Spaces:
Runtime error
Runtime error
| import argparse | |
| import datetime | |
| import json | |
| import math | |
| import os | |
| import sys | |
| import time | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from einops import rearrange, repeat | |
| from fire import Fire | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor | |
| sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
| from sgm.util import default, instantiate_from_config | |
| camera_poses = [ | |
| 'test_camera_L', | |
| 'test_camera_D', | |
| 'test_camera_I', | |
| 'test_camera_O', | |
| 'test_camera_R', | |
| 'test_camera_U', | |
| 'test_camera_Round-ZoomIn', | |
| 'test_camera_Round-RI_90', | |
| ] | |
| def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False): | |
| org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4] | |
| R_dst = org_pose[:, :, :3] | |
| T_dst = org_pose[:, :, 3:] | |
| R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3] | |
| T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) | |
| R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3] | |
| R_rel = R_dst @ R_src_inv # [t, 3, 3] | |
| T_rel = T_dst - R_rel@T_src | |
| RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4] | |
| RT_rel = RT_rel.reshape(-1, 12) # [t, 12] | |
| if keyframe_zero: | |
| RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx]) | |
| return RT_rel | |
| def get_RT(pose_dir='', video_frames=14, frame_stride=1, speed=1.0, **kwargs): | |
| pose_file = [f'{pose_dir}/{pose}.json' for pose in camera_poses] | |
| pose_sample_num = len(pose_file) | |
| pose_sample_num = len(pose_file) | |
| data_list = [] | |
| pose_name = [] | |
| for idx in range(pose_sample_num): | |
| cur_pose_name = camera_poses[idx].replace('test_camera_', '') | |
| pose_name.append(cur_pose_name) | |
| with open(pose_file[idx], 'r') as f: | |
| pose = json.load(f) | |
| pose = np.array(pose) # [t, 12] | |
| while frame_stride * video_frames > pose.shape[0]: | |
| frame_stride -= 1 | |
| pose = pose[::frame_stride] | |
| if video_frames < 16: | |
| half = (pose.shape[0] - video_frames) // 2 | |
| pose = pose[half:half+video_frames] | |
| # pose = pose[:video_frames] | |
| pose = pose.reshape(-1, 3, 4) # [t, 3, 4] | |
| # rescale | |
| pose[:, :, -1] = pose[:, :, -1] * np.array([3, 1, 4]) * speed | |
| pose = to_relative_RT2(pose) | |
| pose = torch.tensor(pose).float() # [t, 12] | |
| data_list.append(pose) | |
| # data_list = torch.stack(data_list, dim=0) # [pose_sample_num, t, 12] | |
| return data_list, pose_name | |
| def sample( | |
| input_path: str = "examples/camera_poses", # Can either be image file or folder with image files | |
| ckpt: str = "checkpoints/motionctrl_svd.ckpt", | |
| config: str = None, | |
| num_frames: Optional[int] = None, | |
| num_steps: Optional[int] = None, | |
| version: str = "svd", | |
| fps_id: int = 6, | |
| motion_bucket_id: int = 127, | |
| cond_aug: float = 0.02, | |
| seed: int = 23, | |
| decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
| device: str = "cuda", | |
| output_folder: Optional[str] = None, | |
| save_fps: int = 10, | |
| resize: Optional[bool] = False, | |
| pose_dir: str = '', | |
| sample_num: int = 1, | |
| height: int = 576, | |
| width: int = 1024, | |
| transform: Optional[bool] = False, | |
| save_images: Optional[bool] = False, | |
| speed: float = 1.0, | |
| ): | |
| """ | |
| Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each | |
| image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. | |
| """ | |
| assert (version == "svd"), "Only SVD is supported for now." | |
| num_frames = default(num_frames, 14) | |
| num_steps = default(num_steps, 25) | |
| output_folder = default(output_folder, "outputs/motionctrl_svd/") | |
| model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml") | |
| model, filter = load_model( | |
| model_config, | |
| ckpt, | |
| device, | |
| num_frames, | |
| num_steps, | |
| ) | |
| torch.manual_seed(seed) | |
| path = Path(input_path) | |
| all_img_paths = [] | |
| if path.is_file(): | |
| if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): | |
| all_img_paths = [input_path] | |
| else: | |
| raise ValueError("Path is not valid image file.") | |
| elif path.is_dir(): | |
| all_img_paths = sorted( | |
| [ | |
| f | |
| for f in path.iterdir() | |
| if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] | |
| ] | |
| ) | |
| if len(all_img_paths) == 0: | |
| raise ValueError("Folder does not contain any images.") | |
| else: | |
| raise ValueError | |
| if transform: | |
| spatial_transform = Compose([ | |
| Resize(size=width), | |
| CenterCrop(size=(height, width)), | |
| ]) | |
| # get camera poses | |
| RTs, pose_name = get_RT(pose_dir=pose_dir, video_frames=num_frames, frame_stride=1, speed=speed) | |
| print(f'loaded {len(all_img_paths)} images.') | |
| os.makedirs(output_folder, exist_ok=True) | |
| for no, input_img_path in enumerate(all_img_paths): | |
| filepath, fullflname = os.path.split(input_img_path) | |
| filename, ext = os.path.splitext(fullflname) | |
| print(f'-sample {no+1}: {filename} ...') | |
| # RTs = RTs[0:1] | |
| for RT_idx in range(len(RTs)): | |
| cur_pose_name = pose_name[RT_idx] | |
| print(f'--pose: {cur_pose_name} ...') | |
| RT = RTs[RT_idx] | |
| RT = RT.unsqueeze(0).repeat(2,1,1) | |
| RT = RT.to(device) | |
| with Image.open(input_img_path) as image: | |
| if image.mode == "RGBA": | |
| image = image.convert("RGB") | |
| if transform: | |
| image = spatial_transform(image) | |
| if resize: | |
| image = image.resize((width, height)) | |
| w, h = image.size | |
| if h % 64 != 0 or w % 64 != 0: | |
| width, height = map(lambda x: x - x % 64, (w, h)) | |
| image = image.resize((width, height)) | |
| print( | |
| f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" | |
| ) | |
| image = ToTensor()(image) | |
| image = image * 2.0 - 1.0 | |
| image = image.unsqueeze(0).to(device) | |
| H, W = image.shape[2:] | |
| assert image.shape[1] == 3 | |
| F = 8 | |
| C = 4 | |
| shape = (num_frames, C, H // F, W // F) | |
| if (H, W) != (576, 1024): | |
| print( | |
| "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." | |
| ) | |
| if motion_bucket_id > 255: | |
| print( | |
| "WARNING: High motion bucket! This may lead to suboptimal performance." | |
| ) | |
| if fps_id < 5: | |
| print("WARNING: Small fps value! This may lead to suboptimal performance.") | |
| if fps_id > 30: | |
| print("WARNING: Large fps value! This may lead to suboptimal performance.") | |
| value_dict = {} | |
| value_dict["motion_bucket_id"] = motion_bucket_id | |
| value_dict["fps_id"] = fps_id | |
| value_dict["cond_aug"] = cond_aug | |
| value_dict["cond_frames_without_noise"] = image | |
| value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) | |
| with torch.no_grad(): | |
| with torch.autocast(device): | |
| batch, batch_uc = get_batch( | |
| get_unique_embedder_keys_from_conditioner(model.conditioner), | |
| value_dict, | |
| [1, num_frames], | |
| T=num_frames, | |
| device=device, | |
| ) | |
| c, uc = model.conditioner.get_unconditional_conditioning( | |
| batch, | |
| batch_uc=batch_uc, | |
| force_uc_zero_embeddings=[ | |
| "cond_frames", | |
| "cond_frames_without_noise", | |
| ], | |
| ) | |
| for k in ["crossattn", "concat"]: | |
| uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) | |
| uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) | |
| c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) | |
| c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) | |
| additional_model_inputs = {} | |
| additional_model_inputs["image_only_indicator"] = torch.zeros( | |
| 2, num_frames | |
| ).to(device) | |
| #additional_model_inputs["image_only_indicator"][:,0] = 1 | |
| additional_model_inputs["num_video_frames"] = batch["num_video_frames"] | |
| additional_model_inputs["RT"] = RT | |
| def denoiser(input, sigma, c): | |
| return model.denoiser( | |
| model.model, input, sigma, c, **additional_model_inputs | |
| ) | |
| results = [] | |
| for j in range(sample_num): | |
| randn = torch.randn(shape, device=device) | |
| samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) | |
| model.en_and_decode_n_samples_a_time = decoding_t | |
| samples_x = model.decode_first_stage(samples_z) | |
| samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w] | |
| results.append(samples) | |
| samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w] | |
| samples = samples.data.cpu() | |
| video_path = os.path.join(output_folder, f"{filename}_{cur_pose_name}.mp4") | |
| save_results(samples, video_path, fps=save_fps) | |
| if save_images: | |
| for i in range(sample_num): | |
| cur_output_folder = os.path.join(output_folder, f"{filename}", f"{cur_pose_name}", f"{i}") | |
| os.makedirs(cur_output_folder, exist_ok=True) | |
| for j in range(num_frames): | |
| cur_img_path = os.path.join(cur_output_folder, f"{j:06d}.png") | |
| torchvision.utils.save_image(samples[i,j], cur_img_path) | |
| print(f'Done! results saved in {output_folder}.') | |
| def save_results(resutls, filename, fps=10): | |
| video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w] | |
| frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w] | |
| grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
| # already in [0,1] | |
| grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
| torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
| def get_unique_embedder_keys_from_conditioner(conditioner): | |
| return list(set([x.input_key for x in conditioner.embedders])) | |
| def get_batch(keys, value_dict, N, T, device): | |
| batch = {} | |
| batch_uc = {} | |
| for key in keys: | |
| if key == "fps_id": | |
| batch[key] = ( | |
| torch.tensor([value_dict["fps_id"]]) | |
| .to(device) | |
| .repeat(int(math.prod(N))) | |
| ) | |
| elif key == "motion_bucket_id": | |
| batch[key] = ( | |
| torch.tensor([value_dict["motion_bucket_id"]]) | |
| .to(device) | |
| .repeat(int(math.prod(N))) | |
| ) | |
| elif key == "cond_aug": | |
| batch[key] = repeat( | |
| torch.tensor([value_dict["cond_aug"]]).to(device), | |
| "1 -> b", | |
| b=math.prod(N), | |
| ) | |
| elif key == "cond_frames": | |
| batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) | |
| elif key == "cond_frames_without_noise": | |
| batch[key] = repeat( | |
| value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] | |
| ) | |
| else: | |
| batch[key] = value_dict[key] | |
| if T is not None: | |
| batch["num_video_frames"] = T | |
| for key in batch.keys(): | |
| if key not in batch_uc and isinstance(batch[key], torch.Tensor): | |
| batch_uc[key] = torch.clone(batch[key]) | |
| return batch, batch_uc | |
| def load_model( | |
| config: str, | |
| ckpt: str, | |
| device: str, | |
| num_frames: int, | |
| num_steps: int, | |
| ): | |
| config = OmegaConf.load(config) | |
| config.model.params.ckpt_path = ckpt | |
| if device == "cuda": | |
| config.model.params.conditioner_config.params.emb_models[ | |
| 0 | |
| ].params.open_clip_embedding_config.params.init_device = device | |
| config.model.params.sampler_config.params.num_steps = num_steps | |
| config.model.params.sampler_config.params.guider_config.params.num_frames = ( | |
| num_frames | |
| ) | |
| model = instantiate_from_config(config.model) | |
| model = model.to(device).eval() | |
| filter = None #DeepFloydDataFiltering(verbose=False, device=device) | |
| return model, filter | |
| def get_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--seed", type=int, default=23, help="seed for seed_everything") | |
| parser.add_argument("--ckpt", type=str, default=None, help="checkpoint path") | |
| parser.add_argument("--config", type=str, help="config (yaml) path") | |
| parser.add_argument("--input", type=str, default=None, help="image path or folder") | |
| parser.add_argument("--savedir", type=str, default=None, help="results saving path") | |
| parser.add_argument("--savefps", type=int, default=10, help="video fps to generate") | |
| parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) | |
| parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) | |
| parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) | |
| parser.add_argument("--frames", type=int, default=-1, help="frames num to inference") | |
| parser.add_argument("--fps", type=int, default=6, help="control the fps") | |
| parser.add_argument("--motion", type=int, default=127, help="control the motion magnitude") | |
| parser.add_argument("--cond_aug", type=float, default=0.02, help="adding noise to input image") | |
| parser.add_argument("--decoding_t", type=int, default=1, help="frames num to decoding per time") | |
| parser.add_argument("--resize", action='store_true', default=False, help="resize all input to default resolution") | |
| parser.add_argument("--sample_num", type=int, default=1, help="frames num to decoding per time") | |
| parser.add_argument("--pose_dir", type=str, default='', help="checkpoint path") | |
| parser.add_argument("--height", type=int, default=576, help="frames num to decoding per time") | |
| parser.add_argument("--width", type=int, default=1024, help="frames num to decoding per time") | |
| parser.add_argument("--transform", action='store_true', default=False, help="resize all input to specific resolution") | |
| parser.add_argument("--save_images", action='store_true', default=False, help="save images") | |
| parser.add_argument("--speed", type=float, default=1.0, help="speed of camera motion") | |
| return parser | |
| if __name__ == "__main__": | |
| now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
| print("@MotionCrl+SVD Inference: %s"%now) | |
| #Fire(sample) | |
| parser = get_parser() | |
| args = parser.parse_args() | |
| sample(input_path=args.input, ckpt=args.ckpt, config=args.config, num_frames=args.frames, num_steps=args.ddim_steps, \ | |
| fps_id=args.fps, motion_bucket_id=args.motion, cond_aug=args.cond_aug, seed=args.seed, \ | |
| decoding_t=args.decoding_t, output_folder=args.savedir, save_fps=args.savefps, resize=args.resize, | |
| pose_dir=args.pose_dir, sample_num=args.sample_num, height=args.height, width=args.width, | |
| transform=args.transform, save_images=args.save_images, speed=args.speed) | |