Spaces:
Runtime error
Runtime error
Update policy.py
Browse files
policy.py
CHANGED
|
@@ -13,48 +13,47 @@ def load_policy_model():
|
|
| 13 |
torch_dtype=torch.float16
|
| 14 |
)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
# 1.
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
old_lm_head = model.lm_head
|
| 22 |
-
vocab_size, hidden_size = old_lm_head.weight.shape
|
| 23 |
|
| 24 |
print(">>> UNTIEING LM HEAD...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
new_lm_head = torch.nn.Linear(hidden_size, vocab_size, bias=True)
|
|
|
|
| 26 |
new_lm_head.weight.data = old_lm_head.weight.data.clone()
|
| 27 |
if old_lm_head.bias is not None:
|
| 28 |
new_lm_head.bias.data = old_lm_head.bias.data.clone()
|
| 29 |
|
|
|
|
| 30 |
model.lm_head = new_lm_head.to(model.device)
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
#
|
| 34 |
-
#
|
| 35 |
for name, param in model.named_parameters():
|
| 36 |
param.requires_grad = False
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
for name, param in model.named_parameters():
|
| 42 |
-
if "lm_head"
|
| 43 |
param.requires_grad = True
|
| 44 |
print("TRAINABLE:", name)
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
#
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
total = sum(p.numel() for p in
|
| 51 |
print(">>> FINAL TRAINABLE PARAM COUNT:", total)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
# 5. OPTIMIZER
|
| 55 |
-
# -----------------------------------------
|
| 56 |
-
optimizer = torch.optim.Adam(trainable_params, lr=1e-4)
|
| 57 |
-
model.optimizer = optimizer
|
| 58 |
-
|
| 59 |
-
print(">>> POLICY MODEL READY.")
|
| 60 |
return model, tokenizer
|
|
|
|
| 13 |
torch_dtype=torch.float16
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# -----------------------------------------------------------
|
| 17 |
+
# 1. Identify the REAL lm_head and embedding weights
|
| 18 |
+
# -----------------------------------------------------------
|
| 19 |
+
embed = model.model.embed_tokens
|
| 20 |
+
old_lm_head = model.lm_head # This is actually tied to embed
|
|
|
|
|
|
|
| 21 |
|
| 22 |
print(">>> UNTIEING LM HEAD...")
|
| 23 |
+
|
| 24 |
+
# -----------------------------------------------------------
|
| 25 |
+
# 2. Create a new untied lm_head
|
| 26 |
+
# -----------------------------------------------------------
|
| 27 |
+
vocab_size, hidden_size = old_lm_head.weight.shape
|
| 28 |
new_lm_head = torch.nn.Linear(hidden_size, vocab_size, bias=True)
|
| 29 |
+
|
| 30 |
new_lm_head.weight.data = old_lm_head.weight.data.clone()
|
| 31 |
if old_lm_head.bias is not None:
|
| 32 |
new_lm_head.bias.data = old_lm_head.bias.data.clone()
|
| 33 |
|
| 34 |
+
# Replace tied head with untied one
|
| 35 |
model.lm_head = new_lm_head.to(model.device)
|
| 36 |
|
| 37 |
+
# -----------------------------------------------------------
|
| 38 |
+
# 3. Freeze EVERYTHING
|
| 39 |
+
# -----------------------------------------------------------
|
| 40 |
for name, param in model.named_parameters():
|
| 41 |
param.requires_grad = False
|
| 42 |
|
| 43 |
+
# -----------------------------------------------------------
|
| 44 |
+
# 4. Unfreeze ONLY the new lm_head
|
| 45 |
+
# -----------------------------------------------------------
|
| 46 |
for name, param in model.named_parameters():
|
| 47 |
+
if name.startswith("lm_head"):
|
| 48 |
param.requires_grad = True
|
| 49 |
print("TRAINABLE:", name)
|
| 50 |
|
| 51 |
+
# -----------------------------------------------------------
|
| 52 |
+
# 5. Count trainable params
|
| 53 |
+
# -----------------------------------------------------------
|
| 54 |
+
trainable = [p for p in model.parameters() if p.requires_grad]
|
| 55 |
+
total = sum(p.numel() for p in trainable)
|
| 56 |
print(">>> FINAL TRAINABLE PARAM COUNT:", total)
|
| 57 |
|
| 58 |
+
model.optimizer = torch.optim.Adam(trainable, lr=1e-4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return model, tokenizer
|