed_to_generate_analysis_error'))
return
# Store the results in the session state.
st.session_state.generated_text = generated_text
st.session_state.all_attributions = all_attributions
# --- New: Save the new result back to the cache ---
try:
cache_file = os.path.join("cache", "cached_attribution_results.json")
os.makedirs("cache", exist_ok=True)
# Load existing cache or create new
if os.path.exists(cache_file):
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
else:
cached_data = {}
# Add new result
html_contents = {method: attr.show(display=False, return_html=True) for method, attr in all_attributions.items()}
# Also fetch influential docs to cache them
lang = st.session_state.get('lang', 'en')
docs_to_cache = get_influential_docs(prompt, lang)
cached_data[prompt] = {
"generated_text": generated_text,
"html_contents": html_contents,
"influential_docs": docs_to_cache
}
# Write back to file
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cached_data, f, ensure_ascii=False, indent=4)
print(f"Saved new analysis for '{prompt}' to cache.")
except Exception as e:
print(f"Warning: Could not save result to cache file. {e}")
# --- End new section ---
# Clean up models to free memory.
del attribution_models
del tokenizer
del base_model
gc.collect()
if device == 'mps':
torch.mps.empty_cache()
elif device == 'cuda':
torch.cuda.empty_cache()
st.success(tr('analysis_complete_success'))
def show_attribution_analysis():
# Shows the main attribution analysis page.
# Add some CSS for icons.
st.markdown('<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.10.5/font/bootstrap-icons.css">', unsafe_allow_html=True)
st.markdown(f"<h1>{tr('attr_page_title')}</h1>", unsafe_allow_html=True)
st.markdown(f"{tr('attr_page_desc')}", unsafe_allow_html=True)
# Check if a new analysis has been requested by the user.
if 'run_request' in st.session_state:
request = st.session_state.pop('run_request')
run_analysis(
prompt=request['prompt'],
max_tokens=request['max_tokens'],
enable_explanations=request['enable_explanations']
)
# Set up the main layout.
col1, col2 = st.columns([1, 1])
with col1:
st.markdown(f"<h2>{tr('input_header')}</h2>", unsafe_allow_html=True)
# Get the current language from the session state.
lang = st.session_state.get('lang', 'en')
# Example prompts for English and German.
example_prompts = {
'en': [
"The capital of France is",
"The first person to walk on the moon was",
"To be or not to be, that is the",
"Once upon a time, in a land far, far away,",
"The chemical formula for water is",
"A stitch in time saves",
"The opposite of hot is",
"The main ingredients of a pizza are",
"She opened the door and saw"
],
'de': [
"Die Hauptstadt von Frankreich ist",
"Die erste Person auf dem Mond war",
"Sein oder Nichtsein, das ist hier die",
"Es war einmal, in einem weit, weit entfernten Land,",
"Die chemische Formel für Wasser ist",
"Was du heute kannst besorgen, das verschiebe nicht auf",
"Das Gegenteil von heiß ist",
"Die Hauptzutaten einer Pizza sind",
"Sie öffnete die Tür und sah"
]
}
st.markdown('**<i class="bi bi-lightbulb"></i> Example Prompts:**', unsafe_allow_html=True)
cols = st.columns(3)
for i, example in enumerate(example_prompts[lang][:9]):
with cols[i % 3]:
st.button(
example,
key=f"example_{i}",
use_container_width=True,
on_click=start_new_analysis,
args=(example, 10, st.session_state.get('enable_explanations', True))
)
# Text input area for the user's prompt.
prompt = st.text_area(
tr('enter_prompt'),
value=st.session_state.get('attr_prompt', ""),
height=100,
help=tr('enter_prompt_help'),
placeholder="Sadly no GPU available. Please select an example above.",
disabled=True
)
# Slider for the number of tokens to generate.
max_tokens = st.slider(
tr('max_new_tokens_slider'),
min_value=1,
max_value=50,
value=5,
help=tr('max_new_tokens_slider_help'),
disabled=True
)
# Checkbox to enable or disable AI explanations.
enable_explanations = st.checkbox(
tr('enable_ai_explanations'),
value=True,
help=tr('enable_ai_explanations_help')
)
# Button to start the analysis.
st.button(
tr('generate_and_analyze_button'),
type="primary",
on_click=start_new_analysis,
args=(prompt, max_tokens, enable_explanations),
disabled=True
)
with col2:
st.markdown(f"<h2>{tr('output_header')}</h2>", unsafe_allow_html=True)
if hasattr(st.session_state, 'generated_text'):
st.subheader(tr('generated_text_subheader'))
# Extract the generated part of the text.
prompt_part = st.session_state.prompt
full_text = st.session_state.generated_text
generated_part = full_text
if full_text.startswith(prompt_part):
generated_part = full_text[len(prompt_part):].lstrip()
else:
# A fallback in case tokenization changes the prompt slightly.
generated_part = full_text.replace(prompt_part, "", 1).strip()
# Clean up the generated text for display.
cleaned_generated_part = re.sub(r'\n{2,}', '\n', generated_part).strip()
escaped_generated = html.escape(cleaned_generated_part)
escaped_prompt = html.escape(prompt_part)
st.markdown(f"""
<div style="background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; margin: 1rem 0; border: 1px solid #444;">
<strong>{tr('input_label')}</strong> <span style="color: #60a5fa;">{escaped_prompt}</span><br>
<strong>{tr('generated_label')}</strong> <span style="font-weight: bold; color: #fca5a5; white-space: pre-wrap;">{escaped_generated}</span>
</div>
""", unsafe_allow_html=True)
# Display the visualizations for each method.
if hasattr(st.session_state, 'all_attributions'):
st.header(tr('attribution_analysis_results_header'))
# Create tabs for each analysis method.
tab_titles = [
tr('saliency_tab'),
tr('attr_tab'),
tr('occlusion_tab')
]
tabs = st.tabs(tab_titles)
# Define the order of the methods in the tabs.
methods = {
"saliency": {
"tab": tabs[0],
"title": tr('saliency_title'),
"description": tr('saliency_viz_desc')
},
"integrated_gradients": {
"tab": tabs[1],
"title": tr('attr_title'),
"description": tr('attr_viz_desc')
},
"occlusion": {
"tab": tabs[2],
"title": tr('occlusion_title'),
"description": tr('occlusion_viz_desc')
}
}
# Generate and display the visualization for each method.
for method_name, method_info in methods.items():
with method_info["tab"]:
st.subheader(f"{method_info['title']} Analysis")
# Generate the heatmap.
with st.spinner(tr('creating_viz_spinner').format(method_title=method_info['title'])):
heatmap_fig, html_content, heatmap_buffer, scores_df = create_heatmap_visualization(
st.session_state.all_attributions[method_name],
method_name=method_info['title']
)
if heatmap_fig:
st.plotly_chart(heatmap_fig, use_container_width=True)
# Add an explanation of how to read the heatmap.
explanation_html = f"""
<div style="background-color: #0E1117; border-radius: 10px; padding: 15px; margin: 10px 0; border: 1px solid #262730;">
<h4 style="color: #FAFAFA; margin-bottom: 10px;">{tr('how_to_read_heatmap')}</h4>
<ul style="color: #DCDCDC; margin-left: 20px; padding-left: 0;">
<li style="margin-bottom: 5px;"><strong>{tr('xaxis_label')}:</strong> {tr('xaxis_desc')}</li>
<li style="margin-bottom: 5px;"><strong>{tr('yaxis_label')}:</strong> {tr('yaxis_desc')}</li>
<li style="margin-bottom: 5px;"><strong>{tr('color_intensity_label')}:</strong> {tr('color_intensity_desc')}</li>
<li style="margin-bottom: 5px;"><strong>{tr('interpretation_label')}:</strong> {tr('interpretation_desc')}</li>
<li style="margin-bottom: 5px;"><strong>{tr('special_tokens_label')}:</strong> {tr('special_tokens_desc')}</li>
</ul>
</div>
"""
st.markdown(explanation_html, unsafe_allow_html=True)
# Generate an AI explanation for the heatmap.
if (st.session_state.get('enable_explanations') and
st.session_state.get('qwen_api_config') and
heatmap_buffer is not None and scores_df is not None):
explanation_cache_key = f"explanation_{method_name}_{st.session_state.generated_text}"
# Get the explanation from the cache or generate it.
if explanation_cache_key not in st.session_state:
with st.spinner(tr('generating_ai_explanations_spinner').format(method_title=method_info['title'])):
explanation = explain_heatmap_with_csv_data(
st.session_state.qwen_api_config,
heatmap_buffer,
scores_df,
st.session_state.prompt,
st.session_state.generated_text,
method_name
)
st.session_state[explanation_cache_key] = explanation
# Update cache file
update_cache_with_explanation(st.session_state.prompt, method_name, explanation)
explanation = st.session_state.get(explanation_cache_key)
if explanation and not explanation.startswith("Error:"):
simple_desc = tr(METHOD_DESC_KEYS.get(method_name, "unsupported_method_desc"))
st.markdown(f"#### {tr('what_this_method_shows')}")
st.markdown(f"""
<div style="background-color: #2f3f70; color: #f5f7fb; padding: 1.2rem; border-radius: 12px; margin-bottom: 1rem; box-shadow: 0 12px 24px rgba(47, 63, 112, 0.35);">
<p style='font-size: 1.05em; font-weight: 500; margin:0; color: #f5f7fb;'>{simple_desc}</p>
</div>
""", unsafe_allow_html=True)
html_explanation = markdown.markdown(explanation)
st.markdown(f"#### {tr('ai_generated_analysis')}")
st.markdown(f"""
<div style="background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; border-left: 4px solid #dcae36; font-size: 0.9rem; margin-bottom: 1rem;">
{html_explanation}
</div>
""", unsafe_allow_html=True)
# Faithfulness Check Expander
with st.expander(tr('faithfulness_check_expander')):
st.markdown(tr('faithfulness_check_explanation_html'), unsafe_allow_html=True)
with st.spinner(tr('running_faithfulness_check_spinner')):
try:
# Use a cache key to avoid re-running the check unnecessarily.
check_cache_key = f"faithfulness_check_{method_name}_{st.session_state.generated_text}"
if check_cache_key not in st.session_state:
claims = _cached_extract_claims_from_explanation(
st.session_state.qwen_api_config,
explanation,
method_name
)
if claims:
analysis_data = {
'scores_df': scores_df,
'method': method_name,
'prompt': st.session_state.prompt,
'generated_text': st.session_state.generated_text
}
verification_results = verify_claims(claims, analysis_data)
st.session_state[check_cache_key] = verification_results
# Update cache file
update_cache_with_faithfulness(st.session_state.prompt, method_name, verification_results)
else:
st.session_state[check_cache_key] = []
verification_results = st.session_state[check_cache_key]
if verification_results:
st.markdown(f"<h6>{tr('faithfulness_check_results_header')}</h6>", unsafe_allow_html=True)
for result in verification_results:
status_text = tr('verified_status') if result['verified'] else tr('contradicted_status')
st.markdown(f"""
<div style="margin-bottom: 1rem; padding: 0.8rem; border-radius: 8px; border-left: 5px solid {'#28a745' if result['verified'] else '#dc3545'}; background-color: #1a1a1a;">
<p style="margin-bottom: 0.3rem;"><strong>{tr('claim_label')}:</strong> <em>"{result['claim_text']}"</em></p>
<p style="margin-bottom: 0.3rem;"><strong>{tr('status_label')}:</strong> {status_text}</p>
<p style="margin-bottom: 0;"><strong>{tr('evidence_label')}:</strong> {result['evidence']}</p>
</div>
""", unsafe_allow_html=True)
else:
st.info(tr('no_verifiable_claims_info'))
except Exception as e:
st.error(tr('faithfulness_check_error').format(e=str(e)))
# Add download buttons for the results.
st.subheader(tr("download_results_subheader"))
col1, col2 = st.columns(2)
with col1:
if html_content:
st.download_button(
label=tr("download_html_button").format(method_title=method_info['title']),
data=html_content,
file_name=f"{method_name}_analysis.html",
mime="text/html",
key=f"html_{method_name}"
)
if scores_df is not None:
st.download_button(
label=tr("download_csv_button"),
data=scores_df.to_csv().encode('utf-8'),
file_name=f"{method_name}_scores.csv",
mime="text/csv",
key=f"csv_raw_{method_name}"
)
with col2:
if heatmap_fig:
img_bytes = heatmap_fig.to_image(format="png", scale=2)
st.download_button(
label=tr("download_png_button").format(method_title=method_info['title']),
data=img_bytes,
file_name=f"{method_name}_heatmap.png",
mime="image/png",
key=f"png_{method_name}"
)
# Display the influence tracer section.
st.markdown("---")
st.markdown(f'<h3><i class="bi bi-compass"></i> {tr("influence_tracer_title")}</h3>', unsafe_allow_html=True)
st.markdown(f"<div style='font-size: 1.1rem;'>{tr('influence_tracer_desc')}</div>", unsafe_allow_html=True)
# Add a visual explanation of cosine similarity.
# Get translated text.
sentence_a = tr('influence_example_sentence_a')
sentence_b = tr('influence_example_sentence_b')
# Create the SVG for the diagram.
svg_code = f"""
<svg width="250" height="150" viewBox="0 0 250 150" xmlns="http://www.w3.org/2000/svg">
<line x1="10" y1="130" x2="240" y2="130" stroke="#555" stroke-width="2"></line>
<line x1="10" y1="130" x2="10" y2="10" stroke="#555" stroke-width="2"></line>
<!-- Corrected angle arc and theta position -->
<path d="M 49 123 A 40 40 0 0 0 42 107" fill="none" stroke="#FFD700" stroke-width="2"></path>
<text x="50" y="115" font-family="monospace" font-size="12" fill="#FFD700">θ</text>
<line x1="10" y1="130" x2="150" y2="30" stroke="#87CEEB" stroke-width="3"></line>
<text x="155" y="25" font-family="monospace" font-size="12" fill="#87CEEB">Vector A</text>
<text x="155" y="40" font-family="monospace" font-size="10" fill="#aaa">{sentence_a}</text>
<line x1="10" y1="130" x2="170" y2="100" stroke="#90EE90" stroke-width="3"></line>
<text x="175" y="95" font-family="monospace" font-size="12" fill="#90EE90">Vector B</text>
<text x="175" y="110" font-family="monospace" font-size="10" fill="#aaa">{sentence_b}</text>
</svg>
"""
# Encode the SVG to base64.
encoded_svg = base64.b64encode(svg_code.encode("utf-8")).decode("utf-8")
image_uri = f"data:image/svg+xml;base64,{encoded_svg}"
# Display the explanation and diagram.
st.markdown(f"""
<div style="background-color: #2b2b2b; border-radius: 10px; padding: 1.5rem; margin: 1rem 0; border-left: 4px solid #FFD700;">
<h4 style="color: #FFD700; margin-top: 0; margin-bottom: 1rem;">{tr('how_influence_is_found_header')}</h4>
<div>
<p style="font-size: 1rem;">{tr('how_influence_is_found_desc')}</p>
<div style="font-family: 'SF Mono', 'Consolas', 'Menlo', monospace; margin-top: 1.5rem; font-size: 0.95em;">
<p>{tr('influence_step_1_title')}: {tr('influence_step_1_desc')}</p>
<p>{tr('influence_step_2_title')}: {tr('influence_step_2_desc')}</p>
<p>{tr('influence_step_3_title')}: {tr('influence_step_3_desc')}</p>
</div>
</div>
<div style="text-align: center; margin-top: 2rem;">
<img src="{image_uri}" alt="Cosine Similarity Diagram" />
</div>
</div>
""", unsafe_allow_html=True)
st.write("")
if hasattr(st.session_state, 'generated_text'):
# First, check if influential docs are available in the cache from session_state
if 'cached_influential_docs' in st.session_state:
influential_docs = st.session_state.pop('cached_influential_docs') # Use and remove
else:
with st.spinner(tr('running_influence_trace_spinner')):
lang = st.session_state.get('lang', 'en')
influential_docs = get_influential_docs(st.session_state.prompt, lang)
# Display the results.
if influential_docs:
st.markdown(f"#### {tr('top_influential_docs_header').format(num_docs=len(influential_docs))}")
# A nice visualization for the influential documents.
for i, doc in enumerate(influential_docs):
colors = ["#A78BFA", "#7F9CF5", "#6EE7B7", "#FBBF24", "#F472B6"]
card_color = colors[i % len(colors)]
full_text = doc['text']
highlight_sentence = doc.get('highlight_sentence', '')
highlighted_html = ""
lang = st.session_state.get('lang', 'en')
if highlight_sentence:
# Normalize the sentence to be highlighted.
normalized_highlight = re.sub(r'\s+', ' ', highlight_sentence).strip()
# Use fuzzy matching to find the best match in the document.
splitter = SentenceSplitter(language=lang)
sentences_in_doc = splitter.split(text=full_text)
if sentences_in_doc:
best_match, score = process.extractOne(normalized_highlight, sentences_in_doc)
start_index = full_text.find(best_match)
if start_index != -1:
end_index = start_index + len(best_match)
# Create a context window around the matched sentence.
context_window = 500
snippet_start = max(0, start_index - context_window)
snippet_end = min(len(full_text), end_index + context_window)
# Reconstruct the HTML with the highlighted sentence.
before = html.escape(full_text[snippet_start:start_index])
highlight = html.escape(best_match)
after = html.escape(full_text[end_index:snippet_end])
# Add ellipses if we're not showing the full text.
start_ellipsis = "... " if snippet_start > 0 else ""
end_ellipsis = " ..." if snippet_end < len(full_text) else ""
highlighted_html = (
f"{start_ellipsis}{before}"
f'<mark style="background-color: {card_color}77; color: #DCDCDC; padding: 2px 4px; border-radius: 4px; font-weight: bold;">{highlight}</mark>'
f"{after}{end_ellipsis}"
)
# If no highlight was applied, just show the full text.
if not highlighted_html:
highlighted_html = html.escape(full_text)
st.markdown(f"""
<div style="border: 1px solid #262730; border-left: 5px solid {card_color}; border-radius: 10px; padding: 1.5rem; margin-bottom: 1.5rem; background-color: #0E1117; box-shadow: 0 4px 8px rgba(0,0,0,0.2);">
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 1rem;">
<span style="font-size: 1.1rem; color: #FAFAFA; font-weight: 600;"><i class="bi bi-journal-text"></i> {tr('source_label')}: {doc['source']}</span>
<span style="font-size: 1.1rem; color: {card_color}; background-color: {card_color}22; padding: 0.3rem 0.8rem; border-radius: 15px; font-weight: bold;">
<i class="bi bi-stars"></i> {tr('similarity_label')}: {doc['similarity']:.3f}
</span>
</div>
<div style="background-color: #1a1a1a; color: #DCDCDC; padding: 1rem; border-radius: 8px; font-family: 'Courier New', Courier, monospace; white-space: pre-wrap; word-wrap: break-word; max-height: 300px; overflow-y: auto;">
{highlighted_html.strip()}
</div>
</div>
""", unsafe_allow_html=True)
else:
# Give a helpful message if the index is missing.
if not os.path.exists(INDEX_PATH) or not os.path.exists(MAPPING_PATH):
st.warning(tr('influence_index_not_found_warning'))
else:
st.info(tr('no_influential_docs_found'))
else:
st.info(tr('run_analysis_for_influence_info'))
# Show the feedback survey in the sidebar.
#if 'all_attributions' in st.session_state:
# display_attribution_feedback()
if __name__ == "__main__":
show_attribution_analysis() |