Spaces:
Runtime error
Runtime error
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| from time import time | |
| import torch | |
| import torch.cuda.amp as amp | |
| from xfuser.core.distributed import (get_sequence_parallel_rank, | |
| get_sequence_parallel_world_size, | |
| get_sp_group) | |
| from xfuser.core.long_ctx_attention import xFuserLongContextAttention | |
| from ..modules.model import sinusoidal_embedding_1d | |
| from typing import List, Union, Optional, Tuple | |
| import torch.nn.functional as F | |
| import torch | |
| def pad_freqs(original_tensor, target_len): | |
| seq_len, s1, s2 = original_tensor.shape | |
| pad_size = target_len - seq_len | |
| padding_tensor = torch.ones( | |
| pad_size, | |
| s1, | |
| s2, | |
| dtype=original_tensor.dtype, | |
| device=original_tensor.device) | |
| padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0) | |
| return padded_tensor | |
| def rope_apply(x, grid_sizes, freqs): | |
| """ | |
| x: [B, L, N, C]. | |
| grid_sizes: [B, 3]. | |
| freqs: [M, C // 2]. | |
| """ | |
| s, n, c = x.size(1), x.size(2), x.size(3) // 2 | |
| # split freqs | |
| freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
| # loop over samples | |
| output = [] | |
| for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
| seq_len = f * h * w | |
| # precompute multipliers | |
| x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape( | |
| s, n, -1, 2)) | |
| freqs_i = torch.cat([ | |
| freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
| freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
| freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
| ], | |
| dim=-1).reshape(seq_len, 1, -1) | |
| # apply rotary embedding | |
| sp_size = get_sequence_parallel_world_size() | |
| sp_rank = get_sequence_parallel_rank() | |
| freqs_i = pad_freqs(freqs_i, s * sp_size) | |
| s_per_rank = s | |
| freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) * | |
| s_per_rank), :, :] | |
| x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2) | |
| x_i = torch.cat([x_i, x[i, s:]]) | |
| # append to collection | |
| output.append(x_i) | |
| return torch.stack(output).float() | |
| # Usually don't need gradients for mask generation | |
| def generate_attention_mask( | |
| attention_map: torch.Tensor, | |
| grid_sizes: torch.Tensor, | |
| target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W) | |
| batch_index: int = 0, | |
| target_word_indices: Union[List[int], slice] = None, | |
| head_index: Optional[int] = None, # Process single head or average | |
| word_aggregation_method: str = 'mean', # How to combine scores for multiple words | |
| upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear' | |
| upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear' | |
| output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold | |
| ) -> torch.Tensor: | |
| """ | |
| Generates a binary mask from an attention map based on attention towards target words. | |
| The mask identifies regions in the video (x) that attend strongly to the specified | |
| context words, exceeding a given threshold. The mask has the same dimensions as x. | |
| Args: | |
| attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx]. | |
| Lx = flattened video tokens (patches), | |
| Lctx = context tokens (words). | |
| target_word_indices (Union[List[int], slice]): Indices or slice for the target | |
| word(s) in the Lctx dimension. | |
| grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch) | |
| for each batch item, corresponding to Lx. | |
| F, H_patch, W_patch should be integers. | |
| target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W], | |
| matching the original video tensor x. | |
| threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True), | |
| otherwise 0 (False). | |
| batch_index (int, optional): Batch item to process. Defaults to 0. | |
| head_index (Optional[int], optional): Specific head to use. If None, average | |
| attention across all heads. Defaults to None. | |
| word_aggregation_method (str, optional): How to aggregate scores if multiple | |
| target_word_indices are given ('mean', | |
| 'sum', 'max'). Defaults to 'mean'. | |
| upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions. | |
| Defaults to 'nearest'. | |
| upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension. | |
| Defaults to 'nearest'. | |
| output_dtype (torch.dtype, optional): Data type of the output mask. | |
| Defaults to torch.bool. | |
| Returns: | |
| torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W]. | |
| Raises: | |
| TypeError: If inputs are not torch.Tensors. | |
| ValueError: If tensor dimensions or indices are invalid, or if | |
| aggregation/upsample modes are unknown. | |
| IndexError: If batch_index or head_index are out of bounds. | |
| """ | |
| # --- Input Validation --- | |
| if not isinstance(attention_map, torch.Tensor): | |
| raise TypeError("attention_map must be a torch.Tensor") | |
| if not isinstance(grid_sizes, torch.Tensor): | |
| raise TypeError("grid_sizes must be a torch.Tensor") | |
| if attention_map.dim() != 4: | |
| raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims") | |
| if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3: | |
| raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}") | |
| if len(target_x_shape) != 4: | |
| raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}") | |
| B, H, Lx, Lctx = attention_map.shape | |
| C_out, T_out, H_out, W_out = target_x_shape | |
| if not 0 <= batch_index < B: | |
| raise IndexError(f"batch_index {batch_index} out of range for batch size {B}") | |
| if head_index is not None and not 0 <= head_index < H: | |
| raise IndexError(f"head_index {head_index} out of range for head count {H}") | |
| if word_aggregation_method not in ['mean', 'sum', 'max']: | |
| raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}") | |
| if upsample_mode_spatial not in ['nearest', 'bilinear']: | |
| raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}") | |
| if upsample_mode_temporal not in ['nearest', 'linear']: | |
| raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}") | |
| # --- Select Head(s) --- | |
| if head_index is None: | |
| # Average across heads. Shape -> [Lx, Lctx] | |
| attn_map_processed = attention_map[batch_index].mean(dim=0) | |
| else: | |
| # Select specific head. Shape -> [Lx, Lctx] | |
| attn_map_processed = attention_map[batch_index, head_index] | |
| # --- Select and Aggregate Word Attention --- | |
| # Ensure target_word_indices are valid before slicing | |
| if isinstance(target_word_indices, slice): | |
| _slice_indices = range(*target_word_indices.indices(Lctx)) | |
| if not _slice_indices: # Empty slice | |
| num_words = 0 | |
| elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check | |
| num_words = len(_slice_indices) # Proceed cautiously or add stricter check | |
| else: | |
| num_words = len(_slice_indices) | |
| word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})" | |
| word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words] | |
| elif isinstance(target_word_indices, list): | |
| # Check indices are within bounds | |
| valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx] | |
| if not valid_indices: | |
| num_words = 0 | |
| word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case | |
| else: | |
| word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words] | |
| num_words = len(valid_indices) | |
| word_indices_str = str(valid_indices) # Report used indices | |
| else: | |
| raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}") | |
| if num_words > 1: | |
| if word_aggregation_method == 'mean': | |
| aggregated_scores = word_attn_scores.mean(dim=-1) | |
| elif word_aggregation_method == 'sum': | |
| aggregated_scores = word_attn_scores.sum(dim=-1) | |
| elif word_aggregation_method == 'max': | |
| aggregated_scores = word_attn_scores.max(dim=-1).values | |
| # aggregated_scores shape -> [Lx] | |
| elif num_words == 1: | |
| aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx] | |
| else: # No valid words selected | |
| return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) | |
| # --- Reshape to Video Patch Grid --- | |
| # Ensure grid sizes are integers | |
| f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist()) | |
| actual_num_tokens = f_patch * h_patch * w_patch | |
| if actual_num_tokens == 0: | |
| return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) | |
| # Handle mismatch between expected tokens (from grid) and actual attention length (Lx) | |
| if actual_num_tokens > Lx: | |
| # Pad aggregated_scores to actual_num_tokens size | |
| padding_size = actual_num_tokens - aggregated_scores.numel() | |
| scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0) | |
| scores_unpadded = scores_padded # Use the padded version for reshaping | |
| # This scenario is less common than Lx > actual_num_tokens | |
| elif actual_num_tokens < Lx: | |
| scores_unpadded = aggregated_scores[:actual_num_tokens] | |
| else: | |
| scores_unpadded = aggregated_scores # Shape [actual_num_tokens] | |
| try: | |
| # Reshape to [F_patch, H_patch, W_patch] | |
| attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch) | |
| except RuntimeError as e: | |
| raise e | |
| # --- Upsample to Original Video Resolution --- | |
| # Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch] | |
| # Note: Assuming attention is channel-agnostic here. | |
| grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float | |
| # --- SIMPLIFIED LOGIC: Always use 3D interpolation --- | |
| target_size_3d = (T_out, H_out, W_out) | |
| # Determine the 3D interpolation mode. | |
| # Default to 'nearest' unless temporal dimension changes AND 'linear' is requested. | |
| if upsample_mode_temporal == 'linear' and f_patch != T_out: | |
| upsample_mode_3d = 'trilinear' | |
| align_corners_3d = False # align_corners usually False for non-nearest modes | |
| else: | |
| # Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'. | |
| # 'nearest' is generally safer and handles spatial modes implicitly. | |
| upsample_mode_3d = 'nearest' | |
| align_corners_3d = None # align_corners=None for nearest | |
| upsampled_scores_grid = F.interpolate(grid_for_upsample, | |
| size=target_size_3d, | |
| mode=upsample_mode_3d, | |
| align_corners=align_corners_3d) | |
| # Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104] | |
| # --- END SIMPLIFIED LOGIC --- | |
| # Remove batch and channel dims: [T_out, H_out, W_out] | |
| upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0) | |
| # --- Thresholding --- | |
| binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out] | |
| # --- Expand Channel Dimension --- | |
| # Repeat the mask across the channel dimension C_out | |
| # Input shape: [T_out, H_out, W_out] | |
| # After unsqueeze(0): [1, T_out, H_out, W_out] | |
| # Target shape: [C_out, T_out, H_out, W_out] | |
| # This expand operation is valid as explained above. | |
| final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out) | |
| return final_mask.to(dtype=output_dtype) | |
| def usp_dit_forward( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| clip_fea=None, | |
| y=None, | |
| words_indices=None, | |
| block_id=-1, | |
| type=None, | |
| timestep=None | |
| ): | |
| """ | |
| x: A list of videos each with shape [C, T, H, W]. | |
| t: [B]. | |
| context: A list of text embeddings each with shape [L, C]. | |
| """ | |
| if self.model_type == 'i2v': | |
| assert clip_fea is not None and y is not None | |
| # params | |
| device = self.patch_embedding.weight.device | |
| if self.freqs.device != device: | |
| self.freqs = self.freqs.to(device) | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) | |
| for u in x | |
| ]) | |
| # time embeddings | |
| with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| if clip_fea is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| collect_attn_map=False) | |
| # Context Parallel | |
| x = torch.chunk( | |
| x, get_sequence_parallel_world_size(), | |
| dim=1)[get_sequence_parallel_rank()] | |
| save_block_id = block_id | |
| attn_map = None | |
| binary_mask = None | |
| for i, block in enumerate(self.blocks): | |
| kwargs["collect_attn_map"] = False | |
| if i == save_block_id: | |
| kwargs["collect_attn_map"] = True | |
| x, attn_map = block(x, **kwargs) | |
| else: | |
| x = block(x, **kwargs) | |
| # head | |
| x = self.head(x, e) | |
| # Context Parallel | |
| x = get_sp_group().all_gather(x, dim=1) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| if save_block_id != -1 and words_indices is not None: | |
| attention_map = get_sp_group().all_gather(attn_map, dim=2) | |
| binary_mask = generate_attention_mask( | |
| attention_map=attention_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context | |
| target_word_indices=words_indices, | |
| grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch | |
| target_x_shape=x[0].shape, # channel, frames, h, W | |
| batch_index=0, # Process the first item in the batch | |
| head_index=None, # Average over heads | |
| word_aggregation_method='mean' | |
| ) | |
| return [u.float() for u in x], binary_mask | |
| def usp_attn_forward(self, | |
| x, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| dtype=torch.bfloat16): | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| half_dtypes = (torch.float16, torch.bfloat16) | |
| def half(x): | |
| return x if x.dtype in half_dtypes else x.to(dtype) | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| q = rope_apply(q, grid_sizes, freqs) | |
| k = rope_apply(k, grid_sizes, freqs) | |
| # TODO: We should use unpaded q,k,v for attention. | |
| # k_lens = seq_lens // get_sequence_parallel_world_size() | |
| # if k_lens is not None: | |
| # q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0) | |
| # k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0) | |
| # v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0) | |
| x = xFuserLongContextAttention()( | |
| None, | |
| query=half(q), | |
| key=half(k), | |
| value=half(v), | |
| window_size=self.window_size) | |
| # TODO: padding after attention. | |
| # x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |