Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,60 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 3 |
-
from peft import PeftModel, PeftConfig
|
| 4 |
-
|
| 5 |
-
# Load tokenizer
|
| 6 |
-
tokenizer = AutoTokenizer.from_pretrained(".")
|
| 7 |
-
|
| 8 |
-
# Load base model with quantization
|
| 9 |
-
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 10 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
# Load LoRA adapters
|
| 17 |
-
model = PeftModel.from_pretrained(base_model, ".")
|
| 18 |
-
|
| 19 |
-
# Create Gradio Interface
|
| 20 |
-
def generate_response(prompt):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
gr.Interface(
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 3 |
+
# from peft import PeftModel, PeftConfig
|
| 4 |
+
|
| 5 |
+
# # Load tokenizer
|
| 6 |
+
# tokenizer = AutoTokenizer.from_pretrained(".")
|
| 7 |
+
|
| 8 |
+
# # Load base model with quantization
|
| 9 |
+
# bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 10 |
+
# base_model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
# "unsloth/Meta-Llama-3.1-8B-bnb-4bit", # same base you fine-tuned
|
| 12 |
+
# quantization_config=bnb_config,
|
| 13 |
+
# device_map="auto"
|
| 14 |
+
# )
|
| 15 |
+
|
| 16 |
+
# # Load LoRA adapters
|
| 17 |
+
# model = PeftModel.from_pretrained(base_model, ".")
|
| 18 |
+
|
| 19 |
+
# # Create Gradio Interface
|
| 20 |
+
# def generate_response(prompt):
|
| 21 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 22 |
+
# outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, temperature=0.7)
|
| 23 |
+
# return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 24 |
+
|
| 25 |
+
# gr.Interface(
|
| 26 |
+
# fn=generate_response,
|
| 27 |
+
# inputs=gr.Textbox(label="Enter your instruction"),
|
| 28 |
+
# outputs=gr.Textbox(label="Model response"),
|
| 29 |
+
# title="LLaMA 3 - Fine-tuned Model"
|
| 30 |
+
# ).launch()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
import gradio as gr
|
| 34 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 35 |
+
from peft import PeftModel
|
| 36 |
+
|
| 37 |
+
# Load tokenizer
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(".")
|
| 39 |
+
|
| 40 |
+
# Load base model normally (no 4-bit quantization)
|
| 41 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 42 |
+
"unsloth/Meta-Llama-3.1-8B-bnb-4bit", # same base you fine-tuned
|
| 43 |
+
device_map="auto"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Load LoRA adapters
|
| 47 |
+
model = PeftModel.from_pretrained(base_model, ".")
|
| 48 |
+
|
| 49 |
+
# Create Gradio Interface
|
| 50 |
+
def generate_response(prompt):
|
| 51 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 52 |
+
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, temperature=0.7)
|
| 53 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
gr.Interface(
|
| 56 |
+
fn=generate_response,
|
| 57 |
+
inputs=gr.Textbox(label="Enter your instruction"),
|
| 58 |
+
outputs=gr.Textbox(label="Model response"),
|
| 59 |
+
title="LLaMA 3 - Fine-tuned Model"
|
| 60 |
+
).launch()
|