Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,157 +1,72 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
import peft
|
| 5 |
-
|
| 6 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 7 |
-
from diffusers import DiffusionPipeline
|
| 8 |
import torch
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
pipe
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
""
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
container=False,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 84 |
-
|
| 85 |
-
result = gr.Image(label="Result", show_label=False)
|
| 86 |
-
|
| 87 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 88 |
-
negative_prompt = gr.Text(
|
| 89 |
-
label="Negative prompt",
|
| 90 |
-
max_lines=1,
|
| 91 |
-
placeholder="Enter a negative prompt",
|
| 92 |
-
visible=False,
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
seed = gr.Slider(
|
| 96 |
-
label="Seed",
|
| 97 |
-
minimum=0,
|
| 98 |
-
maximum=MAX_SEED,
|
| 99 |
-
step=1,
|
| 100 |
-
value=0,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 104 |
-
|
| 105 |
-
with gr.Row():
|
| 106 |
-
width = gr.Slider(
|
| 107 |
-
label="Width",
|
| 108 |
-
minimum=256,
|
| 109 |
-
maximum=MAX_IMAGE_SIZE,
|
| 110 |
-
step=32,
|
| 111 |
-
value=1024, # Replace with defaults that work for your model
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
height = gr.Slider(
|
| 115 |
-
label="Height",
|
| 116 |
-
minimum=256,
|
| 117 |
-
maximum=MAX_IMAGE_SIZE,
|
| 118 |
-
step=32,
|
| 119 |
-
value=1024, # Replace with defaults that work for your model
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
with gr.Row():
|
| 123 |
-
guidance_scale = gr.Slider(
|
| 124 |
-
label="Guidance scale",
|
| 125 |
-
minimum=0.0,
|
| 126 |
-
maximum=10.0,
|
| 127 |
-
step=0.1,
|
| 128 |
-
value=0.0, # Replace with defaults that work for your model
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
num_inference_steps = gr.Slider(
|
| 132 |
-
label="Number of inference steps",
|
| 133 |
-
minimum=1,
|
| 134 |
-
maximum=50,
|
| 135 |
-
step=1,
|
| 136 |
-
value=2, # Replace with defaults that work for your model
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 140 |
-
gr.on(
|
| 141 |
-
triggers=[run_button.click, prompt.submit],
|
| 142 |
-
fn=infer,
|
| 143 |
-
inputs=[
|
| 144 |
-
prompt,
|
| 145 |
-
negative_prompt,
|
| 146 |
-
seed,
|
| 147 |
-
randomize_seed,
|
| 148 |
-
width,
|
| 149 |
-
height,
|
| 150 |
-
guidance_scale,
|
| 151 |
-
num_inference_steps,
|
| 152 |
-
],
|
| 153 |
-
outputs=[result, seed],
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
if __name__ == "__main__":
|
| 157 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from diffusers import StableDiffusionXLPipeline
|
| 4 |
+
|
| 5 |
+
# --- Settings and paths ---
|
| 6 |
+
# Base SDXL model – change this to the base model you want to use.
|
| 7 |
+
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 8 |
+
# Path to your LoRA weights (assumed to be in a format that Diffusers can use)
|
| 9 |
+
LORA_PATH = "fofr/sdxl-emoji"
|
| 10 |
+
|
| 11 |
+
# --- Load the base pipeline ---
|
| 12 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 13 |
+
BASE_MODEL,
|
| 14 |
+
torch_dtype=torch.float16,
|
| 15 |
+
variant="fp16", # Use FP16 variant if available for speed
|
| 16 |
+
safety_checker=None, # (Optional) disable safety checker to speed things up
|
| 17 |
+
)
|
| 18 |
+
pipe.to("cuda")
|
| 19 |
+
|
| 20 |
+
# --- Enable fast attention if available ---
|
| 21 |
+
try:
|
| 22 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print("xFormers not enabled:", e)
|
| 25 |
+
|
| 26 |
+
# --- Apply the LoRA weights ---
|
| 27 |
+
# Diffusers v0.18+ supports applying LoRA weights to parts of the pipeline.
|
| 28 |
+
# Here we assume the LoRA affects the UNet (and, if needed, the text encoder).
|
| 29 |
+
try:
|
| 30 |
+
# For the UNet:
|
| 31 |
+
pipe.unet.load_attn_procs(LORA_PATH)
|
| 32 |
+
# If you also have LoRA weights for the text encoder, you might do:
|
| 33 |
+
# pipe.text_encoder.load_attn_procs(LORA_PATH)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print("Error applying LoRA weights:", e)
|
| 36 |
+
|
| 37 |
+
# --- Define the image generation function ---
|
| 38 |
+
def generate_image(prompt: str, steps: int = 30, guidance: float = 7.5):
|
| 39 |
+
"""
|
| 40 |
+
Generate an image from a text prompt.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
prompt (str): The text prompt.
|
| 44 |
+
steps (int): Number of inference steps.
|
| 45 |
+
guidance (float): Guidance scale (higher values encourage the image to follow the prompt).
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
A generated PIL image.
|
| 49 |
+
"""
|
| 50 |
+
# Use autocast for faster FP16 inference on CUDA
|
| 51 |
+
with torch.cuda.amp.autocast():
|
| 52 |
+
result = pipe(prompt, num_inference_steps=steps, guidance_scale=guidance)
|
| 53 |
+
return result.images[0]
|
| 54 |
+
|
| 55 |
+
# --- Build the Gradio interface ---
|
| 56 |
+
demo = gr.Interface(
|
| 57 |
+
fn=generate_image,
|
| 58 |
+
inputs=[
|
| 59 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
|
| 60 |
+
gr.Slider(minimum=10, maximum=100, step=5, value=30, label="Inference Steps"),
|
| 61 |
+
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale")
|
| 62 |
+
],
|
| 63 |
+
outputs=gr.Image(type="pil", label="Generated Image"),
|
| 64 |
+
title="Super Fast SDXL-Emoji Generator",
|
| 65 |
+
description=(
|
| 66 |
+
"This demo uses a Stable Diffusion XL model enhanced with a custom LoRA "
|
| 67 |
+
"to generate images quickly. Adjust the prompt and settings below, then hit 'Submit'!"
|
| 68 |
+
),
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# --- Launch the demo ---
|
| 72 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|