Sneha7's picture
Create reward_fn.py
bdbce23 verified
raw
history blame contribute delete
937 Bytes
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load reward model once
rm_name = "OpenAssistant/reward-model-deberta-v3-large-v2"
rm_tokenizer = AutoTokenizer.from_pretrained(rm_name)
rm_model = AutoModelForSequenceClassification.from_pretrained(
rm_name,
torch_dtype=torch.float32
).eval()
# For Spaces: keep reward model on CPU to save VRAM
device = torch.device("cpu")
rm_model.to(device)
def reward_fn(text: str) -> float:
"""
Returns a scalar helpfulness reward from a trained reward model.
Higher = more helpful, clearer, more aligned response.
"""
inputs = rm_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
scores = rm_model(**inputs).logits
# Reward = model's score for "helpful" class
reward = float(scores[0].item())
return reward