Spaces:
Running
Running
CUDA: add conv_2d_dw (llama/14265)
Browse files* CUDA: add conv_2d_dw
* better naming
* simplify using template
* Review: fix operation ordering in ggml-cuda, use __forceinline__, use more const
ggml/src/ggml-cuda/conv2d-dw.cu
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "conv2d-dw.cuh"
|
| 2 |
+
|
| 3 |
+
struct conv_params {
|
| 4 |
+
int in_w, in_h;
|
| 5 |
+
int out_w, out_h;
|
| 6 |
+
int kernel_w, kernel_h;
|
| 7 |
+
int stride_x, stride_y;
|
| 8 |
+
int padding_x, padding_y;
|
| 9 |
+
int dilation_x, dilation_y;
|
| 10 |
+
int channels, batches;
|
| 11 |
+
};
|
| 12 |
+
|
| 13 |
+
struct kernel_bounds {
|
| 14 |
+
int y_min, y_max;
|
| 15 |
+
int x_min, x_max;
|
| 16 |
+
};
|
| 17 |
+
|
| 18 |
+
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int out_x, int out_y, const conv_params & params) {
|
| 19 |
+
kernel_bounds bounds;
|
| 20 |
+
bounds.y_min = max(0, (params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
|
| 21 |
+
bounds.y_max =
|
| 22 |
+
min(params.kernel_h,
|
| 23 |
+
(params.in_h + params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
|
| 24 |
+
bounds.x_min = max(0, (params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
|
| 25 |
+
bounds.x_max =
|
| 26 |
+
min(params.kernel_w,
|
| 27 |
+
(params.in_w + params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
|
| 28 |
+
return bounds;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
__device__ __forceinline__ int calculate_input_coord(int out_coord, int kern_coord, int stride, int dilation, int padding) {
|
| 32 |
+
return out_coord * stride + kern_coord * dilation - padding;
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
struct whcn_layout {
|
| 36 |
+
__device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
|
| 37 |
+
return n * (params.channels * params.in_w * params.in_h) + c * params.in_w * params.in_h + y * params.in_w + x;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
__device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
|
| 41 |
+
return c * params.kernel_h * params.kernel_w + ky * params.kernel_w + kx;
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
__device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
|
| 45 |
+
return n * (params.channels * params.out_w * params.out_h) + c * params.out_w * params.out_h +
|
| 46 |
+
y * params.out_w + x;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
__device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
|
| 50 |
+
int & out_x) {
|
| 51 |
+
out_x = global_idx % params.out_w;
|
| 52 |
+
out_y = (global_idx / params.out_w) % params.out_h;
|
| 53 |
+
c = (global_idx / (params.out_w * params.out_h)) % params.channels;
|
| 54 |
+
n = global_idx / (params.out_w * params.out_h * params.channels);
|
| 55 |
+
}
|
| 56 |
+
};
|
| 57 |
+
|
| 58 |
+
struct cwhn_layout {
|
| 59 |
+
__device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
|
| 60 |
+
return n * (params.channels * params.in_w * params.in_h) + (y * params.in_w + x) * params.channels + c;
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
__device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
|
| 64 |
+
return (ky * params.kernel_w + kx) * params.channels + c;
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
__device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
|
| 68 |
+
return n * (params.channels * params.out_w * params.out_h) + y * (params.out_w * params.channels) +
|
| 69 |
+
x * params.channels + c;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
__device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
|
| 73 |
+
int & out_x) {
|
| 74 |
+
c = global_idx % params.channels;
|
| 75 |
+
out_x = (global_idx / params.channels) % params.out_w;
|
| 76 |
+
out_y = (global_idx / (params.channels * params.out_w)) % params.out_h;
|
| 77 |
+
n = global_idx / (params.channels * params.out_w * params.out_h);
|
| 78 |
+
}
|
| 79 |
+
};
|
| 80 |
+
|
| 81 |
+
template <typename T, typename Layout>
|
| 82 |
+
__global__ void conv2d_dw_kernel(const T * __restrict__ input, const T * __restrict__ kernel, T * __restrict__ output,
|
| 83 |
+
const int in_w, const int in_h, const int out_w, const int out_h,
|
| 84 |
+
const int kernel_w, const int kernel_h, const int stride_x, const int stride_y,
|
| 85 |
+
const int padding_x, const int padding_y, const int dilation_x, const int dilation_y,
|
| 86 |
+
const int channels, const int batches) {
|
| 87 |
+
const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
| 88 |
+
const int total_elements = batches * channels * out_h * out_w;
|
| 89 |
+
|
| 90 |
+
if (global_idx >= total_elements) {
|
| 91 |
+
return;
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
conv_params params = { in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x,
|
| 95 |
+
stride_y, padding_x, padding_y, dilation_x, dilation_y, channels, batches };
|
| 96 |
+
|
| 97 |
+
int batch_idx, channel_idx, out_y_idx, out_x_idx;
|
| 98 |
+
Layout::unpack_indices(global_idx, params, batch_idx, channel_idx, out_y_idx, out_x_idx);
|
| 99 |
+
|
| 100 |
+
T accumulator = 0;
|
| 101 |
+
kernel_bounds bounds = calculate_kernel_bounds(out_x_idx, out_y_idx, params);
|
| 102 |
+
|
| 103 |
+
for (int kern_y = bounds.y_min; kern_y < bounds.y_max; ++kern_y) {
|
| 104 |
+
int in_y_idx = calculate_input_coord(out_y_idx, kern_y, params.stride_y, params.dilation_y, params.padding_y);
|
| 105 |
+
|
| 106 |
+
for (int kern_x = bounds.x_min; kern_x < bounds.x_max; ++kern_x) {
|
| 107 |
+
int in_x_idx = calculate_input_coord(out_x_idx, kern_x, params.stride_x, params.dilation_x, params.padding_x);
|
| 108 |
+
|
| 109 |
+
const T input_val = input[Layout::input_index(batch_idx, channel_idx, in_y_idx, in_x_idx, params)];
|
| 110 |
+
const T kernel_val = kernel[Layout::kernel_index(channel_idx, kern_y, kern_x, params)];
|
| 111 |
+
|
| 112 |
+
accumulator += input_val * kernel_val;
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
output[Layout::output_index(batch_idx, channel_idx, out_y_idx, out_x_idx, params)] = accumulator;
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 120 |
+
const ggml_tensor * kernel = dst->src[0];
|
| 121 |
+
const ggml_tensor * input = dst->src[1];
|
| 122 |
+
|
| 123 |
+
GGML_ASSERT(kernel->type == GGML_TYPE_F32 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
| 124 |
+
const float * w_d = (const float *) kernel->data;
|
| 125 |
+
const float * x_d = (const float *) input->data;
|
| 126 |
+
float * y_d = (float *) dst->data;
|
| 127 |
+
|
| 128 |
+
const int32_t * p = (const int32_t *) dst->op_params;
|
| 129 |
+
const int stride_x = p[0];
|
| 130 |
+
const int stride_y = p[1];
|
| 131 |
+
const int padding_x = p[2];
|
| 132 |
+
const int padding_y = p[3];
|
| 133 |
+
const int dilation_x = p[4];
|
| 134 |
+
const int dilation_y = p[5];
|
| 135 |
+
|
| 136 |
+
const int in_w = input->ne[0];
|
| 137 |
+
const int in_h = input->ne[1];
|
| 138 |
+
const int kernel_w = kernel->ne[0];
|
| 139 |
+
const int kernel_h = kernel->ne[1];
|
| 140 |
+
const int out_w = dst->ne[0];
|
| 141 |
+
const int out_h = dst->ne[1];
|
| 142 |
+
const int channels = dst->ne[2];
|
| 143 |
+
const int batches = dst->ne[3];
|
| 144 |
+
|
| 145 |
+
cudaStream_t st = ctx.stream();
|
| 146 |
+
|
| 147 |
+
const int total = batches * channels * out_h * out_w;
|
| 148 |
+
const int blocks = (total + CUDA_CONV2D_DW_BLOCK_SIZE - 1) / CUDA_CONV2D_DW_BLOCK_SIZE;
|
| 149 |
+
|
| 150 |
+
if (ggml_is_contiguous(input)) {
|
| 151 |
+
conv2d_dw_kernel<float, whcn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
|
| 152 |
+
x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
|
| 153 |
+
dilation_x, dilation_y, channels, batches);
|
| 154 |
+
} else if (ggml_is_contiguous_channels(input)) {
|
| 155 |
+
conv2d_dw_kernel<float, cwhn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
|
| 156 |
+
x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
|
| 157 |
+
dilation_x, dilation_y, channels, batches);
|
| 158 |
+
} else {
|
| 159 |
+
GGML_ABORT("Unsupported memory layout for conv_2d_dw");
|
| 160 |
+
}
|
| 161 |
+
}
|
ggml/src/ggml-cuda/conv2d-dw.cuh
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
#include "common.cuh"
|
| 3 |
+
|
| 4 |
+
#define CUDA_CONV2D_DW_BLOCK_SIZE 256
|
| 5 |
+
void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
ggml/src/ggml-cuda/ggml-cuda.cu
CHANGED
|
@@ -11,6 +11,7 @@
|
|
| 11 |
#include "ggml-cuda/clamp.cuh"
|
| 12 |
#include "ggml-cuda/concat.cuh"
|
| 13 |
#include "ggml-cuda/conv-transpose-1d.cuh"
|
|
|
|
| 14 |
#include "ggml-cuda/convert.cuh"
|
| 15 |
#include "ggml-cuda/count-equal.cuh"
|
| 16 |
#include "ggml-cuda/cpy.cuh"
|
|
@@ -2310,6 +2311,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|
| 2310 |
case GGML_OP_IM2COL:
|
| 2311 |
ggml_cuda_op_im2col(ctx, dst);
|
| 2312 |
break;
|
|
|
|
|
|
|
|
|
|
| 2313 |
case GGML_OP_CONV_TRANSPOSE_1D:
|
| 2314 |
ggml_cuda_op_conv_transpose_1d(ctx,dst);
|
| 2315 |
break;
|
|
@@ -3209,6 +3213,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|
| 3209 |
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
| 3210 |
}
|
| 3211 |
case GGML_OP_IM2COL:
|
|
|
|
| 3212 |
case GGML_OP_POOL_2D:
|
| 3213 |
case GGML_OP_SUM:
|
| 3214 |
case GGML_OP_SUM_ROWS:
|
|
|
|
| 11 |
#include "ggml-cuda/clamp.cuh"
|
| 12 |
#include "ggml-cuda/concat.cuh"
|
| 13 |
#include "ggml-cuda/conv-transpose-1d.cuh"
|
| 14 |
+
#include "ggml-cuda/conv2d-dw.cuh"
|
| 15 |
#include "ggml-cuda/convert.cuh"
|
| 16 |
#include "ggml-cuda/count-equal.cuh"
|
| 17 |
#include "ggml-cuda/cpy.cuh"
|
|
|
|
| 2311 |
case GGML_OP_IM2COL:
|
| 2312 |
ggml_cuda_op_im2col(ctx, dst);
|
| 2313 |
break;
|
| 2314 |
+
case GGML_OP_CONV_2D_DW:
|
| 2315 |
+
ggml_cuda_op_conv2d_dw(ctx, dst);
|
| 2316 |
+
break;
|
| 2317 |
case GGML_OP_CONV_TRANSPOSE_1D:
|
| 2318 |
ggml_cuda_op_conv_transpose_1d(ctx,dst);
|
| 2319 |
break;
|
|
|
|
| 3213 |
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
| 3214 |
}
|
| 3215 |
case GGML_OP_IM2COL:
|
| 3216 |
+
case GGML_OP_CONV_2D_DW:
|
| 3217 |
case GGML_OP_POOL_2D:
|
| 3218 |
case GGML_OP_SUM:
|
| 3219 |
case GGML_OP_SUM_ROWS:
|