Spaces:
Runtime error
Runtime error
Update policy.py
Browse files
policy.py
CHANGED
|
@@ -1,34 +1,65 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
| 3 |
|
| 4 |
MODEL_NAME = "microsoft/phi-2"
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
-
def load_policy_model():
|
| 8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
-
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
p.requires_grad
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import copy
|
| 4 |
+
import os
|
| 5 |
|
| 6 |
MODEL_NAME = "microsoft/phi-2"
|
| 7 |
+
CHECKPOINT_DIR = "checkpoints"
|
| 8 |
|
| 9 |
|
| 10 |
+
def load_policy_model(lr: float = 1e-6):
|
|
|
|
|
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
+
|
| 13 |
+
# Trainable policy model
|
| 14 |
+
policy_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 15 |
+
policy_model.to("cuda")
|
| 16 |
+
policy_model.train()
|
| 17 |
+
|
| 18 |
+
# Only train lm_head
|
| 19 |
+
for name, param in policy_model.named_parameters():
|
| 20 |
+
param.requires_grad = ("lm_head" in name)
|
| 21 |
+
|
| 22 |
+
optimizer = torch.optim.AdamW(
|
| 23 |
+
filter(lambda p: p.requires_grad, policy_model.parameters()),
|
| 24 |
+
lr=lr,
|
| 25 |
+
)
|
| 26 |
+
policy_model.optimizer = optimizer
|
| 27 |
+
|
| 28 |
+
# Frozen generation model
|
| 29 |
+
gen_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 30 |
+
gen_model.to("cuda")
|
| 31 |
+
gen_model.eval()
|
| 32 |
+
for p in gen_model.parameters():
|
| 33 |
+
p.requires_grad_(False)
|
| 34 |
+
|
| 35 |
+
# Frozen reference model (can just deepcopy gen_model)
|
| 36 |
+
ref_model = copy.deepcopy(gen_model)
|
| 37 |
+
ref_model.eval()
|
| 38 |
+
for p in ref_model.parameters():
|
| 39 |
+
p.requires_grad_(False)
|
| 40 |
+
|
| 41 |
+
return policy_model, gen_model, ref_model, tokenizer
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def save_checkpoint(policy_model, step: int, ckpt_dir: str = CHECKPOINT_DIR):
|
| 45 |
+
os.makedirs(ckpt_dir, exist_ok=True)
|
| 46 |
+
path = os.path.join(ckpt_dir, f"step_{step}.pt")
|
| 47 |
+
torch.save(
|
| 48 |
+
{
|
| 49 |
+
"step": step,
|
| 50 |
+
"model_state_dict": policy_model.state_dict(),
|
| 51 |
+
"optimizer_state_dict": policy_model.optimizer.state_dict()
|
| 52 |
+
if hasattr(policy_model, "optimizer")
|
| 53 |
+
else None,
|
| 54 |
+
},
|
| 55 |
+
path,
|
| 56 |
+
)
|
| 57 |
+
print(f"[CKPT] Saved checkpoint at {path}")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def load_checkpoint(policy_model, optimizer, ckpt_path: str):
|
| 61 |
+
ckpt = torch.load(ckpt_path, map_location="cuda")
|
| 62 |
+
policy_model.load_state_dict(ckpt["model_state_dict"])
|
| 63 |
+
if optimizer is not None and ckpt.get("optimizer_state_dict") is not None:
|
| 64 |
+
optimizer.load_state_dict(ckpt["optimizer_state_dict"])
|
| 65 |
+
print(f"[CKPT] Loaded checkpoint from {ckpt_path} at step={ckpt.get('step')}")
|