Spaces:
Runtime error
Runtime error
Create grpo_train.py
Browse files- grpo_train.py +45 -0
grpo_train.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
|
| 4 |
+
def grpo_step(model, tokenizer, prompt, reward_fn, beta=0.1):
|
| 5 |
+
device = model.device
|
| 6 |
+
|
| 7 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 8 |
+
|
| 9 |
+
# 1) Reference logprobs (snapshot)
|
| 10 |
+
with torch.no_grad():
|
| 11 |
+
ref_out = model(**inputs)
|
| 12 |
+
ref_logprobs = F.log_softmax(ref_out.logits[:, -1, :], dim=-1)
|
| 13 |
+
|
| 14 |
+
# 2) Sample from current model
|
| 15 |
+
gen_ids = model.generate(
|
| 16 |
+
**inputs,
|
| 17 |
+
max_new_tokens=80,
|
| 18 |
+
do_sample=True,
|
| 19 |
+
temperature=0.7
|
| 20 |
+
)
|
| 21 |
+
output_text = tokenizer.decode(gen_ids[0], skip_special_tokens=True)
|
| 22 |
+
|
| 23 |
+
# 3) Reward
|
| 24 |
+
reward = reward_fn(output_text)
|
| 25 |
+
|
| 26 |
+
# 4) New logprobs
|
| 27 |
+
new_out = model(**inputs)
|
| 28 |
+
new_logprobs = F.log_softmax(new_out.logits[:, -1, :], dim=-1)
|
| 29 |
+
|
| 30 |
+
# 5) KL divergence
|
| 31 |
+
kl = torch.mean(new_logprobs - ref_logprobs)
|
| 32 |
+
|
| 33 |
+
# 6) GRPO objective
|
| 34 |
+
loss = -(new_logprobs * reward).mean() + beta * kl
|
| 35 |
+
|
| 36 |
+
loss.backward()
|
| 37 |
+
model.optimizer.step()
|
| 38 |
+
model.optimizer.zero_grad()
|
| 39 |
+
|
| 40 |
+
return {
|
| 41 |
+
"text": output_text,
|
| 42 |
+
"reward": float(reward),
|
| 43 |
+
"kl": float(kl.item()),
|
| 44 |
+
"loss": float(loss.item())
|
| 45 |
+
}
|