zhimin-z commited on
Commit
53aaae8
·
1 Parent(s): 2f04967
Files changed (1) hide show
  1. app.py +17 -22
app.py CHANGED
@@ -529,22 +529,17 @@ def get_leaderboard_data(vote_entry=None, use_cache=True):
529
  vote_df["left"], vote_df["right"], vote_df["winner"], tie_weight=0
530
  )
531
 
532
- # Clean up potential inf/NaN values in the results
533
- for result in [
534
- avr_result,
535
- bt_result,
536
- newman_result,
537
- eigen_result,
538
- elo_result,
539
- pagerank_result,
540
- ]:
541
- result.scores = result.scores.replace(
542
- [float("inf"), float("-inf")], float("nan")
543
- )
544
 
545
  # Calculate CEI results
546
  cei_result = {}
547
- for model in elo_result.scores.index:
548
  if model in model_stats and model_stats[model]["cei_max"] > 0:
549
  cei_result[model] = round(
550
  model_stats[model]["cei_sum"] / model_stats[model]["cei_max"], 2
@@ -555,7 +550,7 @@ def get_leaderboard_data(vote_entry=None, use_cache=True):
555
 
556
  # Calculate MCS results
557
  mcs_result = {}
558
- for model in elo_result.scores.index:
559
  if model in model_stats and model_stats[model]["self_matches"] > 0:
560
  mcs_result[model] = round(
561
  model_stats[model]["self_draws"] / model_stats[model]["self_matches"], 2
@@ -566,20 +561,20 @@ def get_leaderboard_data(vote_entry=None, use_cache=True):
566
 
567
  # Combine all results into a single DataFrame
568
  # Add Website column by mapping model names to their links
569
- website_values = [model_links.get(model, "N/A") for model in elo_result.scores.index]
570
 
571
  leaderboard_data = pd.DataFrame(
572
  {
573
- "Model": elo_result.scores.index,
574
  "Website": website_values,
575
- "Elo Score": elo_result.scores.values,
576
  "Conversation Efficiency Index": cei_result.values,
577
  "Model Consistency Score": mcs_result.values,
578
- "Average Win Rate": avr_result.scores.values,
579
- "Bradley-Terry Coefficient": bt_result.scores.values,
580
- "Eigenvector Centrality Value": eigen_result.scores.values,
581
- "Newman Modularity Score": newman_result.scores.values,
582
- "PageRank Score": pagerank_result.scores.values,
583
  }
584
  )
585
 
 
529
  vote_df["left"], vote_df["right"], vote_df["winner"], tie_weight=0
530
  )
531
 
532
+ # Clean up potential inf/NaN values in the results by extracting cleaned scores
533
+ avr_scores = avr_result.scores.replace([float("inf"), float("-inf")], float("nan"))
534
+ bt_scores = bt_result.scores.replace([float("inf"), float("-inf")], float("nan"))
535
+ newman_scores = newman_result.scores.replace([float("inf"), float("-inf")], float("nan"))
536
+ eigen_scores = eigen_result.scores.replace([float("inf"), float("-inf")], float("nan"))
537
+ elo_scores = elo_result.scores.replace([float("inf"), float("-inf")], float("nan"))
538
+ pagerank_scores = pagerank_result.scores.replace([float("inf"), float("-inf")], float("nan"))
 
 
 
 
 
539
 
540
  # Calculate CEI results
541
  cei_result = {}
542
+ for model in elo_scores.index:
543
  if model in model_stats and model_stats[model]["cei_max"] > 0:
544
  cei_result[model] = round(
545
  model_stats[model]["cei_sum"] / model_stats[model]["cei_max"], 2
 
550
 
551
  # Calculate MCS results
552
  mcs_result = {}
553
+ for model in elo_scores.index:
554
  if model in model_stats and model_stats[model]["self_matches"] > 0:
555
  mcs_result[model] = round(
556
  model_stats[model]["self_draws"] / model_stats[model]["self_matches"], 2
 
561
 
562
  # Combine all results into a single DataFrame
563
  # Add Website column by mapping model names to their links
564
+ website_values = [model_links.get(model, "N/A") for model in elo_scores.index]
565
 
566
  leaderboard_data = pd.DataFrame(
567
  {
568
+ "Model": elo_scores.index,
569
  "Website": website_values,
570
+ "Elo Score": elo_scores.values,
571
  "Conversation Efficiency Index": cei_result.values,
572
  "Model Consistency Score": mcs_result.values,
573
+ "Average Win Rate": avr_scores.values,
574
+ "Bradley-Terry Coefficient": bt_scores.values,
575
+ "Eigenvector Centrality Value": eigen_scores.values,
576
+ "Newman Modularity Score": newman_scores.values,
577
+ "PageRank Score": pagerank_scores.values,
578
  }
579
  )
580