Spaces:
Runtime error
Runtime error
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import math | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.nn as nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from typing import List, Union, Optional, Tuple | |
| from .attention import flash_attention | |
| __all__ = ['WanModel'] | |
| def sinusoidal_embedding_1d(dim, position): | |
| # preprocess | |
| assert dim % 2 == 0 | |
| half = dim // 2 | |
| position = position.type(torch.float64) | |
| # calculation | |
| sinusoid = torch.outer( | |
| position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
| x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
| return x | |
| def rope_params(max_seq_len, dim, theta=10000): | |
| assert dim % 2 == 0 | |
| freqs = torch.outer( | |
| torch.arange(max_seq_len), | |
| 1.0 / torch.pow(theta, | |
| torch.arange(0, dim, 2).to(torch.float64).div(dim))) | |
| freqs = torch.polar(torch.ones_like(freqs), freqs) | |
| return freqs | |
| def rope_apply(x, grid_sizes, freqs): | |
| n, c = x.size(2), x.size(3) // 2 | |
| # split freqs | |
| freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
| # loop over samples | |
| output = [] | |
| for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
| seq_len = f * h * w | |
| # precompute multipliers | |
| x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( | |
| seq_len, n, -1, 2)) | |
| freqs_i = torch.cat([ | |
| freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
| freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
| freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
| ], | |
| dim=-1).reshape(seq_len, 1, -1) | |
| # apply rotary embedding | |
| x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
| x_i = torch.cat([x_i, x[i, seq_len:]]) | |
| # append to collection | |
| output.append(x_i) | |
| return torch.stack(output).float() | |
| class WanRMSNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.dim = dim | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return self._norm(x.float()).type_as(x) * self.weight | |
| def _norm(self, x): | |
| return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
| class WanLayerNorm(nn.LayerNorm): | |
| def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
| super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return super().forward(x.float()).type_as(x) | |
| class WanSelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.eps = eps | |
| # layers | |
| self.q = nn.Linear(dim, dim) | |
| self.k = nn.Linear(dim, dim) | |
| self.v = nn.Linear(dim, dim) | |
| self.o = nn.Linear(dim, dim) | |
| self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, seq_lens, grid_sizes, freqs): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| seq_lens(Tensor): Shape [B] | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| x = flash_attention( | |
| q=rope_apply(q, grid_sizes, freqs), | |
| k=rope_apply(k, grid_sizes, freqs), | |
| v=v, | |
| k_lens=seq_lens, | |
| window_size=self.window_size) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class WanT2VCrossAttention(WanSelfAttention): | |
| def forward(self, x, context, context_lens, collect_attn_map=False): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| if collect_attn_map: | |
| # visual cross map start | |
| L1 = x.size(1) | |
| L2 = context.size(1) | |
| q_permuted = q.permute(0, 2, 1, 3) # [B, n, L1, d] | |
| k_permuted = k.permute(0, 2, 1, 3) # [B, n, L2, d] | |
| scale_factor = 1.0 / math.sqrt(d) | |
| k_transposed = k_permuted.transpose(-2, -1) # [B, n, d, L2] | |
| attn_scores = torch.matmul(q_permuted, k_transposed) * scale_factor # [B, n, L1, L2] | |
| if context_lens is not None: | |
| mask = torch.arange(L2, device=q.device)[None, None, None, :] >= context_lens.to(q.device)[:, None, None, None] | |
| attn_scores = attn_scores.masked_fill(mask, -torch.finfo(attn_scores.dtype).max) | |
| attn_weights = torch.softmax(attn_scores, dim=-1) # [B, n, L1, L2] | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| if collect_attn_map: | |
| return x, attn_weights | |
| return x | |
| class WanI2VCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_lens): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| context_lens(Tensor): Shape [B] | |
| """ | |
| context_img = context[:, :257] | |
| context = context[:, 257:] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
| v_img = self.v_img(context_img).view(b, -1, n, d) | |
| img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| WAN_CROSSATTENTION_CLASSES = { | |
| 't2v_cross_attn': WanT2VCrossAttention, | |
| 'i2v_cross_attn': WanI2VCrossAttention, | |
| } | |
| class WanAttentionBlock(nn.Module): | |
| def __init__(self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = WanLayerNorm(dim, eps) | |
| self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
| eps) | |
| self.norm3 = WanLayerNorm( | |
| dim, eps, | |
| elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
| self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
| num_heads, | |
| (-1, -1), | |
| qk_norm, | |
| eps) | |
| self.norm2 = WanLayerNorm(dim, eps) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(ffn_dim, dim)) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| context, | |
| context_lens, | |
| collect_attn_map=False, | |
| depth_tensor=None, | |
| depth_tensor_lens=None | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| e(Tensor): Shape [B, 6, C] | |
| seq_lens(Tensor): Shape [B], length of each sequence in batch | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation + e).chunk(6, dim=1) | |
| assert e[0].dtype == torch.float32 | |
| # self-attention | |
| y = self.self_attn( | |
| self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, | |
| freqs) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[2] | |
| # cross-attention & ffn function | |
| def cross_attn_ffn(x, context, context_lens, e, collect_attn_map): | |
| if collect_attn_map: | |
| cross_x, attn_scores = self.cross_attn(self.norm3(x), context, context_lens, collect_attn_map) | |
| else: | |
| cross_x = self.cross_attn(self.norm3(x), context, context_lens, collect_attn_map) | |
| x = x + cross_x | |
| y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[5] | |
| if collect_attn_map: | |
| return x, attn_scores | |
| else: | |
| return x | |
| if collect_attn_map: | |
| x, attn_scores = cross_attn_ffn(x, context, context_lens, e, collect_attn_map) | |
| return x, attn_scores | |
| x = cross_attn_ffn(x, context, context_lens, e, collect_attn_map) | |
| return x | |
| class Head(nn.Module): | |
| def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.patch_size = patch_size | |
| self.eps = eps | |
| # layers | |
| out_dim = math.prod(patch_size) * out_dim | |
| self.norm = WanLayerNorm(dim, eps) | |
| self.head = nn.Linear(dim, out_dim) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
| def forward(self, x, e): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, C] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
| x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
| return x | |
| class MLPProj(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), | |
| torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), | |
| torch.nn.LayerNorm(out_dim)) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class WanModel(ModelMixin, ConfigMixin): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| ignore_for_config = [ | |
| 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' | |
| ] | |
| _no_split_modules = ['WanAttentionBlock'] | |
| def __init__(self, | |
| model_type='t2v', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6): | |
| r""" | |
| Initialize the diffusion model backbone. | |
| Args: | |
| model_type (`str`, *optional*, defaults to 't2v'): | |
| Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
| patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
| 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
| text_len (`int`, *optional*, defaults to 512): | |
| Fixed length for text embeddings | |
| in_dim (`int`, *optional*, defaults to 16): | |
| Input video channels (C_in) | |
| dim (`int`, *optional*, defaults to 2048): | |
| Hidden dimension of the transformer | |
| ffn_dim (`int`, *optional*, defaults to 8192): | |
| Intermediate dimension in feed-forward network | |
| freq_dim (`int`, *optional*, defaults to 256): | |
| Dimension for sinusoidal time embeddings | |
| text_dim (`int`, *optional*, defaults to 4096): | |
| Input dimension for text embeddings | |
| out_dim (`int`, *optional*, defaults to 16): | |
| Output video channels (C_out) | |
| num_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads | |
| num_layers (`int`, *optional*, defaults to 32): | |
| Number of transformer blocks | |
| window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
| Window size for local attention (-1 indicates global attention) | |
| qk_norm (`bool`, *optional*, defaults to True): | |
| Enable query/key normalization | |
| cross_attn_norm (`bool`, *optional*, defaults to False): | |
| Enable cross-attention normalization | |
| eps (`float`, *optional*, defaults to 1e-6): | |
| Epsilon value for normalization layers | |
| """ | |
| super().__init__() | |
| assert model_type in ['t2v', 'i2v'] | |
| self.model_type = model_type | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # embeddings | |
| self.patch_embedding = nn.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
| self.text_embedding = nn.Sequential( | |
| nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(dim, dim)) | |
| self.time_embedding = nn.Sequential( | |
| nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
| self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
| # blocks | |
| cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
| self.blocks = nn.ModuleList([ | |
| WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
| window_size, qk_norm, cross_attn_norm, eps) | |
| for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = Head(dim, out_dim, patch_size, eps) | |
| # buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
| assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
| d = dim // num_heads | |
| self.freqs = torch.cat([ | |
| rope_params(1024, d - 4 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)) | |
| ], | |
| dim=1) | |
| if model_type == 'i2v': | |
| self.img_emb = MLPProj(1280, dim) | |
| # initialize weights | |
| self.init_weights() | |
| def forward( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| depth_tensor=None, | |
| clip_fea=None, | |
| y=None, | |
| words_indices=None, | |
| block_id=-1, | |
| type=None, | |
| timestep=None | |
| ): | |
| r""" | |
| Forward pass through the diffusion model | |
| Args: | |
| x (List[Tensor]): | |
| List of input video tensors, each with shape [C_in, F, H, W] | |
| t (Tensor): | |
| Diffusion timesteps tensor of shape [B] | |
| context (List[Tensor]): | |
| List of text embeddings each with shape [L, C] | |
| seq_len (`int`): | |
| Maximum sequence length for positional encoding | |
| clip_fea (Tensor, *optional*): | |
| CLIP image features for image-to-video mode | |
| y (List[Tensor], *optional*): | |
| Conditional video inputs for image-to-video mode, same shape as x | |
| Returns: | |
| List[Tensor]: | |
| List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
| """ | |
| if self.model_type == 'i2v': | |
| assert clip_fea is not None and y is not None | |
| # params | |
| device = self.patch_embedding.weight.device | |
| if self.freqs.device != device: | |
| self.freqs = self.freqs.to(device) | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
| dim=1) for u in x | |
| ]) | |
| # 1, 32760, 1536 | |
| # time embeddings | |
| with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # e0 1, 6, 1536 | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) # 1, 512, 1536 | |
| if clip_fea is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| depth_tensor=depth_tensor, | |
| depth_tensor_lens=None, | |
| collect_attn_map=False) | |
| save_block_id = block_id | |
| attn_map = None | |
| binary_mask = None | |
| for i, block in enumerate(self.blocks): | |
| kwargs["collect_attn_map"] = False | |
| if i == save_block_id: | |
| kwargs["collect_attn_map"] = True | |
| x, attn_map = block(x, **kwargs) | |
| else: | |
| x = block(x, **kwargs) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| if save_block_id != -1 and words_indices is not None: | |
| binary_mask = self.generate_attention_mask( | |
| attention_map=attn_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context | |
| target_word_indices=words_indices, | |
| grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch | |
| target_x_shape=x[0].shape, # channel, frames, h, W | |
| batch_index=0, # Process the first item in the batch | |
| head_index=None, # Average over heads | |
| word_aggregation_method='mean' | |
| ) | |
| return [u.float() for u in x], binary_mask | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| out = [] | |
| for u, v in zip(x, grid_sizes.tolist()): | |
| u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
| u = torch.einsum('fhwpqrc->cfphqwr', u) | |
| u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
| out.append(u) | |
| return out | |
| def init_weights(self): | |
| r""" | |
| Initialize model parameters using Xavier initialization. | |
| """ | |
| # basic init | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| # init embeddings | |
| nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
| for m in self.text_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| for m in self.time_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| # init output layer | |
| nn.init.zeros_(self.head.head.weight) | |
| # Usually don't need gradients for mask generation | |
| def generate_attention_mask( | |
| self, | |
| attention_map: torch.Tensor, | |
| grid_sizes: torch.Tensor, | |
| target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W) | |
| batch_index: int = 0, | |
| target_word_indices: Union[List[int], slice] = None, | |
| head_index: Optional[int] = None, # Process single head or average | |
| word_aggregation_method: str = 'mean', # How to combine scores for multiple words | |
| upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear' | |
| upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear' | |
| output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold | |
| ) -> torch.Tensor: | |
| """ | |
| Generates a binary mask from an attention map based on attention towards target words. | |
| The mask identifies regions in the video (x) that attend strongly to the specified | |
| context words, exceeding a given threshold. The mask has the same dimensions as x. | |
| Args: | |
| attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx]. | |
| Lx = flattened video tokens (patches), | |
| Lctx = context tokens (words). | |
| target_word_indices (Union[List[int], slice]): Indices or slice for the target | |
| word(s) in the Lctx dimension. | |
| grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch) | |
| for each batch item, corresponding to Lx. | |
| F, H_patch, W_patch should be integers. | |
| target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W], | |
| matching the original video tensor x. | |
| threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True), | |
| otherwise 0 (False). | |
| batch_index (int, optional): Batch item to process. Defaults to 0. | |
| head_index (Optional[int], optional): Specific head to use. If None, average | |
| attention across all heads. Defaults to None. | |
| word_aggregation_method (str, optional): How to aggregate scores if multiple | |
| target_word_indices are given ('mean', | |
| 'sum', 'max'). Defaults to 'mean'. | |
| upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions. | |
| Defaults to 'nearest'. | |
| upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension. | |
| Defaults to 'nearest'. | |
| output_dtype (torch.dtype, optional): Data type of the output mask. | |
| Defaults to torch.bool. | |
| Returns: | |
| torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W]. | |
| Raises: | |
| TypeError: If inputs are not torch.Tensors. | |
| ValueError: If tensor dimensions or indices are invalid, or if | |
| aggregation/upsample modes are unknown. | |
| IndexError: If batch_index or head_index are out of bounds. | |
| """ | |
| import torch.nn.functional as F | |
| # --- Input Validation --- | |
| if not isinstance(attention_map, torch.Tensor): | |
| raise TypeError("attention_map must be a torch.Tensor") | |
| if not isinstance(grid_sizes, torch.Tensor): | |
| raise TypeError("grid_sizes must be a torch.Tensor") | |
| if attention_map.dim() != 4: | |
| raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims") | |
| if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3: | |
| raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}") | |
| if len(target_x_shape) != 4: | |
| raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}") | |
| B, H, Lx, Lctx = attention_map.shape | |
| C_out, T_out, H_out, W_out = target_x_shape | |
| if not 0 <= batch_index < B: | |
| raise IndexError(f"batch_index {batch_index} out of range for batch size {B}") | |
| if head_index is not None and not 0 <= head_index < H: | |
| raise IndexError(f"head_index {head_index} out of range for head count {H}") | |
| if word_aggregation_method not in ['mean', 'sum', 'max']: | |
| raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}") | |
| if upsample_mode_spatial not in ['nearest', 'bilinear']: | |
| raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}") | |
| if upsample_mode_temporal not in ['nearest', 'linear']: | |
| raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}") | |
| # --- Select Head(s) --- | |
| if head_index is None: | |
| # Average across heads. Shape -> [Lx, Lctx] | |
| attn_map_processed = attention_map[batch_index].mean(dim=0) | |
| else: | |
| # Select specific head. Shape -> [Lx, Lctx] | |
| attn_map_processed = attention_map[batch_index, head_index] | |
| # --- Select and Aggregate Word Attention --- | |
| # Ensure target_word_indices are valid before slicing | |
| if isinstance(target_word_indices, slice): | |
| _slice_indices = range(*target_word_indices.indices(Lctx)) | |
| if not _slice_indices: # Empty slice | |
| num_words = 0 | |
| elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check | |
| num_words = len(_slice_indices) # Proceed cautiously or add stricter check | |
| else: | |
| num_words = len(_slice_indices) | |
| word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})" | |
| word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words] | |
| elif isinstance(target_word_indices, list): | |
| # Check indices are within bounds | |
| valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx] | |
| if not valid_indices: | |
| num_words = 0 | |
| word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case | |
| else: | |
| word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words] | |
| num_words = len(valid_indices) | |
| word_indices_str = str(valid_indices) # Report used indices | |
| else: | |
| raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}") | |
| if num_words > 1: | |
| if word_aggregation_method == 'mean': | |
| aggregated_scores = word_attn_scores.mean(dim=-1) | |
| elif word_aggregation_method == 'sum': | |
| aggregated_scores = word_attn_scores.sum(dim=-1) | |
| elif word_aggregation_method == 'max': | |
| aggregated_scores = word_attn_scores.max(dim=-1).values | |
| # aggregated_scores shape -> [Lx] | |
| elif num_words == 1: | |
| aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx] | |
| else: # No valid words selected | |
| return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) | |
| # --- Reshape to Video Patch Grid --- | |
| # Ensure grid sizes are integers | |
| f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist()) | |
| actual_num_tokens = f_patch * h_patch * w_patch | |
| if actual_num_tokens == 0: | |
| return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) | |
| # Handle mismatch between expected tokens (from grid) and actual attention length (Lx) | |
| if actual_num_tokens > Lx: | |
| # Pad aggregated_scores to actual_num_tokens size | |
| padding_size = actual_num_tokens - aggregated_scores.numel() | |
| scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0) | |
| scores_unpadded = scores_padded # Use the padded version for reshaping | |
| # This scenario is less common than Lx > actual_num_tokens | |
| elif actual_num_tokens < Lx: | |
| scores_unpadded = aggregated_scores[:actual_num_tokens] | |
| else: | |
| scores_unpadded = aggregated_scores # Shape [actual_num_tokens] | |
| try: | |
| # Reshape to [F_patch, H_patch, W_patch] | |
| attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch) | |
| except RuntimeError as e: | |
| raise e | |
| # --- Upsample to Original Video Resolution --- | |
| # Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch] | |
| # Note: Assuming attention is channel-agnostic here. | |
| grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float | |
| # --- SIMPLIFIED LOGIC: Always use 3D interpolation --- | |
| target_size_3d = (T_out, H_out, W_out) | |
| # Determine the 3D interpolation mode. | |
| # Default to 'nearest' unless temporal dimension changes AND 'linear' is requested. | |
| if upsample_mode_temporal == 'linear' and f_patch != T_out: | |
| upsample_mode_3d = 'trilinear' | |
| align_corners_3d = False # align_corners usually False for non-nearest modes | |
| else: | |
| # Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'. | |
| # 'nearest' is generally safer and handles spatial modes implicitly. | |
| upsample_mode_3d = 'nearest' | |
| align_corners_3d = None # align_corners=None for nearest | |
| upsampled_scores_grid = F.interpolate(grid_for_upsample, | |
| size=target_size_3d, | |
| mode=upsample_mode_3d, | |
| align_corners=align_corners_3d) | |
| # Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104] | |
| # --- END SIMPLIFIED LOGIC --- | |
| # Remove batch and channel dims: [T_out, H_out, W_out] | |
| upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0) | |
| # --- Thresholding --- | |
| binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out] | |
| # --- Expand Channel Dimension --- | |
| # Repeat the mask across the channel dimension C_out | |
| # Input shape: [T_out, H_out, W_out] | |
| # After unsqueeze(0): [1, T_out, H_out, W_out] | |
| # Target shape: [C_out, T_out, H_out, W_out] | |
| # This expand operation is valid as explained above. | |
| final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out) | |
| return final_mask.to(dtype=output_dtype) | |