Spaces:
Runtime error
Runtime error
File size: 3,219 Bytes
52d5899 f5cea5d 52d5899 d24f16b 52d5899 f5cea5d 1005311 087d6c0 52d5899 0787647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
title: OSINTMCPServer
emoji: π¬
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
hf_oauth: true
hf_oauth_scopes:
- inference-api
license: apache-2.0
models:
- berkeley-nest/WhiteRabbitNeo-8B
- cybertronai/cybertron-1.1-7b
datasets:
- agentlans/HuggingFaceFW-finewiki-sample
- qywang1106/arxiv_number_small
- DanielPFlorian/Transformers-Github-Issues
- DanielPFlorian/Transformers-Github-Issues
- John6666/knowledge_base_md_for_rag_1
---
# Parrot OSINT MCP Console
A multi-mode OSINT analysis console built for structured intelligence workflows, streaming LLM analysis, and direct MCP tool access. Designed for investigation, enrichment, correlation, and report generation, all within a single Gradio interface.
---
## πΉ Mode B β OSINT Dashboard
Interactive panels for:
- IP Lookup
- Domain Lookup
- Hash Lookup
- IOC Correlation
- Quickscan
- MITRE ATT&CK Mapping
- STIX / SARIF / JSON Output
Each panel calls a corresponding MCP task and renders:
- Summary
- Markdown report
- Raw JSON
- MITRE mappings
- STIX bundles
This is the structured-intelligence layer: deterministic, reproducible, and machine-readable.
---
## πΉ Mode D β MCP Raw Bridge
Direct JSON-based invocation of any registered MCP task.
Example input:
```json
{
"ip": "8.8.8.8",
"enrich": true,
"map_mitre": true
}
Output is shown as:
β’ Raw JSON
β’ Rendered Markdown (if returned by the tool)
This mode is ideal for debugging, development, automation, and power-user workflows.
βΈ»
πΉ Mode C β Analyst Copilot (LLM)
A streaming threat-intelligence assistant backed by the HuggingFace Inference API.
Capabilities include:
β’ Interpreting OSINT task results
β’ Drafting threat summaries
β’ Identifying TTPs, clusters, and adversary patterns
β’ Guiding step-by-step investigations
β’ Injecting dashboard/bridge results directly into conversation context
The copilot does not replace deterministic tasks β it explains them, contextualizes them, and synthesizes intelligence narratives.
βΈ»
ποΈ Architecture
OSINT Tasks β Correlation/Enrichment β MITRE Mapping β Outputs β Analyst Copilot
This separation keeps intelligence deterministic until you explicitly enter the interpretive layer.
βΈ»
π Running Locally
Install dependencies:
pip install -r requirements.txt
Run the app:
python app.py
βΈ»
π API Tokens
The Analyst Copilot uses the HuggingFace Inference API.
You can provide your token securely through the Gradio OAuthToken input inside the UI.
βΈ»
π¦ Repository Structure
app.py
requirements.txt
README.md
runtime.txt (optional)
hf.yaml (optional)
.gitignore
tasks/ (your MCP tools)
βΈ»
π Notes
β’ Do not commit .mcp/secrets.json or any API keys.
β’ If MCP tasks depend on network-based OSINT sources (Shodan, Censys, VT, etc.), ensure rate limits and caching are configured.
β’ The UI is modular β you can add new tools to the registry without changing the interface.
βΈ»
Parrot OSINT MCP Console is built for analysts, builders, and anyone who needs intelligence workflows that scale across data sources, formats, and models.
---
|