Spaces:
Running
Running
add new model results
Browse files- static/eval_results/all_model_keywords_stats.json +778 -76
- static/eval_results/all_summary.json +89 -11
- utils.py +10 -11
static/eval_results/all_model_keywords_stats.json
CHANGED
|
@@ -1,4 +1,238 @@
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"GPT_4o_mini": {
|
| 3 |
"skills": {
|
| 4 |
"Object Recognition and Classification": {
|
|
@@ -167,19 +401,253 @@
|
|
| 167 |
"count": 43,
|
| 168 |
"num_samples": 698,
|
| 169 |
"tasks": [],
|
| 170 |
-
"average_score": 0.45508480503584553
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
},
|
| 172 |
"4-5 images": {
|
| 173 |
"count": 34,
|
| 174 |
"num_samples": 520,
|
| 175 |
"tasks": [],
|
| 176 |
-
"average_score": 0.
|
| 177 |
},
|
| 178 |
"2-3 images": {
|
| 179 |
"count": 51,
|
| 180 |
"num_samples": 802,
|
| 181 |
"tasks": [],
|
| 182 |
-
"average_score": 0.
|
| 183 |
}
|
| 184 |
},
|
| 185 |
"app": {
|
|
@@ -187,113 +655,113 @@
|
|
| 187 |
"count": 72,
|
| 188 |
"num_samples": 1124,
|
| 189 |
"tasks": [],
|
| 190 |
-
"average_score": 0.
|
| 191 |
},
|
| 192 |
"Planning": {
|
| 193 |
"count": 78,
|
| 194 |
"num_samples": 1239,
|
| 195 |
"tasks": [],
|
| 196 |
-
"average_score": 0.
|
| 197 |
},
|
| 198 |
"Coding": {
|
| 199 |
"count": 31,
|
| 200 |
"num_samples": 474,
|
| 201 |
"tasks": [],
|
| 202 |
-
"average_score": 0.
|
| 203 |
},
|
| 204 |
"Perception": {
|
| 205 |
"count": 145,
|
| 206 |
"num_samples": 2313,
|
| 207 |
"tasks": [],
|
| 208 |
-
"average_score": 0.
|
| 209 |
},
|
| 210 |
"Metrics": {
|
| 211 |
"count": 20,
|
| 212 |
"num_samples": 309,
|
| 213 |
"tasks": [],
|
| 214 |
-
"average_score": 0.
|
| 215 |
},
|
| 216 |
"Science": {
|
| 217 |
"count": 29,
|
| 218 |
"num_samples": 574,
|
| 219 |
"tasks": [],
|
| 220 |
-
"average_score": 0.
|
| 221 |
},
|
| 222 |
"Knowledge": {
|
| 223 |
"count": 97,
|
| 224 |
"num_samples": 1605,
|
| 225 |
"tasks": [],
|
| 226 |
-
"average_score": 0.
|
| 227 |
},
|
| 228 |
"Mathematics": {
|
| 229 |
"count": 33,
|
| 230 |
"num_samples": 547,
|
| 231 |
"tasks": [],
|
| 232 |
-
"average_score": 0.
|
| 233 |
}
|
| 234 |
}
|
| 235 |
},
|
| 236 |
-
"
|
| 237 |
"skills": {
|
| 238 |
"Object Recognition and Classification": {
|
| 239 |
"count": 303,
|
| 240 |
"num_samples": 4755,
|
| 241 |
"tasks": [],
|
| 242 |
-
"average_score": 0.
|
| 243 |
},
|
| 244 |
"Text Recognition (OCR)": {
|
| 245 |
"count": 137,
|
| 246 |
"num_samples": 2239,
|
| 247 |
"tasks": [],
|
| 248 |
-
"average_score": 0.
|
| 249 |
},
|
| 250 |
"Language Understanding and Generation": {
|
| 251 |
"count": 154,
|
| 252 |
"num_samples": 2509,
|
| 253 |
"tasks": [],
|
| 254 |
-
"average_score": 0.
|
| 255 |
},
|
| 256 |
"Scene and Event Understanding": {
|
| 257 |
"count": 154,
|
| 258 |
"num_samples": 2467,
|
| 259 |
"tasks": [],
|
| 260 |
-
"average_score": 0.
|
| 261 |
},
|
| 262 |
"Mathematical and Logical Reasoning": {
|
| 263 |
"count": 109,
|
| 264 |
"num_samples": 1910,
|
| 265 |
"tasks": [],
|
| 266 |
-
"average_score": 0.
|
| 267 |
},
|
| 268 |
"Commonsense and Social Reasoning": {
|
| 269 |
"count": 51,
|
| 270 |
"num_samples": 855,
|
| 271 |
"tasks": [],
|
| 272 |
-
"average_score": 0.
|
| 273 |
},
|
| 274 |
"Ethical and Safety Reasoning": {
|
| 275 |
"count": 15,
|
| 276 |
"num_samples": 245,
|
| 277 |
"tasks": [],
|
| 278 |
-
"average_score": 0.
|
| 279 |
},
|
| 280 |
"Domain-Specific Knowledge and Skills": {
|
| 281 |
"count": 77,
|
| 282 |
"num_samples": 1386,
|
| 283 |
"tasks": [],
|
| 284 |
-
"average_score": 0.
|
| 285 |
},
|
| 286 |
"Spatial and Temporal Reasoning": {
|
| 287 |
"count": 152,
|
| 288 |
"num_samples": 2437,
|
| 289 |
"tasks": [],
|
| 290 |
-
"average_score": 0.
|
| 291 |
},
|
| 292 |
"Planning and Decision Making": {
|
| 293 |
"count": 37,
|
| 294 |
"num_samples": 577,
|
| 295 |
"tasks": [],
|
| 296 |
-
"average_score": 0.
|
| 297 |
}
|
| 298 |
},
|
| 299 |
"input_format": {
|
|
@@ -301,43 +769,43 @@
|
|
| 301 |
"count": 93,
|
| 302 |
"num_samples": 1517,
|
| 303 |
"tasks": [],
|
| 304 |
-
"average_score": 0.
|
| 305 |
},
|
| 306 |
"Text-Based Images and Documents": {
|
| 307 |
"count": 82,
|
| 308 |
"num_samples": 1294,
|
| 309 |
"tasks": [],
|
| 310 |
-
"average_score": 0.
|
| 311 |
},
|
| 312 |
"Diagrams and Data Visualizations": {
|
| 313 |
"count": 101,
|
| 314 |
"num_samples": 1718,
|
| 315 |
"tasks": [],
|
| 316 |
-
"average_score": 0.
|
| 317 |
},
|
| 318 |
"Videos": {
|
| 319 |
"count": 43,
|
| 320 |
"num_samples": 698,
|
| 321 |
"tasks": [],
|
| 322 |
-
"average_score": 0.
|
| 323 |
},
|
| 324 |
"Artistic and Creative Content": {
|
| 325 |
"count": 32,
|
| 326 |
"num_samples": 541,
|
| 327 |
"tasks": [],
|
| 328 |
-
"average_score": 0.
|
| 329 |
},
|
| 330 |
"Photographs": {
|
| 331 |
"count": 143,
|
| 332 |
"num_samples": 2248,
|
| 333 |
"tasks": [],
|
| 334 |
-
"average_score": 0.
|
| 335 |
},
|
| 336 |
"3D Models and Aerial Imagery": {
|
| 337 |
"count": 11,
|
| 338 |
"num_samples": 169,
|
| 339 |
"tasks": [],
|
| 340 |
-
"average_score": 0.
|
| 341 |
}
|
| 342 |
},
|
| 343 |
"output_format": {
|
|
@@ -345,37 +813,37 @@
|
|
| 345 |
"count": 98,
|
| 346 |
"num_samples": 1514,
|
| 347 |
"tasks": [],
|
| 348 |
-
"average_score": 0.
|
| 349 |
},
|
| 350 |
"structured_output": {
|
| 351 |
"count": 110,
|
| 352 |
"num_samples": 1714,
|
| 353 |
"tasks": [],
|
| 354 |
-
"average_score": 0.
|
| 355 |
},
|
| 356 |
"exact_text": {
|
| 357 |
"count": 83,
|
| 358 |
"num_samples": 1278,
|
| 359 |
"tasks": [],
|
| 360 |
-
"average_score": 0.
|
| 361 |
},
|
| 362 |
"numerical_data": {
|
| 363 |
"count": 49,
|
| 364 |
"num_samples": 862,
|
| 365 |
"tasks": [],
|
| 366 |
-
"average_score": 0.
|
| 367 |
},
|
| 368 |
"open_ended_output": {
|
| 369 |
"count": 80,
|
| 370 |
"num_samples": 1454,
|
| 371 |
"tasks": [],
|
| 372 |
-
"average_score": 0.
|
| 373 |
},
|
| 374 |
"multiple_choice": {
|
| 375 |
"count": 85,
|
| 376 |
"num_samples": 1363,
|
| 377 |
"tasks": [],
|
| 378 |
-
"average_score": 0.
|
| 379 |
}
|
| 380 |
},
|
| 381 |
"input_num": {
|
|
@@ -383,37 +851,37 @@
|
|
| 383 |
"count": 21,
|
| 384 |
"num_samples": 314,
|
| 385 |
"tasks": [],
|
| 386 |
-
"average_score": 0.
|
| 387 |
},
|
| 388 |
"9-image or more": {
|
| 389 |
"count": 41,
|
| 390 |
"num_samples": 623,
|
| 391 |
"tasks": [],
|
| 392 |
-
"average_score": 0.
|
| 393 |
},
|
| 394 |
"1-image": {
|
| 395 |
"count": 315,
|
| 396 |
"num_samples": 5228,
|
| 397 |
"tasks": [],
|
| 398 |
-
"average_score": 0.
|
| 399 |
},
|
| 400 |
"video": {
|
| 401 |
"count": 43,
|
| 402 |
"num_samples": 698,
|
| 403 |
"tasks": [],
|
| 404 |
-
"average_score": 0.
|
| 405 |
},
|
| 406 |
"4-5 images": {
|
| 407 |
"count": 34,
|
| 408 |
"num_samples": 520,
|
| 409 |
"tasks": [],
|
| 410 |
-
"average_score": 0.
|
| 411 |
},
|
| 412 |
"2-3 images": {
|
| 413 |
"count": 51,
|
| 414 |
"num_samples": 802,
|
| 415 |
"tasks": [],
|
| 416 |
-
"average_score": 0.
|
| 417 |
}
|
| 418 |
},
|
| 419 |
"app": {
|
|
@@ -421,49 +889,49 @@
|
|
| 421 |
"count": 72,
|
| 422 |
"num_samples": 1124,
|
| 423 |
"tasks": [],
|
| 424 |
-
"average_score": 0.
|
| 425 |
},
|
| 426 |
"Planning": {
|
| 427 |
"count": 78,
|
| 428 |
"num_samples": 1239,
|
| 429 |
"tasks": [],
|
| 430 |
-
"average_score": 0.
|
| 431 |
},
|
| 432 |
"Coding": {
|
| 433 |
"count": 31,
|
| 434 |
"num_samples": 474,
|
| 435 |
"tasks": [],
|
| 436 |
-
"average_score": 0.
|
| 437 |
},
|
| 438 |
"Perception": {
|
| 439 |
"count": 145,
|
| 440 |
"num_samples": 2313,
|
| 441 |
"tasks": [],
|
| 442 |
-
"average_score": 0.
|
| 443 |
},
|
| 444 |
"Metrics": {
|
| 445 |
"count": 20,
|
| 446 |
"num_samples": 309,
|
| 447 |
"tasks": [],
|
| 448 |
-
"average_score": 0.
|
| 449 |
},
|
| 450 |
"Science": {
|
| 451 |
"count": 29,
|
| 452 |
"num_samples": 574,
|
| 453 |
"tasks": [],
|
| 454 |
-
"average_score": 0.
|
| 455 |
},
|
| 456 |
"Knowledge": {
|
| 457 |
"count": 97,
|
| 458 |
"num_samples": 1605,
|
| 459 |
"tasks": [],
|
| 460 |
-
"average_score": 0.
|
| 461 |
},
|
| 462 |
"Mathematics": {
|
| 463 |
"count": 33,
|
| 464 |
"num_samples": 547,
|
| 465 |
"tasks": [],
|
| 466 |
-
"average_score": 0.
|
| 467 |
}
|
| 468 |
}
|
| 469 |
},
|
|
@@ -1181,13 +1649,13 @@
|
|
| 1181 |
"count": 137,
|
| 1182 |
"num_samples": 2239,
|
| 1183 |
"tasks": [],
|
| 1184 |
-
"average_score": 0.
|
| 1185 |
},
|
| 1186 |
"Language Understanding and Generation": {
|
| 1187 |
"count": 154,
|
| 1188 |
"num_samples": 2509,
|
| 1189 |
"tasks": [],
|
| 1190 |
-
"average_score": 0.
|
| 1191 |
},
|
| 1192 |
"Scene and Event Understanding": {
|
| 1193 |
"count": 154,
|
|
@@ -1267,7 +1735,7 @@
|
|
| 1267 |
"count": 143,
|
| 1268 |
"num_samples": 2248,
|
| 1269 |
"tasks": [],
|
| 1270 |
-
"average_score": 0.
|
| 1271 |
},
|
| 1272 |
"3D Models and Aerial Imagery": {
|
| 1273 |
"count": 11,
|
|
@@ -1281,7 +1749,7 @@
|
|
| 1281 |
"count": 98,
|
| 1282 |
"num_samples": 1514,
|
| 1283 |
"tasks": [],
|
| 1284 |
-
"average_score": 0.
|
| 1285 |
},
|
| 1286 |
"structured_output": {
|
| 1287 |
"count": 110,
|
|
@@ -1331,7 +1799,7 @@
|
|
| 1331 |
"count": 315,
|
| 1332 |
"num_samples": 5228,
|
| 1333 |
"tasks": [],
|
| 1334 |
-
"average_score": 0.
|
| 1335 |
},
|
| 1336 |
"video": {
|
| 1337 |
"count": 43,
|
|
@@ -1375,7 +1843,7 @@
|
|
| 1375 |
"count": 145,
|
| 1376 |
"num_samples": 2313,
|
| 1377 |
"tasks": [],
|
| 1378 |
-
"average_score": 0.
|
| 1379 |
},
|
| 1380 |
"Metrics": {
|
| 1381 |
"count": 20,
|
|
@@ -1643,25 +2111,25 @@
|
|
| 1643 |
"count": 303,
|
| 1644 |
"num_samples": 4755,
|
| 1645 |
"tasks": [],
|
| 1646 |
-
"average_score": 0.
|
| 1647 |
},
|
| 1648 |
"Text Recognition (OCR)": {
|
| 1649 |
"count": 137,
|
| 1650 |
"num_samples": 2239,
|
| 1651 |
"tasks": [],
|
| 1652 |
-
"average_score": 0.
|
| 1653 |
},
|
| 1654 |
"Language Understanding and Generation": {
|
| 1655 |
"count": 154,
|
| 1656 |
"num_samples": 2509,
|
| 1657 |
"tasks": [],
|
| 1658 |
-
"average_score": 0.
|
| 1659 |
},
|
| 1660 |
"Scene and Event Understanding": {
|
| 1661 |
"count": 154,
|
| 1662 |
"num_samples": 2467,
|
| 1663 |
"tasks": [],
|
| 1664 |
-
"average_score": 0.
|
| 1665 |
},
|
| 1666 |
"Mathematical and Logical Reasoning": {
|
| 1667 |
"count": 109,
|
|
@@ -1673,7 +2141,7 @@
|
|
| 1673 |
"count": 51,
|
| 1674 |
"num_samples": 855,
|
| 1675 |
"tasks": [],
|
| 1676 |
-
"average_score": 0.
|
| 1677 |
},
|
| 1678 |
"Ethical and Safety Reasoning": {
|
| 1679 |
"count": 15,
|
|
@@ -1705,7 +2173,7 @@
|
|
| 1705 |
"count": 93,
|
| 1706 |
"num_samples": 1517,
|
| 1707 |
"tasks": [],
|
| 1708 |
-
"average_score": 0.
|
| 1709 |
},
|
| 1710 |
"Text-Based Images and Documents": {
|
| 1711 |
"count": 82,
|
|
@@ -1735,7 +2203,7 @@
|
|
| 1735 |
"count": 143,
|
| 1736 |
"num_samples": 2248,
|
| 1737 |
"tasks": [],
|
| 1738 |
-
"average_score": 0.
|
| 1739 |
},
|
| 1740 |
"3D Models and Aerial Imagery": {
|
| 1741 |
"count": 11,
|
|
@@ -1749,13 +2217,13 @@
|
|
| 1749 |
"count": 98,
|
| 1750 |
"num_samples": 1514,
|
| 1751 |
"tasks": [],
|
| 1752 |
-
"average_score": 0.
|
| 1753 |
},
|
| 1754 |
"structured_output": {
|
| 1755 |
"count": 110,
|
| 1756 |
"num_samples": 1714,
|
| 1757 |
"tasks": [],
|
| 1758 |
-
"average_score": 0.
|
| 1759 |
},
|
| 1760 |
"exact_text": {
|
| 1761 |
"count": 83,
|
|
@@ -1793,13 +2261,13 @@
|
|
| 1793 |
"count": 41,
|
| 1794 |
"num_samples": 623,
|
| 1795 |
"tasks": [],
|
| 1796 |
-
"average_score": 0.
|
| 1797 |
},
|
| 1798 |
"1-image": {
|
| 1799 |
"count": 315,
|
| 1800 |
"num_samples": 5228,
|
| 1801 |
"tasks": [],
|
| 1802 |
-
"average_score": 0.
|
| 1803 |
},
|
| 1804 |
"video": {
|
| 1805 |
"count": 43,
|
|
@@ -1817,7 +2285,7 @@
|
|
| 1817 |
"count": 51,
|
| 1818 |
"num_samples": 802,
|
| 1819 |
"tasks": [],
|
| 1820 |
-
"average_score": 0.
|
| 1821 |
}
|
| 1822 |
},
|
| 1823 |
"app": {
|
|
@@ -1825,7 +2293,7 @@
|
|
| 1825 |
"count": 72,
|
| 1826 |
"num_samples": 1124,
|
| 1827 |
"tasks": [],
|
| 1828 |
-
"average_score": 0.
|
| 1829 |
},
|
| 1830 |
"Planning": {
|
| 1831 |
"count": 78,
|
|
@@ -1843,7 +2311,7 @@
|
|
| 1843 |
"count": 145,
|
| 1844 |
"num_samples": 2313,
|
| 1845 |
"tasks": [],
|
| 1846 |
-
"average_score": 0.
|
| 1847 |
},
|
| 1848 |
"Metrics": {
|
| 1849 |
"count": 20,
|
|
@@ -1861,7 +2329,7 @@
|
|
| 1861 |
"count": 97,
|
| 1862 |
"num_samples": 1605,
|
| 1863 |
"tasks": [],
|
| 1864 |
-
"average_score": 0.
|
| 1865 |
},
|
| 1866 |
"Mathematics": {
|
| 1867 |
"count": 33,
|
|
@@ -2807,6 +3275,240 @@
|
|
| 2807 |
}
|
| 2808 |
}
|
| 2809 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2810 |
"Claude_3.5": {
|
| 2811 |
"skills": {
|
| 2812 |
"Object Recognition and Classification": {
|
|
@@ -2819,13 +3521,13 @@
|
|
| 2819 |
"count": 137,
|
| 2820 |
"num_samples": 2239,
|
| 2821 |
"tasks": [],
|
| 2822 |
-
"average_score": 0.
|
| 2823 |
},
|
| 2824 |
"Language Understanding and Generation": {
|
| 2825 |
"count": 154,
|
| 2826 |
"num_samples": 2509,
|
| 2827 |
"tasks": [],
|
| 2828 |
-
"average_score": 0.
|
| 2829 |
},
|
| 2830 |
"Scene and Event Understanding": {
|
| 2831 |
"count": 154,
|
|
@@ -2905,7 +3607,7 @@
|
|
| 2905 |
"count": 143,
|
| 2906 |
"num_samples": 2248,
|
| 2907 |
"tasks": [],
|
| 2908 |
-
"average_score": 0.
|
| 2909 |
},
|
| 2910 |
"3D Models and Aerial Imagery": {
|
| 2911 |
"count": 11,
|
|
@@ -2919,7 +3621,7 @@
|
|
| 2919 |
"count": 98,
|
| 2920 |
"num_samples": 1514,
|
| 2921 |
"tasks": [],
|
| 2922 |
-
"average_score": 0.
|
| 2923 |
},
|
| 2924 |
"structured_output": {
|
| 2925 |
"count": 110,
|
|
@@ -2969,7 +3671,7 @@
|
|
| 2969 |
"count": 315,
|
| 2970 |
"num_samples": 5228,
|
| 2971 |
"tasks": [],
|
| 2972 |
-
"average_score": 0.
|
| 2973 |
},
|
| 2974 |
"video": {
|
| 2975 |
"count": 43,
|
|
@@ -3013,7 +3715,7 @@
|
|
| 3013 |
"count": 145,
|
| 3014 |
"num_samples": 2313,
|
| 3015 |
"tasks": [],
|
| 3016 |
-
"average_score": 0.
|
| 3017 |
},
|
| 3018 |
"Metrics": {
|
| 3019 |
"count": 20,
|
|
|
|
| 1 |
{
|
| 2 |
+
"NVLM": {
|
| 3 |
+
"skills": {
|
| 4 |
+
"Object Recognition and Classification": {
|
| 5 |
+
"count": 303,
|
| 6 |
+
"num_samples": 4755,
|
| 7 |
+
"tasks": [],
|
| 8 |
+
"average_score": 0.24033557047857043
|
| 9 |
+
},
|
| 10 |
+
"Text Recognition (OCR)": {
|
| 11 |
+
"count": 137,
|
| 12 |
+
"num_samples": 2239,
|
| 13 |
+
"tasks": [],
|
| 14 |
+
"average_score": 0.32154059695494047
|
| 15 |
+
},
|
| 16 |
+
"Language Understanding and Generation": {
|
| 17 |
+
"count": 154,
|
| 18 |
+
"num_samples": 2509,
|
| 19 |
+
"tasks": [],
|
| 20 |
+
"average_score": 0.2937052996171993
|
| 21 |
+
},
|
| 22 |
+
"Scene and Event Understanding": {
|
| 23 |
+
"count": 154,
|
| 24 |
+
"num_samples": 2467,
|
| 25 |
+
"tasks": [],
|
| 26 |
+
"average_score": 0.22845955700594492
|
| 27 |
+
},
|
| 28 |
+
"Mathematical and Logical Reasoning": {
|
| 29 |
+
"count": 109,
|
| 30 |
+
"num_samples": 1910,
|
| 31 |
+
"tasks": [],
|
| 32 |
+
"average_score": 0.2639741933075709
|
| 33 |
+
},
|
| 34 |
+
"Commonsense and Social Reasoning": {
|
| 35 |
+
"count": 51,
|
| 36 |
+
"num_samples": 855,
|
| 37 |
+
"tasks": [],
|
| 38 |
+
"average_score": 0.40870864071047447
|
| 39 |
+
},
|
| 40 |
+
"Ethical and Safety Reasoning": {
|
| 41 |
+
"count": 15,
|
| 42 |
+
"num_samples": 245,
|
| 43 |
+
"tasks": [],
|
| 44 |
+
"average_score": 0.4555238095238095
|
| 45 |
+
},
|
| 46 |
+
"Domain-Specific Knowledge and Skills": {
|
| 47 |
+
"count": 77,
|
| 48 |
+
"num_samples": 1386,
|
| 49 |
+
"tasks": [],
|
| 50 |
+
"average_score": 0.25785191641267197
|
| 51 |
+
},
|
| 52 |
+
"Spatial and Temporal Reasoning": {
|
| 53 |
+
"count": 152,
|
| 54 |
+
"num_samples": 2437,
|
| 55 |
+
"tasks": [],
|
| 56 |
+
"average_score": 0.15679681195908274
|
| 57 |
+
},
|
| 58 |
+
"Planning and Decision Making": {
|
| 59 |
+
"count": 37,
|
| 60 |
+
"num_samples": 577,
|
| 61 |
+
"tasks": [],
|
| 62 |
+
"average_score": 0.0672259242345112
|
| 63 |
+
}
|
| 64 |
+
},
|
| 65 |
+
"input_format": {
|
| 66 |
+
"User Interface Screenshots": {
|
| 67 |
+
"count": 93,
|
| 68 |
+
"num_samples": 1517,
|
| 69 |
+
"tasks": [],
|
| 70 |
+
"average_score": 0.23922823287047076
|
| 71 |
+
},
|
| 72 |
+
"Text-Based Images and Documents": {
|
| 73 |
+
"count": 82,
|
| 74 |
+
"num_samples": 1294,
|
| 75 |
+
"tasks": [],
|
| 76 |
+
"average_score": 0.21734036617042948
|
| 77 |
+
},
|
| 78 |
+
"Diagrams and Data Visualizations": {
|
| 79 |
+
"count": 101,
|
| 80 |
+
"num_samples": 1718,
|
| 81 |
+
"tasks": [],
|
| 82 |
+
"average_score": 0.30313485498585124
|
| 83 |
+
},
|
| 84 |
+
"Videos": {
|
| 85 |
+
"count": 43,
|
| 86 |
+
"num_samples": 698,
|
| 87 |
+
"tasks": [],
|
| 88 |
+
"average_score": 0.0
|
| 89 |
+
},
|
| 90 |
+
"Artistic and Creative Content": {
|
| 91 |
+
"count": 32,
|
| 92 |
+
"num_samples": 541,
|
| 93 |
+
"tasks": [],
|
| 94 |
+
"average_score": 0.34726189956094355
|
| 95 |
+
},
|
| 96 |
+
"Photographs": {
|
| 97 |
+
"count": 143,
|
| 98 |
+
"num_samples": 2248,
|
| 99 |
+
"tasks": [],
|
| 100 |
+
"average_score": 0.3264757655296162
|
| 101 |
+
},
|
| 102 |
+
"3D Models and Aerial Imagery": {
|
| 103 |
+
"count": 11,
|
| 104 |
+
"num_samples": 169,
|
| 105 |
+
"tasks": [],
|
| 106 |
+
"average_score": 0.056894830390305184
|
| 107 |
+
}
|
| 108 |
+
},
|
| 109 |
+
"output_format": {
|
| 110 |
+
"contextual_formatted_text": {
|
| 111 |
+
"count": 98,
|
| 112 |
+
"num_samples": 1514,
|
| 113 |
+
"tasks": [],
|
| 114 |
+
"average_score": 0.22868389095927066
|
| 115 |
+
},
|
| 116 |
+
"structured_output": {
|
| 117 |
+
"count": 110,
|
| 118 |
+
"num_samples": 1714,
|
| 119 |
+
"tasks": [],
|
| 120 |
+
"average_score": 0.2788963949121424
|
| 121 |
+
},
|
| 122 |
+
"exact_text": {
|
| 123 |
+
"count": 83,
|
| 124 |
+
"num_samples": 1278,
|
| 125 |
+
"tasks": [],
|
| 126 |
+
"average_score": 0.2787764976961992
|
| 127 |
+
},
|
| 128 |
+
"numerical_data": {
|
| 129 |
+
"count": 49,
|
| 130 |
+
"num_samples": 862,
|
| 131 |
+
"tasks": [],
|
| 132 |
+
"average_score": 0.23349712171444964
|
| 133 |
+
},
|
| 134 |
+
"open_ended_output": {
|
| 135 |
+
"count": 80,
|
| 136 |
+
"num_samples": 1454,
|
| 137 |
+
"tasks": [],
|
| 138 |
+
"average_score": 0.3215948035793096
|
| 139 |
+
},
|
| 140 |
+
"multiple_choice": {
|
| 141 |
+
"count": 85,
|
| 142 |
+
"num_samples": 1363,
|
| 143 |
+
"tasks": [],
|
| 144 |
+
"average_score": 0.18487055428231897
|
| 145 |
+
}
|
| 146 |
+
},
|
| 147 |
+
"input_num": {
|
| 148 |
+
"6-8 images": {
|
| 149 |
+
"count": 21,
|
| 150 |
+
"num_samples": 314,
|
| 151 |
+
"tasks": [],
|
| 152 |
+
"average_score": 0.0
|
| 153 |
+
},
|
| 154 |
+
"9-image or more": {
|
| 155 |
+
"count": 41,
|
| 156 |
+
"num_samples": 623,
|
| 157 |
+
"tasks": [],
|
| 158 |
+
"average_score": 0.0
|
| 159 |
+
},
|
| 160 |
+
"1-image": {
|
| 161 |
+
"count": 315,
|
| 162 |
+
"num_samples": 5228,
|
| 163 |
+
"tasks": [],
|
| 164 |
+
"average_score": 0.3680809151131777
|
| 165 |
+
},
|
| 166 |
+
"video": {
|
| 167 |
+
"count": 43,
|
| 168 |
+
"num_samples": 698,
|
| 169 |
+
"tasks": [],
|
| 170 |
+
"average_score": 0.0
|
| 171 |
+
},
|
| 172 |
+
"4-5 images": {
|
| 173 |
+
"count": 34,
|
| 174 |
+
"num_samples": 520,
|
| 175 |
+
"tasks": [],
|
| 176 |
+
"average_score": 0.03838410364145658
|
| 177 |
+
},
|
| 178 |
+
"2-3 images": {
|
| 179 |
+
"count": 51,
|
| 180 |
+
"num_samples": 802,
|
| 181 |
+
"tasks": [],
|
| 182 |
+
"average_score": 0.2325581694709435
|
| 183 |
+
}
|
| 184 |
+
},
|
| 185 |
+
"app": {
|
| 186 |
+
"Information_Extraction": {
|
| 187 |
+
"count": 72,
|
| 188 |
+
"num_samples": 1124,
|
| 189 |
+
"tasks": [],
|
| 190 |
+
"average_score": 0.22773778915303383
|
| 191 |
+
},
|
| 192 |
+
"Planning": {
|
| 193 |
+
"count": 78,
|
| 194 |
+
"num_samples": 1239,
|
| 195 |
+
"tasks": [],
|
| 196 |
+
"average_score": 0.08048160660797504
|
| 197 |
+
},
|
| 198 |
+
"Coding": {
|
| 199 |
+
"count": 31,
|
| 200 |
+
"num_samples": 474,
|
| 201 |
+
"tasks": [],
|
| 202 |
+
"average_score": 0.2390024647851972
|
| 203 |
+
},
|
| 204 |
+
"Perception": {
|
| 205 |
+
"count": 145,
|
| 206 |
+
"num_samples": 2313,
|
| 207 |
+
"tasks": [],
|
| 208 |
+
"average_score": 0.30211261814126533
|
| 209 |
+
},
|
| 210 |
+
"Metrics": {
|
| 211 |
+
"count": 20,
|
| 212 |
+
"num_samples": 309,
|
| 213 |
+
"tasks": [],
|
| 214 |
+
"average_score": 0.18857142857142856
|
| 215 |
+
},
|
| 216 |
+
"Science": {
|
| 217 |
+
"count": 29,
|
| 218 |
+
"num_samples": 574,
|
| 219 |
+
"tasks": [],
|
| 220 |
+
"average_score": 0.24908307640275493
|
| 221 |
+
},
|
| 222 |
+
"Knowledge": {
|
| 223 |
+
"count": 97,
|
| 224 |
+
"num_samples": 1605,
|
| 225 |
+
"tasks": [],
|
| 226 |
+
"average_score": 0.3724877947012685
|
| 227 |
+
},
|
| 228 |
+
"Mathematics": {
|
| 229 |
+
"count": 33,
|
| 230 |
+
"num_samples": 547,
|
| 231 |
+
"tasks": [],
|
| 232 |
+
"average_score": 0.24529601154794037
|
| 233 |
+
}
|
| 234 |
+
}
|
| 235 |
+
},
|
| 236 |
"GPT_4o_mini": {
|
| 237 |
"skills": {
|
| 238 |
"Object Recognition and Classification": {
|
|
|
|
| 401 |
"count": 43,
|
| 402 |
"num_samples": 698,
|
| 403 |
"tasks": [],
|
| 404 |
+
"average_score": 0.45508480503584553
|
| 405 |
+
},
|
| 406 |
+
"4-5 images": {
|
| 407 |
+
"count": 34,
|
| 408 |
+
"num_samples": 520,
|
| 409 |
+
"tasks": [],
|
| 410 |
+
"average_score": 0.24651576711552803
|
| 411 |
+
},
|
| 412 |
+
"2-3 images": {
|
| 413 |
+
"count": 51,
|
| 414 |
+
"num_samples": 802,
|
| 415 |
+
"tasks": [],
|
| 416 |
+
"average_score": 0.3697506340557095
|
| 417 |
+
}
|
| 418 |
+
},
|
| 419 |
+
"app": {
|
| 420 |
+
"Information_Extraction": {
|
| 421 |
+
"count": 72,
|
| 422 |
+
"num_samples": 1124,
|
| 423 |
+
"tasks": [],
|
| 424 |
+
"average_score": 0.5640948591986592
|
| 425 |
+
},
|
| 426 |
+
"Planning": {
|
| 427 |
+
"count": 78,
|
| 428 |
+
"num_samples": 1239,
|
| 429 |
+
"tasks": [],
|
| 430 |
+
"average_score": 0.2420320329702607
|
| 431 |
+
},
|
| 432 |
+
"Coding": {
|
| 433 |
+
"count": 31,
|
| 434 |
+
"num_samples": 474,
|
| 435 |
+
"tasks": [],
|
| 436 |
+
"average_score": 0.3458483931206892
|
| 437 |
+
},
|
| 438 |
+
"Perception": {
|
| 439 |
+
"count": 145,
|
| 440 |
+
"num_samples": 2313,
|
| 441 |
+
"tasks": [],
|
| 442 |
+
"average_score": 0.43544861040322835
|
| 443 |
+
},
|
| 444 |
+
"Metrics": {
|
| 445 |
+
"count": 20,
|
| 446 |
+
"num_samples": 309,
|
| 447 |
+
"tasks": [],
|
| 448 |
+
"average_score": 0.5176671720617656
|
| 449 |
+
},
|
| 450 |
+
"Science": {
|
| 451 |
+
"count": 29,
|
| 452 |
+
"num_samples": 574,
|
| 453 |
+
"tasks": [],
|
| 454 |
+
"average_score": 0.3554299482098288
|
| 455 |
+
},
|
| 456 |
+
"Knowledge": {
|
| 457 |
+
"count": 97,
|
| 458 |
+
"num_samples": 1605,
|
| 459 |
+
"tasks": [],
|
| 460 |
+
"average_score": 0.5398829253460956
|
| 461 |
+
},
|
| 462 |
+
"Mathematics": {
|
| 463 |
+
"count": 33,
|
| 464 |
+
"num_samples": 547,
|
| 465 |
+
"tasks": [],
|
| 466 |
+
"average_score": 0.32918280841495845
|
| 467 |
+
}
|
| 468 |
+
}
|
| 469 |
+
},
|
| 470 |
+
"Llama_3_2_11B": {
|
| 471 |
+
"skills": {
|
| 472 |
+
"Object Recognition and Classification": {
|
| 473 |
+
"count": 303,
|
| 474 |
+
"num_samples": 4755,
|
| 475 |
+
"tasks": [],
|
| 476 |
+
"average_score": 0.1907604552173455
|
| 477 |
+
},
|
| 478 |
+
"Text Recognition (OCR)": {
|
| 479 |
+
"count": 137,
|
| 480 |
+
"num_samples": 2239,
|
| 481 |
+
"tasks": [],
|
| 482 |
+
"average_score": 0.14280015951776653
|
| 483 |
+
},
|
| 484 |
+
"Language Understanding and Generation": {
|
| 485 |
+
"count": 154,
|
| 486 |
+
"num_samples": 2509,
|
| 487 |
+
"tasks": [],
|
| 488 |
+
"average_score": 0.1960311445935766
|
| 489 |
+
},
|
| 490 |
+
"Scene and Event Understanding": {
|
| 491 |
+
"count": 154,
|
| 492 |
+
"num_samples": 2467,
|
| 493 |
+
"tasks": [],
|
| 494 |
+
"average_score": 0.22399113135844315
|
| 495 |
+
},
|
| 496 |
+
"Mathematical and Logical Reasoning": {
|
| 497 |
+
"count": 109,
|
| 498 |
+
"num_samples": 1910,
|
| 499 |
+
"tasks": [],
|
| 500 |
+
"average_score": 0.13303760019716085
|
| 501 |
+
},
|
| 502 |
+
"Commonsense and Social Reasoning": {
|
| 503 |
+
"count": 51,
|
| 504 |
+
"num_samples": 855,
|
| 505 |
+
"tasks": [],
|
| 506 |
+
"average_score": 0.323153603297999
|
| 507 |
+
},
|
| 508 |
+
"Ethical and Safety Reasoning": {
|
| 509 |
+
"count": 15,
|
| 510 |
+
"num_samples": 245,
|
| 511 |
+
"tasks": [],
|
| 512 |
+
"average_score": 0.4260501253132832
|
| 513 |
+
},
|
| 514 |
+
"Domain-Specific Knowledge and Skills": {
|
| 515 |
+
"count": 77,
|
| 516 |
+
"num_samples": 1386,
|
| 517 |
+
"tasks": [],
|
| 518 |
+
"average_score": 0.1770852858056774
|
| 519 |
+
},
|
| 520 |
+
"Spatial and Temporal Reasoning": {
|
| 521 |
+
"count": 152,
|
| 522 |
+
"num_samples": 2437,
|
| 523 |
+
"tasks": [],
|
| 524 |
+
"average_score": 0.15366454315378308
|
| 525 |
+
},
|
| 526 |
+
"Planning and Decision Making": {
|
| 527 |
+
"count": 37,
|
| 528 |
+
"num_samples": 577,
|
| 529 |
+
"tasks": [],
|
| 530 |
+
"average_score": 0.06563884729522687
|
| 531 |
+
}
|
| 532 |
+
},
|
| 533 |
+
"input_format": {
|
| 534 |
+
"User Interface Screenshots": {
|
| 535 |
+
"count": 93,
|
| 536 |
+
"num_samples": 1517,
|
| 537 |
+
"tasks": [],
|
| 538 |
+
"average_score": 0.11886347847341794
|
| 539 |
+
},
|
| 540 |
+
"Text-Based Images and Documents": {
|
| 541 |
+
"count": 82,
|
| 542 |
+
"num_samples": 1294,
|
| 543 |
+
"tasks": [],
|
| 544 |
+
"average_score": 0.11489351406848371
|
| 545 |
+
},
|
| 546 |
+
"Diagrams and Data Visualizations": {
|
| 547 |
+
"count": 101,
|
| 548 |
+
"num_samples": 1718,
|
| 549 |
+
"tasks": [],
|
| 550 |
+
"average_score": 0.1693681214060816
|
| 551 |
+
},
|
| 552 |
+
"Videos": {
|
| 553 |
+
"count": 43,
|
| 554 |
+
"num_samples": 698,
|
| 555 |
+
"tasks": [],
|
| 556 |
+
"average_score": 0.2123769209846321
|
| 557 |
+
},
|
| 558 |
+
"Artistic and Creative Content": {
|
| 559 |
+
"count": 32,
|
| 560 |
+
"num_samples": 541,
|
| 561 |
+
"tasks": [],
|
| 562 |
+
"average_score": 0.2520175802062012
|
| 563 |
+
},
|
| 564 |
+
"Photographs": {
|
| 565 |
+
"count": 143,
|
| 566 |
+
"num_samples": 2248,
|
| 567 |
+
"tasks": [],
|
| 568 |
+
"average_score": 0.24806929522702081
|
| 569 |
+
},
|
| 570 |
+
"3D Models and Aerial Imagery": {
|
| 571 |
+
"count": 11,
|
| 572 |
+
"num_samples": 169,
|
| 573 |
+
"tasks": [],
|
| 574 |
+
"average_score": 0.06418655520777307
|
| 575 |
+
}
|
| 576 |
+
},
|
| 577 |
+
"output_format": {
|
| 578 |
+
"contextual_formatted_text": {
|
| 579 |
+
"count": 98,
|
| 580 |
+
"num_samples": 1514,
|
| 581 |
+
"tasks": [],
|
| 582 |
+
"average_score": 0.12349256529641485
|
| 583 |
+
},
|
| 584 |
+
"structured_output": {
|
| 585 |
+
"count": 110,
|
| 586 |
+
"num_samples": 1714,
|
| 587 |
+
"tasks": [],
|
| 588 |
+
"average_score": 0.16374180545556977
|
| 589 |
+
},
|
| 590 |
+
"exact_text": {
|
| 591 |
+
"count": 83,
|
| 592 |
+
"num_samples": 1278,
|
| 593 |
+
"tasks": [],
|
| 594 |
+
"average_score": 0.1576236804437753
|
| 595 |
+
},
|
| 596 |
+
"numerical_data": {
|
| 597 |
+
"count": 49,
|
| 598 |
+
"num_samples": 862,
|
| 599 |
+
"tasks": [],
|
| 600 |
+
"average_score": 0.15014439824913947
|
| 601 |
+
},
|
| 602 |
+
"open_ended_output": {
|
| 603 |
+
"count": 80,
|
| 604 |
+
"num_samples": 1454,
|
| 605 |
+
"tasks": [],
|
| 606 |
+
"average_score": 0.3003142292328822
|
| 607 |
+
},
|
| 608 |
+
"multiple_choice": {
|
| 609 |
+
"count": 85,
|
| 610 |
+
"num_samples": 1363,
|
| 611 |
+
"tasks": [],
|
| 612 |
+
"average_score": 0.19270157739425633
|
| 613 |
+
}
|
| 614 |
+
},
|
| 615 |
+
"input_num": {
|
| 616 |
+
"6-8 images": {
|
| 617 |
+
"count": 21,
|
| 618 |
+
"num_samples": 314,
|
| 619 |
+
"tasks": [],
|
| 620 |
+
"average_score": 0.1463246409674981
|
| 621 |
+
},
|
| 622 |
+
"9-image or more": {
|
| 623 |
+
"count": 41,
|
| 624 |
+
"num_samples": 623,
|
| 625 |
+
"tasks": [],
|
| 626 |
+
"average_score": 0.0732004839476103
|
| 627 |
+
},
|
| 628 |
+
"1-image": {
|
| 629 |
+
"count": 315,
|
| 630 |
+
"num_samples": 5228,
|
| 631 |
+
"tasks": [],
|
| 632 |
+
"average_score": 0.19579907898674231
|
| 633 |
+
},
|
| 634 |
+
"video": {
|
| 635 |
+
"count": 43,
|
| 636 |
+
"num_samples": 698,
|
| 637 |
+
"tasks": [],
|
| 638 |
+
"average_score": 0.2123769209846321
|
| 639 |
},
|
| 640 |
"4-5 images": {
|
| 641 |
"count": 34,
|
| 642 |
"num_samples": 520,
|
| 643 |
"tasks": [],
|
| 644 |
+
"average_score": 0.1351857051327849
|
| 645 |
},
|
| 646 |
"2-3 images": {
|
| 647 |
"count": 51,
|
| 648 |
"num_samples": 802,
|
| 649 |
"tasks": [],
|
| 650 |
+
"average_score": 0.18586695387250338
|
| 651 |
}
|
| 652 |
},
|
| 653 |
"app": {
|
|
|
|
| 655 |
"count": 72,
|
| 656 |
"num_samples": 1124,
|
| 657 |
"tasks": [],
|
| 658 |
+
"average_score": 0.17288724679416761
|
| 659 |
},
|
| 660 |
"Planning": {
|
| 661 |
"count": 78,
|
| 662 |
"num_samples": 1239,
|
| 663 |
"tasks": [],
|
| 664 |
+
"average_score": 0.08100042975820579
|
| 665 |
},
|
| 666 |
"Coding": {
|
| 667 |
"count": 31,
|
| 668 |
"num_samples": 474,
|
| 669 |
"tasks": [],
|
| 670 |
+
"average_score": 0.0575426944971537
|
| 671 |
},
|
| 672 |
"Perception": {
|
| 673 |
"count": 145,
|
| 674 |
"num_samples": 2313,
|
| 675 |
"tasks": [],
|
| 676 |
+
"average_score": 0.19853488174071646
|
| 677 |
},
|
| 678 |
"Metrics": {
|
| 679 |
"count": 20,
|
| 680 |
"num_samples": 309,
|
| 681 |
"tasks": [],
|
| 682 |
+
"average_score": 0.254316961351997
|
| 683 |
},
|
| 684 |
"Science": {
|
| 685 |
"count": 29,
|
| 686 |
"num_samples": 574,
|
| 687 |
"tasks": [],
|
| 688 |
+
"average_score": 0.162801811963855
|
| 689 |
},
|
| 690 |
"Knowledge": {
|
| 691 |
"count": 97,
|
| 692 |
"num_samples": 1605,
|
| 693 |
"tasks": [],
|
| 694 |
+
"average_score": 0.28055776664538923
|
| 695 |
},
|
| 696 |
"Mathematics": {
|
| 697 |
"count": 33,
|
| 698 |
"num_samples": 547,
|
| 699 |
"tasks": [],
|
| 700 |
+
"average_score": 0.13937853323074623
|
| 701 |
}
|
| 702 |
}
|
| 703 |
},
|
| 704 |
+
"Claude_3.5_new": {
|
| 705 |
"skills": {
|
| 706 |
"Object Recognition and Classification": {
|
| 707 |
"count": 303,
|
| 708 |
"num_samples": 4755,
|
| 709 |
"tasks": [],
|
| 710 |
+
"average_score": 0.5690042283891658
|
| 711 |
},
|
| 712 |
"Text Recognition (OCR)": {
|
| 713 |
"count": 137,
|
| 714 |
"num_samples": 2239,
|
| 715 |
"tasks": [],
|
| 716 |
+
"average_score": 0.6220681231036606
|
| 717 |
},
|
| 718 |
"Language Understanding and Generation": {
|
| 719 |
"count": 154,
|
| 720 |
"num_samples": 2509,
|
| 721 |
"tasks": [],
|
| 722 |
+
"average_score": 0.6077980666415158
|
| 723 |
},
|
| 724 |
"Scene and Event Understanding": {
|
| 725 |
"count": 154,
|
| 726 |
"num_samples": 2467,
|
| 727 |
"tasks": [],
|
| 728 |
+
"average_score": 0.5511434932168607
|
| 729 |
},
|
| 730 |
"Mathematical and Logical Reasoning": {
|
| 731 |
"count": 109,
|
| 732 |
"num_samples": 1910,
|
| 733 |
"tasks": [],
|
| 734 |
+
"average_score": 0.4885536652013625
|
| 735 |
},
|
| 736 |
"Commonsense and Social Reasoning": {
|
| 737 |
"count": 51,
|
| 738 |
"num_samples": 855,
|
| 739 |
"tasks": [],
|
| 740 |
+
"average_score": 0.590818684469149
|
| 741 |
},
|
| 742 |
"Ethical and Safety Reasoning": {
|
| 743 |
"count": 15,
|
| 744 |
"num_samples": 245,
|
| 745 |
"tasks": [],
|
| 746 |
+
"average_score": 0.6569473684210526
|
| 747 |
},
|
| 748 |
"Domain-Specific Knowledge and Skills": {
|
| 749 |
"count": 77,
|
| 750 |
"num_samples": 1386,
|
| 751 |
"tasks": [],
|
| 752 |
+
"average_score": 0.5486763511384175
|
| 753 |
},
|
| 754 |
"Spatial and Temporal Reasoning": {
|
| 755 |
"count": 152,
|
| 756 |
"num_samples": 2437,
|
| 757 |
"tasks": [],
|
| 758 |
+
"average_score": 0.4315385951907387
|
| 759 |
},
|
| 760 |
"Planning and Decision Making": {
|
| 761 |
"count": 37,
|
| 762 |
"num_samples": 577,
|
| 763 |
"tasks": [],
|
| 764 |
+
"average_score": 0.2909419331017877
|
| 765 |
}
|
| 766 |
},
|
| 767 |
"input_format": {
|
|
|
|
| 769 |
"count": 93,
|
| 770 |
"num_samples": 1517,
|
| 771 |
"tasks": [],
|
| 772 |
+
"average_score": 0.6048192628845258
|
| 773 |
},
|
| 774 |
"Text-Based Images and Documents": {
|
| 775 |
"count": 82,
|
| 776 |
"num_samples": 1294,
|
| 777 |
"tasks": [],
|
| 778 |
+
"average_score": 0.48924295292319175
|
| 779 |
},
|
| 780 |
"Diagrams and Data Visualizations": {
|
| 781 |
"count": 101,
|
| 782 |
"num_samples": 1718,
|
| 783 |
"tasks": [],
|
| 784 |
+
"average_score": 0.556418710368288
|
| 785 |
},
|
| 786 |
"Videos": {
|
| 787 |
"count": 43,
|
| 788 |
"num_samples": 698,
|
| 789 |
"tasks": [],
|
| 790 |
+
"average_score": 0.4946691340754988
|
| 791 |
},
|
| 792 |
"Artistic and Creative Content": {
|
| 793 |
"count": 32,
|
| 794 |
"num_samples": 541,
|
| 795 |
"tasks": [],
|
| 796 |
+
"average_score": 0.5558756390298104
|
| 797 |
},
|
| 798 |
"Photographs": {
|
| 799 |
"count": 143,
|
| 800 |
"num_samples": 2248,
|
| 801 |
"tasks": [],
|
| 802 |
+
"average_score": 0.542519242638518
|
| 803 |
},
|
| 804 |
"3D Models and Aerial Imagery": {
|
| 805 |
"count": 11,
|
| 806 |
"num_samples": 169,
|
| 807 |
"tasks": [],
|
| 808 |
+
"average_score": 0.44210335381541843
|
| 809 |
}
|
| 810 |
},
|
| 811 |
"output_format": {
|
|
|
|
| 813 |
"count": 98,
|
| 814 |
"num_samples": 1514,
|
| 815 |
"tasks": [],
|
| 816 |
+
"average_score": 0.5187252051932875
|
| 817 |
},
|
| 818 |
"structured_output": {
|
| 819 |
"count": 110,
|
| 820 |
"num_samples": 1714,
|
| 821 |
"tasks": [],
|
| 822 |
+
"average_score": 0.5071113150600759
|
| 823 |
},
|
| 824 |
"exact_text": {
|
| 825 |
"count": 83,
|
| 826 |
"num_samples": 1278,
|
| 827 |
"tasks": [],
|
| 828 |
+
"average_score": 0.5387340524651681
|
| 829 |
},
|
| 830 |
"numerical_data": {
|
| 831 |
"count": 49,
|
| 832 |
"num_samples": 862,
|
| 833 |
"tasks": [],
|
| 834 |
+
"average_score": 0.4824302644151348
|
| 835 |
},
|
| 836 |
"open_ended_output": {
|
| 837 |
"count": 80,
|
| 838 |
"num_samples": 1454,
|
| 839 |
"tasks": [],
|
| 840 |
+
"average_score": 0.6242798397166945
|
| 841 |
},
|
| 842 |
"multiple_choice": {
|
| 843 |
"count": 85,
|
| 844 |
"num_samples": 1363,
|
| 845 |
"tasks": [],
|
| 846 |
+
"average_score": 0.5782691045270721
|
| 847 |
}
|
| 848 |
},
|
| 849 |
"input_num": {
|
|
|
|
| 851 |
"count": 21,
|
| 852 |
"num_samples": 314,
|
| 853 |
"tasks": [],
|
| 854 |
+
"average_score": 0.4630277507828528
|
| 855 |
},
|
| 856 |
"9-image or more": {
|
| 857 |
"count": 41,
|
| 858 |
"num_samples": 623,
|
| 859 |
"tasks": [],
|
| 860 |
+
"average_score": 0.5914338446093256
|
| 861 |
},
|
| 862 |
"1-image": {
|
| 863 |
"count": 315,
|
| 864 |
"num_samples": 5228,
|
| 865 |
"tasks": [],
|
| 866 |
+
"average_score": 0.5636254729390459
|
| 867 |
},
|
| 868 |
"video": {
|
| 869 |
"count": 43,
|
| 870 |
"num_samples": 698,
|
| 871 |
"tasks": [],
|
| 872 |
+
"average_score": 0.4946691340754988
|
| 873 |
},
|
| 874 |
"4-5 images": {
|
| 875 |
"count": 34,
|
| 876 |
"num_samples": 520,
|
| 877 |
"tasks": [],
|
| 878 |
+
"average_score": 0.4828123870640382
|
| 879 |
},
|
| 880 |
"2-3 images": {
|
| 881 |
"count": 51,
|
| 882 |
"num_samples": 802,
|
| 883 |
"tasks": [],
|
| 884 |
+
"average_score": 0.48756464396063437
|
| 885 |
}
|
| 886 |
},
|
| 887 |
"app": {
|
|
|
|
| 889 |
"count": 72,
|
| 890 |
"num_samples": 1124,
|
| 891 |
"tasks": [],
|
| 892 |
+
"average_score": 0.6590137441693218
|
| 893 |
},
|
| 894 |
"Planning": {
|
| 895 |
"count": 78,
|
| 896 |
"num_samples": 1239,
|
| 897 |
"tasks": [],
|
| 898 |
+
"average_score": 0.39901670035164916
|
| 899 |
},
|
| 900 |
"Coding": {
|
| 901 |
"count": 31,
|
| 902 |
"num_samples": 474,
|
| 903 |
"tasks": [],
|
| 904 |
+
"average_score": 0.5166853031535193
|
| 905 |
},
|
| 906 |
"Perception": {
|
| 907 |
"count": 145,
|
| 908 |
"num_samples": 2313,
|
| 909 |
"tasks": [],
|
| 910 |
+
"average_score": 0.5561634744977417
|
| 911 |
},
|
| 912 |
"Metrics": {
|
| 913 |
"count": 20,
|
| 914 |
"num_samples": 309,
|
| 915 |
"tasks": [],
|
| 916 |
+
"average_score": 0.6123769274172342
|
| 917 |
},
|
| 918 |
"Science": {
|
| 919 |
"count": 29,
|
| 920 |
"num_samples": 574,
|
| 921 |
"tasks": [],
|
| 922 |
+
"average_score": 0.5512015158810595
|
| 923 |
},
|
| 924 |
"Knowledge": {
|
| 925 |
"count": 97,
|
| 926 |
"num_samples": 1605,
|
| 927 |
"tasks": [],
|
| 928 |
+
"average_score": 0.5657956645626817
|
| 929 |
},
|
| 930 |
"Mathematics": {
|
| 931 |
"count": 33,
|
| 932 |
"num_samples": 547,
|
| 933 |
"tasks": [],
|
| 934 |
+
"average_score": 0.4763267502912362
|
| 935 |
}
|
| 936 |
}
|
| 937 |
},
|
|
|
|
| 1649 |
"count": 137,
|
| 1650 |
"num_samples": 2239,
|
| 1651 |
"tasks": [],
|
| 1652 |
+
"average_score": 0.49947304390648534
|
| 1653 |
},
|
| 1654 |
"Language Understanding and Generation": {
|
| 1655 |
"count": 154,
|
| 1656 |
"num_samples": 2509,
|
| 1657 |
"tasks": [],
|
| 1658 |
+
"average_score": 0.5512750115216515
|
| 1659 |
},
|
| 1660 |
"Scene and Event Understanding": {
|
| 1661 |
"count": 154,
|
|
|
|
| 1735 |
"count": 143,
|
| 1736 |
"num_samples": 2248,
|
| 1737 |
"tasks": [],
|
| 1738 |
+
"average_score": 0.5500305447809621
|
| 1739 |
},
|
| 1740 |
"3D Models and Aerial Imagery": {
|
| 1741 |
"count": 11,
|
|
|
|
| 1749 |
"count": 98,
|
| 1750 |
"num_samples": 1514,
|
| 1751 |
"tasks": [],
|
| 1752 |
+
"average_score": 0.44896309957892694
|
| 1753 |
},
|
| 1754 |
"structured_output": {
|
| 1755 |
"count": 110,
|
|
|
|
| 1799 |
"count": 315,
|
| 1800 |
"num_samples": 5228,
|
| 1801 |
"tasks": [],
|
| 1802 |
+
"average_score": 0.5034399620483027
|
| 1803 |
},
|
| 1804 |
"video": {
|
| 1805 |
"count": 43,
|
|
|
|
| 1843 |
"count": 145,
|
| 1844 |
"num_samples": 2313,
|
| 1845 |
"tasks": [],
|
| 1846 |
+
"average_score": 0.5250631828331306
|
| 1847 |
},
|
| 1848 |
"Metrics": {
|
| 1849 |
"count": 20,
|
|
|
|
| 2111 |
"count": 303,
|
| 2112 |
"num_samples": 4755,
|
| 2113 |
"tasks": [],
|
| 2114 |
+
"average_score": 0.5630800473549525
|
| 2115 |
},
|
| 2116 |
"Text Recognition (OCR)": {
|
| 2117 |
"count": 137,
|
| 2118 |
"num_samples": 2239,
|
| 2119 |
"tasks": [],
|
| 2120 |
+
"average_score": 0.6216411634729735
|
| 2121 |
},
|
| 2122 |
"Language Understanding and Generation": {
|
| 2123 |
"count": 154,
|
| 2124 |
"num_samples": 2509,
|
| 2125 |
"tasks": [],
|
| 2126 |
+
"average_score": 0.616018277142757
|
| 2127 |
},
|
| 2128 |
"Scene and Event Understanding": {
|
| 2129 |
"count": 154,
|
| 2130 |
"num_samples": 2467,
|
| 2131 |
"tasks": [],
|
| 2132 |
+
"average_score": 0.5823184402392676
|
| 2133 |
},
|
| 2134 |
"Mathematical and Logical Reasoning": {
|
| 2135 |
"count": 109,
|
|
|
|
| 2141 |
"count": 51,
|
| 2142 |
"num_samples": 855,
|
| 2143 |
"tasks": [],
|
| 2144 |
+
"average_score": 0.6345709158363462
|
| 2145 |
},
|
| 2146 |
"Ethical and Safety Reasoning": {
|
| 2147 |
"count": 15,
|
|
|
|
| 2173 |
"count": 93,
|
| 2174 |
"num_samples": 1517,
|
| 2175 |
"tasks": [],
|
| 2176 |
+
"average_score": 0.608083455060831
|
| 2177 |
},
|
| 2178 |
"Text-Based Images and Documents": {
|
| 2179 |
"count": 82,
|
|
|
|
| 2203 |
"count": 143,
|
| 2204 |
"num_samples": 2248,
|
| 2205 |
"tasks": [],
|
| 2206 |
+
"average_score": 0.5613635226492386
|
| 2207 |
},
|
| 2208 |
"3D Models and Aerial Imagery": {
|
| 2209 |
"count": 11,
|
|
|
|
| 2217 |
"count": 98,
|
| 2218 |
"num_samples": 1514,
|
| 2219 |
"tasks": [],
|
| 2220 |
+
"average_score": 0.5388690453811203
|
| 2221 |
},
|
| 2222 |
"structured_output": {
|
| 2223 |
"count": 110,
|
| 2224 |
"num_samples": 1714,
|
| 2225 |
"tasks": [],
|
| 2226 |
+
"average_score": 0.4803884979696412
|
| 2227 |
},
|
| 2228 |
"exact_text": {
|
| 2229 |
"count": 83,
|
|
|
|
| 2261 |
"count": 41,
|
| 2262 |
"num_samples": 623,
|
| 2263 |
"tasks": [],
|
| 2264 |
+
"average_score": 0.5343350103400748
|
| 2265 |
},
|
| 2266 |
"1-image": {
|
| 2267 |
"count": 315,
|
| 2268 |
"num_samples": 5228,
|
| 2269 |
"tasks": [],
|
| 2270 |
+
"average_score": 0.5672657028463585
|
| 2271 |
},
|
| 2272 |
"video": {
|
| 2273 |
"count": 43,
|
|
|
|
| 2285 |
"count": 51,
|
| 2286 |
"num_samples": 802,
|
| 2287 |
"tasks": [],
|
| 2288 |
+
"average_score": 0.49089043782374137
|
| 2289 |
}
|
| 2290 |
},
|
| 2291 |
"app": {
|
|
|
|
| 2293 |
"count": 72,
|
| 2294 |
"num_samples": 1124,
|
| 2295 |
"tasks": [],
|
| 2296 |
+
"average_score": 0.7056027785545881
|
| 2297 |
},
|
| 2298 |
"Planning": {
|
| 2299 |
"count": 78,
|
|
|
|
| 2311 |
"count": 145,
|
| 2312 |
"num_samples": 2313,
|
| 2313 |
"tasks": [],
|
| 2314 |
+
"average_score": 0.5510350848991218
|
| 2315 |
},
|
| 2316 |
"Metrics": {
|
| 2317 |
"count": 20,
|
|
|
|
| 2329 |
"count": 97,
|
| 2330 |
"num_samples": 1605,
|
| 2331 |
"tasks": [],
|
| 2332 |
+
"average_score": 0.6135855179956459
|
| 2333 |
},
|
| 2334 |
"Mathematics": {
|
| 2335 |
"count": 33,
|
|
|
|
| 3275 |
}
|
| 3276 |
}
|
| 3277 |
},
|
| 3278 |
+
"Aria": {
|
| 3279 |
+
"skills": {
|
| 3280 |
+
"Object Recognition and Classification": {
|
| 3281 |
+
"count": 303,
|
| 3282 |
+
"num_samples": 4755,
|
| 3283 |
+
"tasks": [],
|
| 3284 |
+
"average_score": 0.3264829094772722
|
| 3285 |
+
},
|
| 3286 |
+
"Text Recognition (OCR)": {
|
| 3287 |
+
"count": 137,
|
| 3288 |
+
"num_samples": 2239,
|
| 3289 |
+
"tasks": [],
|
| 3290 |
+
"average_score": 0.35712138797286674
|
| 3291 |
+
},
|
| 3292 |
+
"Language Understanding and Generation": {
|
| 3293 |
+
"count": 154,
|
| 3294 |
+
"num_samples": 2509,
|
| 3295 |
+
"tasks": [],
|
| 3296 |
+
"average_score": 0.4004806395853317
|
| 3297 |
+
},
|
| 3298 |
+
"Scene and Event Understanding": {
|
| 3299 |
+
"count": 154,
|
| 3300 |
+
"num_samples": 2467,
|
| 3301 |
+
"tasks": [],
|
| 3302 |
+
"average_score": 0.3783082688258977
|
| 3303 |
+
},
|
| 3304 |
+
"Mathematical and Logical Reasoning": {
|
| 3305 |
+
"count": 109,
|
| 3306 |
+
"num_samples": 1910,
|
| 3307 |
+
"tasks": [],
|
| 3308 |
+
"average_score": 0.27628131703993153
|
| 3309 |
+
},
|
| 3310 |
+
"Commonsense and Social Reasoning": {
|
| 3311 |
+
"count": 51,
|
| 3312 |
+
"num_samples": 855,
|
| 3313 |
+
"tasks": [],
|
| 3314 |
+
"average_score": 0.4942870225393938
|
| 3315 |
+
},
|
| 3316 |
+
"Ethical and Safety Reasoning": {
|
| 3317 |
+
"count": 15,
|
| 3318 |
+
"num_samples": 245,
|
| 3319 |
+
"tasks": [],
|
| 3320 |
+
"average_score": 0.5811228070175439
|
| 3321 |
+
},
|
| 3322 |
+
"Domain-Specific Knowledge and Skills": {
|
| 3323 |
+
"count": 77,
|
| 3324 |
+
"num_samples": 1386,
|
| 3325 |
+
"tasks": [],
|
| 3326 |
+
"average_score": 0.3279996334048362
|
| 3327 |
+
},
|
| 3328 |
+
"Spatial and Temporal Reasoning": {
|
| 3329 |
+
"count": 152,
|
| 3330 |
+
"num_samples": 2437,
|
| 3331 |
+
"tasks": [],
|
| 3332 |
+
"average_score": 0.2481896092177717
|
| 3333 |
+
},
|
| 3334 |
+
"Planning and Decision Making": {
|
| 3335 |
+
"count": 37,
|
| 3336 |
+
"num_samples": 577,
|
| 3337 |
+
"tasks": [],
|
| 3338 |
+
"average_score": 0.11945216302285933
|
| 3339 |
+
}
|
| 3340 |
+
},
|
| 3341 |
+
"input_format": {
|
| 3342 |
+
"User Interface Screenshots": {
|
| 3343 |
+
"count": 93,
|
| 3344 |
+
"num_samples": 1517,
|
| 3345 |
+
"tasks": [],
|
| 3346 |
+
"average_score": 0.2830308005758272
|
| 3347 |
+
},
|
| 3348 |
+
"Text-Based Images and Documents": {
|
| 3349 |
+
"count": 82,
|
| 3350 |
+
"num_samples": 1294,
|
| 3351 |
+
"tasks": [],
|
| 3352 |
+
"average_score": 0.27833423130489043
|
| 3353 |
+
},
|
| 3354 |
+
"Diagrams and Data Visualizations": {
|
| 3355 |
+
"count": 101,
|
| 3356 |
+
"num_samples": 1718,
|
| 3357 |
+
"tasks": [],
|
| 3358 |
+
"average_score": 0.32371820359400666
|
| 3359 |
+
},
|
| 3360 |
+
"Videos": {
|
| 3361 |
+
"count": 43,
|
| 3362 |
+
"num_samples": 698,
|
| 3363 |
+
"tasks": [],
|
| 3364 |
+
"average_score": 0.42875359425696014
|
| 3365 |
+
},
|
| 3366 |
+
"Artistic and Creative Content": {
|
| 3367 |
+
"count": 32,
|
| 3368 |
+
"num_samples": 541,
|
| 3369 |
+
"tasks": [],
|
| 3370 |
+
"average_score": 0.3612041984219992
|
| 3371 |
+
},
|
| 3372 |
+
"Photographs": {
|
| 3373 |
+
"count": 143,
|
| 3374 |
+
"num_samples": 2248,
|
| 3375 |
+
"tasks": [],
|
| 3376 |
+
"average_score": 0.37290568595471846
|
| 3377 |
+
},
|
| 3378 |
+
"3D Models and Aerial Imagery": {
|
| 3379 |
+
"count": 11,
|
| 3380 |
+
"num_samples": 169,
|
| 3381 |
+
"tasks": [],
|
| 3382 |
+
"average_score": 0.19554976321164697
|
| 3383 |
+
}
|
| 3384 |
+
},
|
| 3385 |
+
"output_format": {
|
| 3386 |
+
"contextual_formatted_text": {
|
| 3387 |
+
"count": 98,
|
| 3388 |
+
"num_samples": 1514,
|
| 3389 |
+
"tasks": [],
|
| 3390 |
+
"average_score": 0.3092653492193887
|
| 3391 |
+
},
|
| 3392 |
+
"structured_output": {
|
| 3393 |
+
"count": 110,
|
| 3394 |
+
"num_samples": 1714,
|
| 3395 |
+
"tasks": [],
|
| 3396 |
+
"average_score": 0.3043751656077328
|
| 3397 |
+
},
|
| 3398 |
+
"exact_text": {
|
| 3399 |
+
"count": 83,
|
| 3400 |
+
"num_samples": 1278,
|
| 3401 |
+
"tasks": [],
|
| 3402 |
+
"average_score": 0.2930015244066511
|
| 3403 |
+
},
|
| 3404 |
+
"numerical_data": {
|
| 3405 |
+
"count": 49,
|
| 3406 |
+
"num_samples": 862,
|
| 3407 |
+
"tasks": [],
|
| 3408 |
+
"average_score": 0.3092167834876797
|
| 3409 |
+
},
|
| 3410 |
+
"open_ended_output": {
|
| 3411 |
+
"count": 80,
|
| 3412 |
+
"num_samples": 1454,
|
| 3413 |
+
"tasks": [],
|
| 3414 |
+
"average_score": 0.4523860109667709
|
| 3415 |
+
},
|
| 3416 |
+
"multiple_choice": {
|
| 3417 |
+
"count": 85,
|
| 3418 |
+
"num_samples": 1363,
|
| 3419 |
+
"tasks": [],
|
| 3420 |
+
"average_score": 0.3277812604542708
|
| 3421 |
+
}
|
| 3422 |
+
},
|
| 3423 |
+
"input_num": {
|
| 3424 |
+
"6-8 images": {
|
| 3425 |
+
"count": 21,
|
| 3426 |
+
"num_samples": 314,
|
| 3427 |
+
"tasks": [],
|
| 3428 |
+
"average_score": 0.21139455782312927
|
| 3429 |
+
},
|
| 3430 |
+
"9-image or more": {
|
| 3431 |
+
"count": 41,
|
| 3432 |
+
"num_samples": 623,
|
| 3433 |
+
"tasks": [],
|
| 3434 |
+
"average_score": 0.2711617723374526
|
| 3435 |
+
},
|
| 3436 |
+
"1-image": {
|
| 3437 |
+
"count": 315,
|
| 3438 |
+
"num_samples": 5228,
|
| 3439 |
+
"tasks": [],
|
| 3440 |
+
"average_score": 0.3576735443060994
|
| 3441 |
+
},
|
| 3442 |
+
"video": {
|
| 3443 |
+
"count": 43,
|
| 3444 |
+
"num_samples": 698,
|
| 3445 |
+
"tasks": [],
|
| 3446 |
+
"average_score": 0.42875359425696014
|
| 3447 |
+
},
|
| 3448 |
+
"4-5 images": {
|
| 3449 |
+
"count": 34,
|
| 3450 |
+
"num_samples": 520,
|
| 3451 |
+
"tasks": [],
|
| 3452 |
+
"average_score": 0.19839956701033565
|
| 3453 |
+
},
|
| 3454 |
+
"2-3 images": {
|
| 3455 |
+
"count": 51,
|
| 3456 |
+
"num_samples": 802,
|
| 3457 |
+
"tasks": [],
|
| 3458 |
+
"average_score": 0.27267126872569447
|
| 3459 |
+
}
|
| 3460 |
+
},
|
| 3461 |
+
"app": {
|
| 3462 |
+
"Information_Extraction": {
|
| 3463 |
+
"count": 72,
|
| 3464 |
+
"num_samples": 1124,
|
| 3465 |
+
"tasks": [],
|
| 3466 |
+
"average_score": 0.38321397541649777
|
| 3467 |
+
},
|
| 3468 |
+
"Planning": {
|
| 3469 |
+
"count": 78,
|
| 3470 |
+
"num_samples": 1239,
|
| 3471 |
+
"tasks": [],
|
| 3472 |
+
"average_score": 0.14301905320436192
|
| 3473 |
+
},
|
| 3474 |
+
"Coding": {
|
| 3475 |
+
"count": 31,
|
| 3476 |
+
"num_samples": 474,
|
| 3477 |
+
"tasks": [],
|
| 3478 |
+
"average_score": 0.2849545194421855
|
| 3479 |
+
},
|
| 3480 |
+
"Perception": {
|
| 3481 |
+
"count": 145,
|
| 3482 |
+
"num_samples": 2313,
|
| 3483 |
+
"tasks": [],
|
| 3484 |
+
"average_score": 0.3779947327886569
|
| 3485 |
+
},
|
| 3486 |
+
"Metrics": {
|
| 3487 |
+
"count": 20,
|
| 3488 |
+
"num_samples": 309,
|
| 3489 |
+
"tasks": [],
|
| 3490 |
+
"average_score": 0.39678729061309725
|
| 3491 |
+
},
|
| 3492 |
+
"Science": {
|
| 3493 |
+
"count": 29,
|
| 3494 |
+
"num_samples": 574,
|
| 3495 |
+
"tasks": [],
|
| 3496 |
+
"average_score": 0.29682445889316517
|
| 3497 |
+
},
|
| 3498 |
+
"Knowledge": {
|
| 3499 |
+
"count": 97,
|
| 3500 |
+
"num_samples": 1605,
|
| 3501 |
+
"tasks": [],
|
| 3502 |
+
"average_score": 0.4096377585306089
|
| 3503 |
+
},
|
| 3504 |
+
"Mathematics": {
|
| 3505 |
+
"count": 33,
|
| 3506 |
+
"num_samples": 547,
|
| 3507 |
+
"tasks": [],
|
| 3508 |
+
"average_score": 0.26194160419181234
|
| 3509 |
+
}
|
| 3510 |
+
}
|
| 3511 |
+
},
|
| 3512 |
"Claude_3.5": {
|
| 3513 |
"skills": {
|
| 3514 |
"Object Recognition and Classification": {
|
|
|
|
| 3521 |
"count": 137,
|
| 3522 |
"num_samples": 2239,
|
| 3523 |
"tasks": [],
|
| 3524 |
+
"average_score": 0.6046357055234819
|
| 3525 |
},
|
| 3526 |
"Language Understanding and Generation": {
|
| 3527 |
"count": 154,
|
| 3528 |
"num_samples": 2509,
|
| 3529 |
"tasks": [],
|
| 3530 |
+
"average_score": 0.5712627152062051
|
| 3531 |
},
|
| 3532 |
"Scene and Event Understanding": {
|
| 3533 |
"count": 154,
|
|
|
|
| 3607 |
"count": 143,
|
| 3608 |
"num_samples": 2248,
|
| 3609 |
"tasks": [],
|
| 3610 |
+
"average_score": 0.5096772701625744
|
| 3611 |
},
|
| 3612 |
"3D Models and Aerial Imagery": {
|
| 3613 |
"count": 11,
|
|
|
|
| 3621 |
"count": 98,
|
| 3622 |
"num_samples": 1514,
|
| 3623 |
"tasks": [],
|
| 3624 |
+
"average_score": 0.5066797418318023
|
| 3625 |
},
|
| 3626 |
"structured_output": {
|
| 3627 |
"count": 110,
|
|
|
|
| 3671 |
"count": 315,
|
| 3672 |
"num_samples": 5228,
|
| 3673 |
"tasks": [],
|
| 3674 |
+
"average_score": 0.5373019912310933
|
| 3675 |
},
|
| 3676 |
"video": {
|
| 3677 |
"count": 43,
|
|
|
|
| 3715 |
"count": 145,
|
| 3716 |
"num_samples": 2313,
|
| 3717 |
"tasks": [],
|
| 3718 |
+
"average_score": 0.532329797132399
|
| 3719 |
},
|
| 3720 |
"Metrics": {
|
| 3721 |
"count": 20,
|
static/eval_results/all_summary.json
CHANGED
|
@@ -5,16 +5,16 @@
|
|
| 5 |
"num_eval_samples": 6539,
|
| 6 |
"num_not_eval_samples": 0,
|
| 7 |
"num_total_samples": 6961,
|
| 8 |
-
"macro_mean_score": 0.
|
| 9 |
-
"micro_mean_score": 0.
|
| 10 |
},
|
| 11 |
"core_cot": {
|
| 12 |
"num_eval_tasks": 440,
|
| 13 |
"num_eval_samples": 6539,
|
| 14 |
"num_not_eval_samples": 0,
|
| 15 |
"num_total_samples": 6961,
|
| 16 |
-
"macro_mean_score": 0.
|
| 17 |
-
"micro_mean_score": 0.
|
| 18 |
},
|
| 19 |
"open": {
|
| 20 |
"num_eval_tasks": 65,
|
|
@@ -23,7 +23,7 @@
|
|
| 23 |
"macro_mean_score": 0.6478225794744895,
|
| 24 |
"micro_mean_score": 0.665391229578676
|
| 25 |
},
|
| 26 |
-
"overall_score": 0.
|
| 27 |
},
|
| 28 |
"Gemini_1.5_pro_002": {
|
| 29 |
"core_noncot": {
|
|
@@ -39,8 +39,8 @@
|
|
| 39 |
"num_eval_samples": 6539,
|
| 40 |
"num_not_eval_samples": 0,
|
| 41 |
"num_total_samples": 6961,
|
| 42 |
-
"macro_mean_score": 0.
|
| 43 |
-
"micro_mean_score": 0.
|
| 44 |
},
|
| 45 |
"open": {
|
| 46 |
"num_eval_tasks": 65,
|
|
@@ -49,7 +49,7 @@
|
|
| 49 |
"macro_mean_score": 0.5858190649927173,
|
| 50 |
"micro_mean_score": 0.6104901117798793
|
| 51 |
},
|
| 52 |
-
"overall_score": 0.
|
| 53 |
},
|
| 54 |
"Gemini_1.5_flash_002": {
|
| 55 |
"core_noncot": {
|
|
@@ -91,8 +91,8 @@
|
|
| 91 |
"num_eval_samples": 6539,
|
| 92 |
"num_not_eval_samples": 0,
|
| 93 |
"num_total_samples": 6961,
|
| 94 |
-
"macro_mean_score": 0.
|
| 95 |
-
"micro_mean_score": 0.
|
| 96 |
},
|
| 97 |
"open": {
|
| 98 |
"num_eval_tasks": 65,
|
|
@@ -101,7 +101,33 @@
|
|
| 101 |
"macro_mean_score": 0.6373907158949892,
|
| 102 |
"micro_mean_score": 0.6569647463456579
|
| 103 |
},
|
| 104 |
-
"overall_score": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
},
|
| 106 |
"GPT_4o_mini": {
|
| 107 |
"core_noncot": {
|
|
@@ -414,5 +440,57 @@
|
|
| 414 |
"micro_mean_score": 0.35649183147033553
|
| 415 |
},
|
| 416 |
"overall_score": 0.138206224513898
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
}
|
| 418 |
}
|
|
|
|
| 5 |
"num_eval_samples": 6539,
|
| 6 |
"num_not_eval_samples": 0,
|
| 7 |
"num_total_samples": 6961,
|
| 8 |
+
"macro_mean_score": 0.5203470034386184,
|
| 9 |
+
"micro_mean_score": 0.514305381949725
|
| 10 |
},
|
| 11 |
"core_cot": {
|
| 12 |
"num_eval_tasks": 440,
|
| 13 |
"num_eval_samples": 6539,
|
| 14 |
"num_not_eval_samples": 0,
|
| 15 |
"num_total_samples": 6961,
|
| 16 |
+
"macro_mean_score": 0.5265059698578094,
|
| 17 |
+
"micro_mean_score": 0.5236365938368621
|
| 18 |
},
|
| 19 |
"open": {
|
| 20 |
"num_eval_tasks": 65,
|
|
|
|
| 23 |
"macro_mean_score": 0.6478225794744895,
|
| 24 |
"micro_mean_score": 0.665391229578676
|
| 25 |
},
|
| 26 |
+
"overall_score": 0.542120979016392
|
| 27 |
},
|
| 28 |
"Gemini_1.5_pro_002": {
|
| 29 |
"core_noncot": {
|
|
|
|
| 39 |
"num_eval_samples": 6539,
|
| 40 |
"num_not_eval_samples": 0,
|
| 41 |
"num_total_samples": 6961,
|
| 42 |
+
"macro_mean_score": 0.48154520292305814,
|
| 43 |
+
"micro_mean_score": 0.47581906202211677
|
| 44 |
},
|
| 45 |
"open": {
|
| 46 |
"num_eval_tasks": 65,
|
|
|
|
| 49 |
"macro_mean_score": 0.5858190649927173,
|
| 50 |
"micro_mean_score": 0.6104901117798793
|
| 51 |
},
|
| 52 |
+
"overall_score": 0.49496659111024205
|
| 53 |
},
|
| 54 |
"Gemini_1.5_flash_002": {
|
| 55 |
"core_noncot": {
|
|
|
|
| 91 |
"num_eval_samples": 6539,
|
| 92 |
"num_not_eval_samples": 0,
|
| 93 |
"num_total_samples": 6961,
|
| 94 |
+
"macro_mean_score": 0.5029618079901714,
|
| 95 |
+
"micro_mean_score": 0.4991559743144323
|
| 96 |
},
|
| 97 |
"open": {
|
| 98 |
"num_eval_tasks": 65,
|
|
|
|
| 101 |
"macro_mean_score": 0.6373907158949892,
|
| 102 |
"micro_mean_score": 0.6569647463456579
|
| 103 |
},
|
| 104 |
+
"overall_score": 0.5202645387105935
|
| 105 |
+
},
|
| 106 |
+
"Claude_3.5_new": {
|
| 107 |
+
"core_noncot": {
|
| 108 |
+
"num_eval_tasks": 440,
|
| 109 |
+
"num_eval_samples": 6539,
|
| 110 |
+
"num_not_eval_samples": 0,
|
| 111 |
+
"num_total_samples": 6961,
|
| 112 |
+
"macro_mean_score": 0.4919657684484185,
|
| 113 |
+
"micro_mean_score": 0.4874520567007144
|
| 114 |
+
},
|
| 115 |
+
"core_cot": {
|
| 116 |
+
"num_eval_tasks": 440,
|
| 117 |
+
"num_eval_samples": 6539,
|
| 118 |
+
"num_not_eval_samples": 0,
|
| 119 |
+
"num_total_samples": 6961,
|
| 120 |
+
"macro_mean_score": 0.525918992480593,
|
| 121 |
+
"micro_mean_score": 0.5230784020211157
|
| 122 |
+
},
|
| 123 |
+
"open": {
|
| 124 |
+
"num_eval_tasks": 65,
|
| 125 |
+
"num_eval_samples": 1163,
|
| 126 |
+
"num_total_samples": 1224,
|
| 127 |
+
"macro_mean_score": 0.6563419761104125,
|
| 128 |
+
"micro_mean_score": 0.6724419604471196
|
| 129 |
+
},
|
| 130 |
+
"overall_score": 0.5427061091854214
|
| 131 |
},
|
| 132 |
"GPT_4o_mini": {
|
| 133 |
"core_noncot": {
|
|
|
|
| 440 |
"micro_mean_score": 0.35649183147033553
|
| 441 |
},
|
| 442 |
"overall_score": 0.138206224513898
|
| 443 |
+
},
|
| 444 |
+
"Aria": {
|
| 445 |
+
"core_noncot": {
|
| 446 |
+
"num_eval_tasks": 440,
|
| 447 |
+
"num_eval_samples": 6539,
|
| 448 |
+
"num_not_eval_samples": 0,
|
| 449 |
+
"num_total_samples": 6961,
|
| 450 |
+
"macro_mean_score": 0.30485930718699694,
|
| 451 |
+
"micro_mean_score": 0.3016713629035311
|
| 452 |
+
},
|
| 453 |
+
"core_cot": {
|
| 454 |
+
"num_eval_tasks": 440,
|
| 455 |
+
"num_eval_samples": 6539,
|
| 456 |
+
"num_not_eval_samples": 0,
|
| 457 |
+
"num_total_samples": 6961,
|
| 458 |
+
"macro_mean_score": 0.289073788209904,
|
| 459 |
+
"micro_mean_score": 0.2859007507765791
|
| 460 |
+
},
|
| 461 |
+
"open": {
|
| 462 |
+
"num_eval_tasks": 65,
|
| 463 |
+
"num_eval_samples": 1163,
|
| 464 |
+
"num_total_samples": 1224,
|
| 465 |
+
"macro_mean_score": 0.5103725263180767,
|
| 466 |
+
"micro_mean_score": 0.5349957007738607
|
| 467 |
+
},
|
| 468 |
+
"overall_score": 0.3313115037088191
|
| 469 |
+
},
|
| 470 |
+
"NVLM": {
|
| 471 |
+
"core_noncot": {
|
| 472 |
+
"num_eval_tasks": 440,
|
| 473 |
+
"num_eval_samples": 6539,
|
| 474 |
+
"num_not_eval_samples": 0,
|
| 475 |
+
"num_total_samples": 6961,
|
| 476 |
+
"macro_mean_score": 0.2420528895703979,
|
| 477 |
+
"micro_mean_score": 0.23838419989257642
|
| 478 |
+
},
|
| 479 |
+
"core_cot": {
|
| 480 |
+
"num_eval_tasks": 440,
|
| 481 |
+
"num_eval_samples": 6539,
|
| 482 |
+
"num_not_eval_samples": 0,
|
| 483 |
+
"num_total_samples": 6961,
|
| 484 |
+
"macro_mean_score": 0.21589726765847422,
|
| 485 |
+
"micro_mean_score": 0.21406043849932396
|
| 486 |
+
},
|
| 487 |
+
"open": {
|
| 488 |
+
"num_eval_tasks": 65,
|
| 489 |
+
"num_eval_samples": 1163,
|
| 490 |
+
"num_total_samples": 1224,
|
| 491 |
+
"macro_mean_score": 0.3478114310231307,
|
| 492 |
+
"micro_mean_score": 0.3947549441100602
|
| 493 |
+
},
|
| 494 |
+
"overall_score": 0.25566537510391796
|
| 495 |
}
|
| 496 |
}
|
utils.py
CHANGED
|
@@ -17,15 +17,18 @@ with open("./static/eval_results/all_summary.json", "r") as f:
|
|
| 17 |
|
| 18 |
# Define model name mapping
|
| 19 |
MODEL_NAME_MAP = {
|
|
|
|
| 20 |
"GPT_4o": "GPT-4o (0513)",
|
| 21 |
-
"Claude_3.5": "Claude-3.5-Sonnet",
|
| 22 |
"Gemini_1.5_pro_002": "Gemini-1.5-Pro-002",
|
| 23 |
"InternVL2_76B": "InternVL2-Llama3-76B",
|
| 24 |
"Qwen2_VL_72B": "Qwen2-VL-72B",
|
| 25 |
"llava_onevision_72B": "Llava-OneVision-72B",
|
|
|
|
| 26 |
"GPT_4o_mini": "GPT-4o mini",
|
| 27 |
"Gemini_1.5_flash_002": "Gemini-1.5-Flash-002",
|
| 28 |
"Pixtral_12B": "Pixtral 12B",
|
|
|
|
| 29 |
"Qwen2_VL_7B": "Qwen2-VL-7B",
|
| 30 |
"InternVL2_8B": "InternVL2-8B",
|
| 31 |
"llava_onevision_7B": "Llava-OneVision-7B",
|
|
@@ -92,10 +95,6 @@ KEYWORD_NAME_MAP = {
|
|
| 92 |
SUPER_GROUPS = {DIMENSION_NAME_MAP[dim]: [KEYWORD_NAME_MAP.get(k, k) for k in MODEL_DATA[next(iter(MODEL_DATA))][dim].keys()]
|
| 93 |
for dim in MODEL_DATA[next(iter(MODEL_DATA))]}
|
| 94 |
|
| 95 |
-
SUBMISSION_NAME = "test_leaderboard_submission"
|
| 96 |
-
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/cccjc/", SUBMISSION_NAME)
|
| 97 |
-
CSV_DIR = "./test_leaderboard_submission/results.csv"
|
| 98 |
-
|
| 99 |
def get_original_dimension(mapped_dimension):
|
| 100 |
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
|
| 101 |
|
|
@@ -105,12 +104,12 @@ def get_original_keyword(mapped_keyword):
|
|
| 105 |
# Define model groups
|
| 106 |
MODEL_GROUPS = {
|
| 107 |
"All": list(MODEL_DATA.keys()),
|
| 108 |
-
"Flagship Models": ['GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B'],
|
| 109 |
-
"Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
|
| 110 |
-
"Proprietary Flagship models": ['GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'],
|
| 111 |
-
"
|
| 112 |
-
"Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B'],
|
| 113 |
-
"
|
| 114 |
}
|
| 115 |
|
| 116 |
def get_display_model_name(model_name):
|
|
|
|
| 17 |
|
| 18 |
# Define model name mapping
|
| 19 |
MODEL_NAME_MAP = {
|
| 20 |
+
"Claude_3.5_new": "Claude-3.5-Sonnet (1022)",
|
| 21 |
"GPT_4o": "GPT-4o (0513)",
|
| 22 |
+
"Claude_3.5": "Claude-3.5-Sonnet (0622)",
|
| 23 |
"Gemini_1.5_pro_002": "Gemini-1.5-Pro-002",
|
| 24 |
"InternVL2_76B": "InternVL2-Llama3-76B",
|
| 25 |
"Qwen2_VL_72B": "Qwen2-VL-72B",
|
| 26 |
"llava_onevision_72B": "Llava-OneVision-72B",
|
| 27 |
+
"NVLM": "NVLM-72B",
|
| 28 |
"GPT_4o_mini": "GPT-4o mini",
|
| 29 |
"Gemini_1.5_flash_002": "Gemini-1.5-Flash-002",
|
| 30 |
"Pixtral_12B": "Pixtral 12B",
|
| 31 |
+
"Aria": "Aria-MoE-25B",
|
| 32 |
"Qwen2_VL_7B": "Qwen2-VL-7B",
|
| 33 |
"InternVL2_8B": "InternVL2-8B",
|
| 34 |
"llava_onevision_7B": "Llava-OneVision-7B",
|
|
|
|
| 95 |
SUPER_GROUPS = {DIMENSION_NAME_MAP[dim]: [KEYWORD_NAME_MAP.get(k, k) for k in MODEL_DATA[next(iter(MODEL_DATA))][dim].keys()]
|
| 96 |
for dim in MODEL_DATA[next(iter(MODEL_DATA))]}
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def get_original_dimension(mapped_dimension):
|
| 99 |
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
|
| 100 |
|
|
|
|
| 104 |
# Define model groups
|
| 105 |
MODEL_GROUPS = {
|
| 106 |
"All": list(MODEL_DATA.keys()),
|
| 107 |
+
"Flagship Models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002', 'Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM-72B'],
|
| 108 |
+
"Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini', 'Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
|
| 109 |
+
"Proprietary Flagship models": ['Claude_3.5_new', 'GPT_4o', 'Claude_3.5', 'Gemini_1.5_pro_002'],
|
| 110 |
+
"Proprietary Efficiency Models": ['Gemini_1.5_flash_002', 'GPT_4o_mini'],
|
| 111 |
+
"Open-source Flagship Models": ['Qwen2_VL_72B', 'InternVL2_76B', 'llava_onevision_72B', 'NVLM'],
|
| 112 |
+
"Open-source Efficiency Models": ['Qwen2_VL_7B', 'Pixtral_12B', 'Aria', 'InternVL2_8B', 'Phi-3.5-vision', 'MiniCPM_v2.6', 'llava_onevision_7B', 'Llama_3_2_11B', 'Idefics3'],
|
| 113 |
}
|
| 114 |
|
| 115 |
def get_display_model_name(model_name):
|