Spaces:
Paused
Paused
add vllm
Browse files- app.py +149 -353
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
|
@@ -7,24 +19,28 @@ import gradio as gr
|
|
| 7 |
from PIL import Image
|
| 8 |
import numpy as np
|
| 9 |
from huggingface_hub import snapshot_download
|
| 10 |
-
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
|
| 11 |
-
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
| 12 |
-
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 13 |
import spaces
|
| 14 |
import math
|
| 15 |
from typing import List, Optional, Tuple
|
| 16 |
import gc
|
| 17 |
-
from contextlib import contextmanager
|
| 18 |
import os
|
| 19 |
from loadimg import load_img
|
| 20 |
import traceback
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
title = "# **WIP / DEMO** 🙋🏻♂️Welcome to Tonic's Pixtral Model Demo"
|
| 23 |
description = """
|
| 24 |
-
This demo showcases two capabilities of the Pixtral model:
|
| 25 |
-
1. Image-to-Text Generation
|
| 26 |
-
2. Image Similarity Comparison
|
| 27 |
-
|
| 28 |
### Join us :
|
| 29 |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
| 30 |
"""
|
|
@@ -37,365 +53,145 @@ with open(f'{model_path}/params.json', 'r') as f:
|
|
| 37 |
with open(f'{model_path}/tekken.json', 'r') as f:
|
| 38 |
tokenizer_config = json.load(f)
|
| 39 |
|
| 40 |
-
class RMSNorm(nn.Module):
|
| 41 |
-
def __init__(self, dim: int, eps: float = 1e-5):
|
| 42 |
-
super().__init__()
|
| 43 |
-
self.eps = eps
|
| 44 |
-
self.weight = nn.Parameter(torch.ones(dim))
|
| 45 |
-
|
| 46 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 47 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
| 48 |
-
|
| 49 |
-
def precompute_freqs_cis_2d(dim: int, height: int, width: int, theta: float) -> torch.Tensor:
|
| 50 |
-
freqs = 1.0 / (theta**(torch.arange(0, dim, 2).float() / dim))
|
| 51 |
-
h = torch.arange(height)
|
| 52 |
-
w = torch.arange(width)
|
| 53 |
-
freqs_h = torch.outer(h, freqs[::2]).float()
|
| 54 |
-
freqs_w = torch.outer(w, freqs[1::2]).float()
|
| 55 |
-
freqs_2d = torch.cat([freqs_h[:, None, :].repeat(1, width, 1), freqs_w[None, :, :].repeat(height, 1, 1)], dim=-1)
|
| 56 |
-
return torch.polar(torch.ones_like(freqs_2d), freqs_2d)
|
| 57 |
-
|
| 58 |
-
def apply_rotary_emb_vit(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 59 |
-
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
| 60 |
-
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
| 61 |
-
freqs_cis = freqs_cis.view(*freqs_cis.shape[:2], 1, freqs_cis.shape[-1])
|
| 62 |
-
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
| 63 |
-
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
| 64 |
-
return xq_out.type_as(xq), xk_out.type_as(xk)
|
| 65 |
-
|
| 66 |
-
class Attention(nn.Module):
|
| 67 |
-
def __init__(self, args):
|
| 68 |
-
super().__init__()
|
| 69 |
-
self.n_heads = args['num_attention_heads']
|
| 70 |
-
self.head_dim = args['hidden_size'] // args['num_attention_heads']
|
| 71 |
-
self.wq = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
|
| 72 |
-
self.wk = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
|
| 73 |
-
self.wv = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
|
| 74 |
-
self.wo = nn.Linear(args['hidden_size'], args['hidden_size'], bias=False)
|
| 75 |
-
|
| 76 |
-
def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
| 77 |
-
batch, patches, _ = x.shape
|
| 78 |
-
q, k, v = self.wq(x), self.wk(x), self.wv(x)
|
| 79 |
-
q = q.reshape(batch, patches, self.n_heads, self.head_dim)
|
| 80 |
-
k = k.reshape(batch, patches, self.n_heads, self.head_dim)
|
| 81 |
-
v = v.reshape(batch, patches, self.n_heads, self.head_dim)
|
| 82 |
-
q, k = apply_rotary_emb_vit(q, k, freqs_cis=freqs_cis)
|
| 83 |
-
scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.head_dim)
|
| 84 |
-
attn = F.softmax(scores, dim=-1)
|
| 85 |
-
out = torch.matmul(attn, v)
|
| 86 |
-
out = out.reshape(batch, patches, self.n_heads * self.head_dim)
|
| 87 |
-
return self.wo(out)
|
| 88 |
-
|
| 89 |
-
class FeedForward(nn.Module):
|
| 90 |
-
def __init__(self, args):
|
| 91 |
-
super().__init__()
|
| 92 |
-
self.w1 = nn.Linear(args['hidden_size'], args['intermediate_size'], bias=False)
|
| 93 |
-
self.w2 = nn.Linear(args['intermediate_size'], args['hidden_size'], bias=False)
|
| 94 |
-
self.w3 = nn.Linear(args['hidden_size'], args['intermediate_size'], bias=False)
|
| 95 |
-
|
| 96 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 97 |
-
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
| 98 |
-
|
| 99 |
-
class TransformerBlock(nn.Module):
|
| 100 |
-
def __init__(self, args):
|
| 101 |
-
super().__init__()
|
| 102 |
-
self.attention = Attention(args)
|
| 103 |
-
self.feed_forward = FeedForward(args)
|
| 104 |
-
self.attention_norm = RMSNorm(args['hidden_size'], eps=1e-5)
|
| 105 |
-
self.ffn_norm = RMSNorm(args['hidden_size'], eps=1e-5)
|
| 106 |
-
|
| 107 |
-
def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
| 108 |
-
r = self.attention(self.attention_norm(x), freqs_cis=freqs_cis)
|
| 109 |
-
h = x + r
|
| 110 |
-
r = self.feed_forward(self.ffn_norm(h))
|
| 111 |
-
out = h + r
|
| 112 |
-
return out
|
| 113 |
-
|
| 114 |
-
class VisionTransformer(nn.Module):
|
| 115 |
-
def __init__(self, args):
|
| 116 |
-
super().__init__()
|
| 117 |
-
self.args = args
|
| 118 |
-
self.patch_conv = nn.Conv2d(args['num_channels'], args['hidden_size'], kernel_size=args['patch_size'], stride=args['patch_size'], bias=False)
|
| 119 |
-
self.ln_pre = RMSNorm(args['hidden_size'], eps=1e-5)
|
| 120 |
-
self.transformer = nn.ModuleList([TransformerBlock(args) for _ in range(args['num_hidden_layers'])])
|
| 121 |
-
self.max_patches_per_side = args['image_size'] // args['patch_size']
|
| 122 |
-
self._freqs_cis = None
|
| 123 |
-
|
| 124 |
-
@property
|
| 125 |
-
def freqs_cis(self) -> torch.Tensor:
|
| 126 |
-
if self._freqs_cis is None:
|
| 127 |
-
self._freqs_cis = precompute_freqs_cis_2d(
|
| 128 |
-
dim=self.args['hidden_size'] // self.args['num_attention_heads'],
|
| 129 |
-
height=self.max_patches_per_side,
|
| 130 |
-
width=self.max_patches_per_side,
|
| 131 |
-
theta=self.args['rope_theta'],
|
| 132 |
-
)
|
| 133 |
-
return self._freqs_cis.to(self.patch_conv.weight.device)
|
| 134 |
-
|
| 135 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 136 |
-
x = self.patch_conv(x)
|
| 137 |
-
x = x.flatten(2).transpose(1, 2)
|
| 138 |
-
x = self.ln_pre(x)
|
| 139 |
-
freqs_cis = self.freqs_cis
|
| 140 |
-
for layer in self.transformer:
|
| 141 |
-
x = layer(x, freqs_cis=freqs_cis)
|
| 142 |
-
return x
|
| 143 |
-
|
| 144 |
-
class VisionLanguageAdapter(nn.Module):
|
| 145 |
-
def __init__(self, args, dim: int):
|
| 146 |
-
super().__init__()
|
| 147 |
-
self.w_in = nn.Linear(args['hidden_size'], dim, bias=True)
|
| 148 |
-
self.gelu = nn.GELU()
|
| 149 |
-
self.w_out = nn.Linear(dim, dim, bias=True)
|
| 150 |
-
|
| 151 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 152 |
-
return self.w_out(self.gelu(self.w_in(x)))
|
| 153 |
-
|
| 154 |
-
class PixtralModel(nn.Module):
|
| 155 |
-
def __init__(self, params):
|
| 156 |
-
super().__init__()
|
| 157 |
-
self.vision_encoder = VisionTransformer(params['vision_encoder'])
|
| 158 |
-
self.vision_language_adapter = VisionLanguageAdapter(params['vision_encoder'], params['dim'])
|
| 159 |
-
self.language_model = nn.TransformerDecoder(
|
| 160 |
-
nn.TransformerDecoderLayer(d_model=params['dim'], nhead=params['n_heads'], dim_feedforward=params['hidden_dim']),
|
| 161 |
-
num_layers=params['n_layers']
|
| 162 |
-
)
|
| 163 |
-
self.lm_head = nn.Linear(params['dim'], params['vocab_size'], bias=False)
|
| 164 |
-
|
| 165 |
-
def forward(self, image, input_ids=None):
|
| 166 |
-
vision_output = self.vision_encoder(image)
|
| 167 |
-
vision_output = self.vision_language_adapter(vision_output)
|
| 168 |
-
|
| 169 |
-
if input_ids is not None:
|
| 170 |
-
tgt = self.lm_head.weight[input_ids].transpose(0, 1)
|
| 171 |
-
output = self.language_model(tgt, vision_output)
|
| 172 |
-
logits = self.lm_head(output)
|
| 173 |
-
return logits
|
| 174 |
-
else:
|
| 175 |
-
return vision_output
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
@contextmanager
|
| 179 |
-
def gpu_memory_manager():
|
| 180 |
-
try:
|
| 181 |
-
torch.cuda.empty_cache()
|
| 182 |
-
yield
|
| 183 |
-
finally:
|
| 184 |
-
torch.cuda.empty_cache()
|
| 185 |
-
gc.collect()
|
| 186 |
-
|
| 187 |
-
def load_model_with_fallback(params, model_path):
|
| 188 |
-
try:
|
| 189 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 190 |
-
model = PixtralModel(params)
|
| 191 |
-
with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
|
| 192 |
-
for name, param in model.named_parameters():
|
| 193 |
-
if name in f.keys():
|
| 194 |
-
param.data = f.get_tensor(name)
|
| 195 |
-
model.eval()
|
| 196 |
-
model.to(device)
|
| 197 |
-
return model, device
|
| 198 |
-
except RuntimeError as e:
|
| 199 |
-
print(f"Error loading model on GPU: {str(e)}")
|
| 200 |
-
print("Falling back to CPU...")
|
| 201 |
-
model = PixtralModel(params)
|
| 202 |
-
with safe_open(f'{model_path}/consolidated.safetensors', framework="pt", device="cpu") as f:
|
| 203 |
-
for name, param in model.named_parameters():
|
| 204 |
-
if name in f.keys():
|
| 205 |
-
param.data = f.get_tensor(name)
|
| 206 |
-
model.eval()
|
| 207 |
-
return model, torch.device("cpu")
|
| 208 |
-
|
| 209 |
-
model, device = load_model_with_fallback(params, model_path)
|
| 210 |
-
tokenizer = MistralTokenizer.from_model("pixtral")
|
| 211 |
-
|
| 212 |
-
def preprocess_image(image):
|
| 213 |
-
if image is None:
|
| 214 |
-
raise ValueError("No image provided")
|
| 215 |
-
|
| 216 |
-
pil_image = load_img(image, output_type="pil", input_type="auto")
|
| 217 |
-
|
| 218 |
-
pil_image = pil_image.convert('RGB')
|
| 219 |
-
pil_image = pil_image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
|
| 220 |
-
image_tensor = torch.tensor(np.array(pil_image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 221 |
-
return image_tensor
|
| 222 |
-
|
| 223 |
-
@contextmanager
|
| 224 |
-
def gpu_memory_manager():
|
| 225 |
-
try:
|
| 226 |
-
torch.cuda.empty_cache()
|
| 227 |
-
yield
|
| 228 |
-
finally:
|
| 229 |
-
torch.cuda.empty_cache()
|
| 230 |
-
gc.collect()
|
| 231 |
-
|
| 232 |
-
def cuda_error_handler(func):
|
| 233 |
-
def wrapper(*args, **kwargs):
|
| 234 |
-
try:
|
| 235 |
-
return func(*args, **kwargs)
|
| 236 |
-
except RuntimeError as e:
|
| 237 |
-
if "CUDA" in str(e):
|
| 238 |
-
print(f"CUDA error occurred: {str(e)}")
|
| 239 |
-
print("Attempting to recover...")
|
| 240 |
-
torch.cuda.empty_cache()
|
| 241 |
-
gc.collect()
|
| 242 |
-
try:
|
| 243 |
-
return func(*args, **kwargs)
|
| 244 |
-
except Exception as e2:
|
| 245 |
-
print(f"Recovery failed. Error: {str(e2)}")
|
| 246 |
-
return f"An error occurred: {str(e2)}", 0, 0
|
| 247 |
-
else:
|
| 248 |
-
raise
|
| 249 |
-
except Exception as e:
|
| 250 |
-
print(f"An unexpected error occurred: {str(e)}")
|
| 251 |
-
traceback.print_exc()
|
| 252 |
-
return f"An unexpected error occurred: {str(e)}", 0, 0
|
| 253 |
-
return wrapper
|
| 254 |
-
|
| 255 |
-
@spaces.GPU(duration=120)
|
| 256 |
-
@cuda_error_handler
|
| 257 |
-
def generate_text(image, prompt, max_tokens):
|
| 258 |
-
try:
|
| 259 |
-
with gpu_memory_manager():
|
| 260 |
-
image_pil = load_img(image, output_type="pil", input_type="auto")
|
| 261 |
-
image_tensor = preprocess_image(image_pil).to(device)
|
| 262 |
-
|
| 263 |
-
tokenized = tokenizer.encode_chat_completion(
|
| 264 |
-
ChatCompletionRequest(
|
| 265 |
-
messages=[UserMessage(content=[TextChunk(text=prompt), ImageChunk(image=image)])],
|
| 266 |
-
model="pixtral",
|
| 267 |
-
)
|
| 268 |
-
)
|
| 269 |
-
input_ids = torch.tensor(tokenized.tokens).unsqueeze(0).to(device)
|
| 270 |
-
|
| 271 |
-
generated_ids = input_ids.clone()
|
| 272 |
-
for _ in range(max_tokens):
|
| 273 |
-
with torch.no_grad():
|
| 274 |
-
logits = model(image_tensor, generated_ids)
|
| 275 |
-
next_token_logits = logits[0, -1, :]
|
| 276 |
-
next_token = torch.argmax(next_token_logits, dim=-1)
|
| 277 |
-
generated_ids = torch.cat([generated_ids, next_token.unsqueeze(0).unsqueeze(0)], dim=-1)
|
| 278 |
-
if next_token.item() == tokenizer.eos_token_id:
|
| 279 |
-
break
|
| 280 |
-
|
| 281 |
-
generated_text = tokenizer.decode(generated_ids[0].tolist())
|
| 282 |
-
|
| 283 |
-
torch.cuda.empty_cache()
|
| 284 |
-
|
| 285 |
-
return generated_text, len(generated_ids[0]), 1
|
| 286 |
-
except Exception as e:
|
| 287 |
-
print(f"Error in generate_text: {str(e)}")
|
| 288 |
-
traceback.print_exc()
|
| 289 |
-
return f"Error: {str(e)}", 0, 0
|
| 290 |
-
|
| 291 |
-
@spaces.GPU(duration=60)
|
| 292 |
-
@cuda_error_handler
|
| 293 |
-
def calculate_similarity(image1, image2):
|
| 294 |
-
try:
|
| 295 |
-
with gpu_memory_manager():
|
| 296 |
-
pil_image1 = load_img(image1, output_type="pil", input_type="auto")
|
| 297 |
-
pil_image2 = load_img(image2, output_type="pil", input_type="auto")
|
| 298 |
-
tensor1 = preprocess_image(pil_image1).to(device)
|
| 299 |
-
tensor2 = preprocess_image(pil_image2).to(device)
|
| 300 |
-
|
| 301 |
-
with torch.no_grad():
|
| 302 |
-
embedding1 = model(tensor1).mean(dim=1)
|
| 303 |
-
embedding2 = model(tensor2).mean(dim=1)
|
| 304 |
-
|
| 305 |
-
similarity = F.cosine_similarity(embedding1, embedding2).item()
|
| 306 |
-
|
| 307 |
-
torch.cuda.empty_cache()
|
| 308 |
-
|
| 309 |
-
return similarity
|
| 310 |
-
except Exception as e:
|
| 311 |
-
print(f"Error in calculate_similarity: {str(e)}")
|
| 312 |
-
traceback.print_exc()
|
| 313 |
-
return f"Error: {str(e)}"
|
| 314 |
-
|
| 315 |
-
# @spaces.GPU()
|
| 316 |
-
# @cuda_error_handler
|
| 317 |
-
# def calculate_similarity(image1, image2):
|
| 318 |
-
# try:
|
| 319 |
-
# with gpu_memory_manager():
|
| 320 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 321 |
-
# # Use load_img for both images
|
| 322 |
-
# pil_image1 = load_img(image1, output_type="pil", input_type="auto")
|
| 323 |
-
# pil_image2 = load_img(image2, output_type="pil", input_type="auto")
|
| 324 |
-
# tensor1 = preprocess_image(pil_image1).to(device)
|
| 325 |
-
# tensor2 = preprocess_image(pil_image2).to(device)
|
| 326 |
-
# model.to(device)
|
| 327 |
-
|
| 328 |
-
# with torch.no_grad():
|
| 329 |
-
# embedding1 = model(tensor1).mean(dim=1)
|
| 330 |
-
# embedding2 = model(tensor2).mean(dim=1)
|
| 331 |
-
|
| 332 |
-
# similarity = F.cosine_similarity(embedding1, embedding2).item()
|
| 333 |
-
|
| 334 |
-
# # # Move model back to CPU and clear CUDA memory
|
| 335 |
-
# # model.to("cpu")
|
| 336 |
-
# torch.cuda.empty_cache()
|
| 337 |
-
|
| 338 |
-
# return similarity
|
| 339 |
-
# except Exception as e:
|
| 340 |
-
# print(f"Error in calculate_similarity: {str(e)}")
|
| 341 |
-
# traceback.print_exc()
|
| 342 |
-
# return f"Error: {str(e)}"
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
with gr.Blocks() as demo:
|
| 345 |
gr.Markdown(title)
|
| 346 |
-
gr.Markdown("## Model Details")
|
| 347 |
-
gr.Markdown(f"- Model Dimension: {params['dim']}")
|
| 348 |
-
gr.Markdown(f"- Number of Layers: {params['n_layers']}")
|
| 349 |
-
gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
|
| 350 |
-
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
|
| 351 |
-
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
|
| 352 |
-
gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
|
| 353 |
-
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
|
| 354 |
-
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
|
| 355 |
gr.Markdown("## How it works")
|
| 356 |
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
|
| 357 |
gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
|
| 358 |
gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
gr.Markdown(description)
|
| 361 |
-
|
| 362 |
with gr.Tabs():
|
| 363 |
with gr.TabItem("Image-to-Text Generation"):
|
| 364 |
with gr.Row():
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
submit_btn = gr.Button("Generate Text")
|
| 370 |
-
|
| 371 |
-
with gr.Column():
|
| 372 |
-
output_text = gr.Textbox(label="Generated Text")
|
| 373 |
-
token_count = gr.Number(label="Number of Tokens")
|
| 374 |
-
image_count = gr.Number(label="Number of Images Processed")
|
| 375 |
|
| 376 |
-
|
| 377 |
-
fn=generate_text,
|
| 378 |
-
inputs=[input_image, input_prompt, max_tokens_slider],
|
| 379 |
-
outputs=[output_text, token_count, image_count]
|
| 380 |
-
)
|
| 381 |
|
| 382 |
-
with gr.TabItem("Image
|
| 383 |
with gr.Row():
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
if __name__ == "__main__":
|
| 397 |
-
|
| 398 |
-
demo.launch()
|
| 399 |
-
except Exception as e:
|
| 400 |
-
print(f"An error occurred while launching the demo: {str(e)}")
|
| 401 |
-
traceback.print_exc()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from vllm import LLM, SamplingParams
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
import base64
|
| 7 |
+
import requests
|
| 8 |
+
from huggingface_hub import login
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import spaces
|
| 12 |
+
import json
|
| 13 |
import torch
|
| 14 |
import torch.nn as nn
|
| 15 |
import torch.nn.functional as F
|
|
|
|
| 19 |
from PIL import Image
|
| 20 |
import numpy as np
|
| 21 |
from huggingface_hub import snapshot_download
|
| 22 |
+
# from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
|
| 23 |
+
# from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
| 24 |
+
# from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 25 |
import spaces
|
| 26 |
import math
|
| 27 |
from typing import List, Optional, Tuple
|
| 28 |
import gc
|
| 29 |
+
# from contextlib import contextmanager
|
| 30 |
import os
|
| 31 |
from loadimg import load_img
|
| 32 |
import traceback
|
| 33 |
|
| 34 |
+
login(os.environ.get("HUGGINGFACE_TOKEN"))
|
| 35 |
+
|
| 36 |
+
repo_id = "mistralai/Pixtral-12B-2409"
|
| 37 |
+
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
|
| 38 |
+
max_tokens_per_img = 4096
|
| 39 |
+
max_img_per_msg = 5
|
| 40 |
+
|
| 41 |
+
|
| 42 |
title = "# **WIP / DEMO** 🙋🏻♂️Welcome to Tonic's Pixtral Model Demo"
|
| 43 |
description = """
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
### Join us :
|
| 45 |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
| 46 |
"""
|
|
|
|
| 53 |
with open(f'{model_path}/tekken.json', 'r') as f:
|
| 54 |
tokenizer_config = json.load(f)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Initialize the LLM
|
| 58 |
+
llm = LLM(model=repo_id,
|
| 59 |
+
tokenizer_mode="mistral",
|
| 60 |
+
max_model_len=65536,
|
| 61 |
+
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
|
| 62 |
+
limit_mm_per_prompt={"image": max_img_per_msg})
|
| 63 |
+
|
| 64 |
+
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
| 65 |
+
im_file = BytesIO()
|
| 66 |
+
image.save(im_file, format=image_format)
|
| 67 |
+
im_bytes = im_file.getvalue()
|
| 68 |
+
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
| 69 |
+
return im_64
|
| 70 |
+
|
| 71 |
+
@spaces.GPU()
|
| 72 |
+
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 73 |
+
image = Image.open(BytesIO(requests.get(image_url).content))
|
| 74 |
+
image = image.resize((3844, 2408))
|
| 75 |
+
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
| 76 |
+
|
| 77 |
+
messages = [
|
| 78 |
+
{
|
| 79 |
+
"role": "user",
|
| 80 |
+
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
|
| 81 |
+
},
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
| 85 |
+
|
| 86 |
+
return outputs[0].outputs[0].text
|
| 87 |
+
|
| 88 |
+
@spaces.GPU()
|
| 89 |
+
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 90 |
+
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
| 91 |
+
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
| 92 |
+
image1 = image1.resize((3844, 2408))
|
| 93 |
+
image2 = image2.resize((3844, 2408))
|
| 94 |
+
new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
|
| 95 |
+
new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"
|
| 96 |
+
|
| 97 |
+
messages = [
|
| 98 |
+
{
|
| 99 |
+
"role": "user",
|
| 100 |
+
"content": [
|
| 101 |
+
{"type": "text", "text": prompt},
|
| 102 |
+
{"type": "image_url", "image_url": {"url": new_image1_url}},
|
| 103 |
+
{"type": "image_url", "image_url": {"url": new_image2_url}}
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
| 109 |
+
|
| 110 |
+
return outputs[0].outputs[0].text
|
| 111 |
+
|
| 112 |
+
@spaces.GPU()
|
| 113 |
+
def calculate_image_similarity(image1_url, image2_url):
|
| 114 |
+
# Load and preprocess images
|
| 115 |
+
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
| 116 |
+
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
| 117 |
+
image1 = image1.resize((224, 224)) # Resize to match model input size
|
| 118 |
+
image2 = image2.resize((224, 224))
|
| 119 |
+
|
| 120 |
+
# Convert images to tensors
|
| 121 |
+
image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
|
| 122 |
+
image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0
|
| 123 |
+
|
| 124 |
+
# Get image embeddings using the vision encoder
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
embedding1 = llm.model.vision_encoder([image1_tensor])
|
| 127 |
+
embedding2 = llm.model.vision_encoder([image2_tensor])
|
| 128 |
+
|
| 129 |
+
# Calculate cosine similarity
|
| 130 |
+
similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()
|
| 131 |
+
|
| 132 |
+
return similarity
|
| 133 |
+
|
| 134 |
+
# Gradio interface
|
| 135 |
with gr.Blocks() as demo:
|
| 136 |
gr.Markdown(title)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
gr.Markdown("## How it works")
|
| 138 |
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
|
| 139 |
gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
|
| 140 |
gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
|
| 141 |
+
gr.Markdown(
|
| 142 |
+
"""
|
| 143 |
+
## How to use
|
| 144 |
+
1. For Image-to-Text Generation:
|
| 145 |
+
- Enter the URL of an image
|
| 146 |
+
- Provide a prompt describing what you want to know about the image
|
| 147 |
+
- Click "Generate" to get the model's response
|
| 148 |
+
2. For Image Comparison:
|
| 149 |
+
- Enter URLs for two images you want to compare
|
| 150 |
+
- Provide a prompt asking about the comparison
|
| 151 |
+
- Click "Compare" to get the model's analysis
|
| 152 |
+
3. For Image Similarity:
|
| 153 |
+
- Enter URLs for two images you want to compare
|
| 154 |
+
- Click "Calculate Similarity" to get a similarity score between 0 and 1
|
| 155 |
+
"""
|
| 156 |
+
)
|
| 157 |
gr.Markdown(description)
|
|
|
|
| 158 |
with gr.Tabs():
|
| 159 |
with gr.TabItem("Image-to-Text Generation"):
|
| 160 |
with gr.Row():
|
| 161 |
+
image_url = gr.Text(label="Image URL")
|
| 162 |
+
prompt = gr.Text(label="Prompt")
|
| 163 |
+
generate_button = gr.Button("Generate")
|
| 164 |
+
output = gr.Text(label="Generated Text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
generate_button.click(infer, inputs=[image_url, prompt], outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
with gr.TabItem("Image Comparison"):
|
| 169 |
with gr.Row():
|
| 170 |
+
image1_url = gr.Text(label="Image 1 URL")
|
| 171 |
+
image2_url = gr.Text(label="Image 2 URL")
|
| 172 |
+
comparison_prompt = gr.Text(label="Comparison Prompt")
|
| 173 |
+
compare_button = gr.Button("Compare")
|
| 174 |
+
comparison_output = gr.Text(label="Comparison Result")
|
| 175 |
|
| 176 |
+
compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output)
|
| 177 |
+
|
| 178 |
+
with gr.TabItem("Image Similarity"):
|
| 179 |
+
with gr.Row():
|
| 180 |
+
sim_image1_url = gr.Text(label="Image 1 URL")
|
| 181 |
+
sim_image2_url = gr.Text(label="Image 2 URL")
|
| 182 |
+
similarity_button = gr.Button("Calculate Similarity")
|
| 183 |
+
similarity_output = gr.Number(label="Similarity Score")
|
| 184 |
+
|
| 185 |
+
similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output)
|
| 186 |
+
gr.Markdown("## Model Details")
|
| 187 |
+
gr.Markdown(f"- Model Dimension: {params['dim']}")
|
| 188 |
+
gr.Markdown(f"- Number of Layers: {params['n_layers']}")
|
| 189 |
+
gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
|
| 190 |
+
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
|
| 191 |
+
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
|
| 192 |
+
gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
|
| 193 |
+
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
|
| 194 |
+
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
|
| 195 |
|
| 196 |
if __name__ == "__main__":
|
| 197 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
torch>=1.9.0
|
| 2 |
safetensors>=0.3.1
|
| 3 |
-
gradio>=3.32.0
|
| 4 |
Pillow>=9.0.0
|
| 5 |
numpy>=1.21.0
|
| 6 |
mistral_common
|
| 7 |
-
loadimg
|
|
|
|
|
|
| 1 |
torch>=1.9.0
|
| 2 |
safetensors>=0.3.1
|
|
|
|
| 3 |
Pillow>=9.0.0
|
| 4 |
numpy>=1.21.0
|
| 5 |
mistral_common
|
| 6 |
+
loadimg
|
| 7 |
+
vllm==0.6.1
|