Spaces:
Paused
Paused
add vllm
Browse files
app.py
CHANGED
|
@@ -43,15 +43,21 @@ with open(f'{model_path}/tekken.json', 'r') as f:
|
|
| 43 |
|
| 44 |
llm = None
|
| 45 |
|
| 46 |
-
@spaces.GPU()
|
| 47 |
def initialize_llm():
|
| 48 |
global llm
|
| 49 |
if llm is None:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
@@ -61,9 +67,12 @@ def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
| 61 |
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
| 62 |
return im_64
|
| 63 |
|
| 64 |
-
@spaces.GPU()
|
| 65 |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 66 |
initialize_llm()
|
|
|
|
|
|
|
|
|
|
| 67 |
image = Image.open(BytesIO(requests.get(image_url).content))
|
| 68 |
image = image.resize((3844, 2408))
|
| 69 |
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
|
@@ -79,9 +88,12 @@ def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
|
| 79 |
|
| 80 |
return outputs[0].outputs[0].text
|
| 81 |
|
| 82 |
-
@spaces.GPU()
|
| 83 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 84 |
initialize_llm()
|
|
|
|
|
|
|
|
|
|
| 85 |
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
| 86 |
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
| 87 |
image1 = image1.resize((3844, 2408))
|
|
@@ -104,10 +116,12 @@ def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tq
|
|
| 104 |
|
| 105 |
return outputs[0].outputs[0].text
|
| 106 |
|
| 107 |
-
@spaces.GPU()
|
| 108 |
def calculate_image_similarity(image1_url, image2_url):
|
| 109 |
initialize_llm()
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
| 112 |
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
| 113 |
image1 = image1.resize((224, 224)) # Resize to match model input size
|
|
|
|
| 43 |
|
| 44 |
llm = None
|
| 45 |
|
| 46 |
+
@spaces.GPU(duration=120)
|
| 47 |
def initialize_llm():
|
| 48 |
global llm
|
| 49 |
if llm is None:
|
| 50 |
+
try:
|
| 51 |
+
llm = LLM(model=repo_id,
|
| 52 |
+
tokenizer_mode="mistral",
|
| 53 |
+
max_model_len=65536,
|
| 54 |
+
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
|
| 55 |
+
limit_mm_per_prompt={"image": max_img_per_msg},
|
| 56 |
+
dtype="float16",
|
| 57 |
+
device="cuda" if torch.cuda.is_available() else "cpu")
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Error initializing LLM: {e}")
|
| 60 |
+
llm = None
|
| 61 |
|
| 62 |
|
| 63 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
|
|
| 67 |
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
| 68 |
return im_64
|
| 69 |
|
| 70 |
+
@spaces.GPU(duration=120)
|
| 71 |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 72 |
initialize_llm()
|
| 73 |
+
if llm is None:
|
| 74 |
+
return "Error: LLM initialization failed. Please try again later."
|
| 75 |
+
|
| 76 |
image = Image.open(BytesIO(requests.get(image_url).content))
|
| 77 |
image = image.resize((3844, 2408))
|
| 78 |
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
|
|
|
| 88 |
|
| 89 |
return outputs[0].outputs[0].text
|
| 90 |
|
| 91 |
+
@spaces.GPU(duration=120)
|
| 92 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 93 |
initialize_llm()
|
| 94 |
+
if llm is None:
|
| 95 |
+
return "Error: LLM initialization failed. Please try again later."
|
| 96 |
+
|
| 97 |
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
| 98 |
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
| 99 |
image1 = image1.resize((3844, 2408))
|
|
|
|
| 116 |
|
| 117 |
return outputs[0].outputs[0].text
|
| 118 |
|
| 119 |
+
@spaces.GPU(duration=120)
|
| 120 |
def calculate_image_similarity(image1_url, image2_url):
|
| 121 |
initialize_llm()
|
| 122 |
+
if llm is None:
|
| 123 |
+
return "Error: LLM initialization failed. Please try again later."
|
| 124 |
+
|
| 125 |
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
| 126 |
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
| 127 |
image1 = image1.resize((224, 224)) # Resize to match model input size
|