File size: 9,732 Bytes
866d1e1
 
 
 
 
37f1fe0
 
 
866d1e1
 
 
 
 
 
52d5899
 
 
866d1e1
7bec021
866d1e1
 
 
 
37f1fe0
7bec021
 
 
37f1fe0
866d1e1
37f1fe0
 
866d1e1
 
 
7bec021
866d1e1
37f1fe0
 
 
 
 
 
 
 
866d1e1
 
 
7bec021
866d1e1
7bec021
866d1e1
 
37f1fe0
 
866d1e1
37f1fe0
866d1e1
 
37f1fe0
 
 
 
 
 
 
 
 
7bec021
37f1fe0
 
 
7bec021
37f1fe0
 
866d1e1
7bec021
 
866d1e1
37f1fe0
866d1e1
37f1fe0
7bec021
 
 
866d1e1
 
7bec021
866d1e1
7bec021
866d1e1
 
eb43500
 
 
 
 
 
 
 
 
 
7bec021
 
 
 
 
 
 
 
eb43500
 
 
 
 
7bec021
 
eb43500
 
 
 
 
 
 
 
 
7bec021
 
eb43500
 
 
7bec021
eb43500
 
 
 
 
 
 
7bec021
eb43500
 
 
 
 
 
 
 
 
7bec021
eb43500
 
 
 
 
7bec021
eb43500
 
 
 
 
7bec021
eb43500
 
 
 
 
 
7bec021
eb43500
 
 
 
 
7bec021
eb43500
 
 
 
 
 
 
 
 
7bec021
eb43500
 
 
 
7bec021
eb43500
7bec021
eb43500
 
 
 
7bec021
eb43500
 
 
 
 
 
 
7bec021
 
 
 
 
 
eb43500
 
7bec021
 
 
 
 
eb43500
7bec021
 
 
 
 
eb43500
 
 
 
 
7bec021
 
 
eb43500
7bec021
 
 
 
 
 
 
 
eb43500
37f1fe0
 
 
e00fc58
7bec021
e00fc58
37f1fe0
e00fc58
37f1fe0
 
7bec021
 
37f1fe0
e00fc58
 
37f1fe0
 
 
 
 
 
 
 
 
e00fc58
 
7bec021
 
 
 
 
 
a1cde8b
e00fc58
 
37f1fe0
e00fc58
37f1fe0
 
a1cde8b
e00fc58
 
37f1fe0
e00fc58
 
 
7bec021
e00fc58
37f1fe0
7bec021
 
e00fc58
 
eb43500
e00fc58
7bec021
eb43500
7bec021
eb43500
e00fc58
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/env python
"""
Parrot OSINT MCP – Gradio Frontend

Modes:
- OSINT Dashboard (deterministic intelligence)
- MCP Bridge (raw tool access)
- Analyst Copilot (LLM interpretive intelligence)
"""

import json
import traceback
from typing import Any, Dict

import gradio as gr
from huggingface_hub import InferenceClient

# ---------------------------------------------------------------------
# Task Registry (auto-loads MCP tasks dynamically)
# ---------------------------------------------------------------------

TASK_REGISTRY: Dict[str, Any] = {}

def _register_tasks():
    """
    Import tasks.* modules dynamically and pull their run() functions.
    """
    def _try(name, module):
        try:
            m = __import__(f"tasks.{module}", fromlist=["*"])
            fn = getattr(m, "run", None)
            if callable(fn):
                TASK_REGISTRY[name] = fn
        except Exception:
            pass  # In HF Spaces, missing tasks won't break startup.

    _try("lookup_ip", "lookup_ip")
    _try("lookup_domain", "lookup_domain")
    _try("lookup_hash", "lookup_hash")
    _try("correlate_iocs", "correlate_iocs")
    _try("generate_report", "generate_report")
    _try("enrich_entity", "enrich_entity")
    _try("mitre_map", "mitre_map")
    _try("quickscan", "quickscan")

_register_tasks()


# ---------------------------------------------------------------------
# Task Execution + Normalization
# ---------------------------------------------------------------------

def call_task(name: str, payload: Dict[str, Any]):
    fn = TASK_REGISTRY.get(name)
    if not fn:
        return {"error": f"Unknown tool '{name}'."}

    try:
        res = fn(**payload)
        if not isinstance(res, dict):
            res = {"result": res}
        return res
    except Exception as e:
        return {"error": str(e), "traceback": traceback.format_exc()}


def normalize_result(res: Dict[str, Any]):
    """Ensures consistent UI formatting."""
    pretty = json.dumps(res, indent=2, default=str)
    summary = res.get("summary", "")
    markdown = res.get("markdown") or res.get("report") or ""

    if not markdown and summary:
        markdown = f"## Summary\n\n{summary}"

    safe_json = lambda v: json.dumps(v, indent=2, default=str) if v else ""

    return {
        "summary": summary,
        "markdown": markdown,
        "json": pretty,
        "mitre": safe_json(res.get("mitre")),
        "stix": safe_json(res.get("stix")),
        "sarif": safe_json(res.get("sarif")),
    }


# ---------------------------------------------------------------------
# Analyst Copilot LLM
# ---------------------------------------------------------------------

def respond(
    message,
    history,
    system_prompt,
    model_name,
    hf_token,
    temperature,
    top_p,
    max_tokens,
):
    """
    Streaming LLM output using WhiteRabbit Neo or Cybertron.
    hf_token is a raw string entered by user.
    """
    client = InferenceClient(
        model=model_name,
        token=hf_token,  # Direct string, no OAuthToken object
    )

    msgs = [{"role": "system", "content": system_prompt}]
    msgs.extend(history)
    msgs.append({"role": "user", "content": message})

    buffer = ""

    for chunk in client.chat_completion(
        messages=msgs,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        stream=True,
    ):
        delta = chunk.choices[0].delta.content
        if delta:
            buffer += delta
            yield buffer


def inject_osint(history, osint_obj):
    """Inject OSINT result JSON into copilot context."""
    pretty = json.dumps(osint_obj, indent=2, default=str)
    history.append({
        "role": "system",
        "content": f"### Injected OSINT Result\n```\n{pretty}\n```"
    })
    return history


# ---------------------------------------------------------------------
# OSINT Dashboard Callbacks
# ---------------------------------------------------------------------

def ui_lookup_ip(ip, enrich, mitre):
    raw = call_task("lookup_ip", {"ip": ip, "enrich": enrich, "map_mitre": mitre})
    norm = normalize_result(raw)
    return norm["summary"], norm["markdown"], norm["json"], norm["mitre"], norm["stix"], raw


def ui_lookup_domain(domain, enrich, mitre):
    raw = call_task("lookup_domain", {"domain": domain, "enrich": enrich, "map_mitre": mitre})
    norm = normalize_result(raw)
    return norm["summary"], norm["markdown"], norm["json"], norm["mitre"], norm["stix"], raw


def ui_lookup_hash(h, ht, enrich, mitre):
    raw = call_task("lookup_hash", {"hash": h, "hash_type": ht, "enrich": enrich, "map_mitre": mitre})
    norm = normalize_result(raw)
    return norm["summary"], norm["markdown"], norm["json"], norm["mitre"], norm["stix"], raw


def ui_correlate_iocs(iocs):
    lst = [x.strip() for x in iocs.splitlines() if x.strip()]
    raw = call_task("correlate_iocs", {"iocs": lst})
    norm = normalize_result(raw)
    return norm["summary"], norm["markdown"], norm["json"], norm["mitre"], raw


def ui_quickscan(target):
    raw = call_task("quickscan", {"target": target})
    norm = normalize_result(raw)
    return norm["summary"], norm["markdown"], norm["json"], raw


# ---------------------------------------------------------------------
# MCP Bridge
# ---------------------------------------------------------------------

def ui_bridge(tool, args_json):
    try:
        payload = json.loads(args_json)
    except Exception as e:
        return json.dumps({"error": str(e)}, indent=2), "", {}

    raw = call_task(tool, payload)
    norm = normalize_result(raw)
    return norm["json"], norm["markdown"], raw


# ---------------------------------------------------------------------
# UI Layout
# ---------------------------------------------------------------------

def build_interface():
    with gr.Blocks(title="Parrot OSINT MCP Console") as demo:
        gr.Markdown("# 🦜 Parrot OSINT MCP Console\nMulti-mode Intelligence Workstation.")

        osint_state = gr.State({})

        # -------------------------
        # OSINT Dashboard
        # -------------------------
        with gr.Tab("OSINT Dashboard"):

            # IP Lookup
            with gr.Tab("IP Lookup"):
                ip = gr.Textbox(label="IP Address", placeholder="8.8.8.8")
                enrich = gr.Checkbox(value=True, label="Enrich data")
                mitre = gr.Checkbox(value=True, label="MITRE ATT&CK Mapping")
                run = gr.Button("Run IP Lookup")

                out_s = gr.Textbox(label="Summary")
                out_md = gr.Markdown()
                out_json = gr.Code(language="json")
                out_mitre = gr.Code(language="json")
                out_stix = gr.Code(language="json")

                run.click(
                    ui_lookup_ip,
                    [ip, enrich, mitre],
                    [out_s, out_md, out_json, out_mitre, out_stix, osint_state]
                )

        # -------------------------
        # MCP Bridge
        # -------------------------
        with gr.Tab("MCP Bridge"):
            tool = gr.Dropdown(sorted(TASK_REGISTRY.keys()), label="Tool")
            args = gr.Code(language="json", label="Args JSON")
            btn = gr.Button("Run Tool")

            out_bridge_json = gr.Code(language="json")
            out_bridge_md = gr.Markdown()

            btn.click(
                ui_bridge,
                [tool, args],
                [out_bridge_json, out_bridge_md, osint_state]
            )

        # -------------------------
        # Analyst Copilot
        # -------------------------
        with gr.Tab("Analyst Copilot"):
            gr.Markdown("### WhiteRabbit Neo + Cybertron Threat Intelligence Assistant")

            system_prompt = gr.Textbox(
                label="System Prompt",
                value=(
                    "You are a threat intelligence analyst. "
                    "You classify TTPs, extract indicators, map MITRE ATT&CK, "
                    "and provide investigation guidance."
                ),
            )

            model_select = gr.Dropdown(
                label="LLM Model",
                choices=[
                    "berkeley-nest/WhiteRabbitNeo-8B",
                    "cybertronai/cybertron-1.1-1b",
                    "cybertronai/cybertron-1.1-7b",
                    "cybertronai/cybertron-1.1-32b"
                ],
                value="berkeley-nest/WhiteRabbitNeo-8B",
            )

            gr.Markdown("### HuggingFace API Token (required for LLM inference)")
            hf_token = gr.Textbox(
                label="HF Token",
                type="password",
                placeholder="hf_xxx...",
            )

            chatbot = gr.ChatInterface(
                respond,
                type="messages",
                additional_inputs=[
                    system_prompt,
                    model_select,
                    hf_token,
                    gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
                    gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
                    gr.Slider(32, 4096, value=512, step=32, label="Max Tokens"),
                ],
            )

            inject_btn = gr.Button("Inject Last OSINT Result into Copilot")
            inject_btn.click(
                inject_osint,
                [chatbot._chatbot_state, osint_state],
                [chatbot._chatbot_state],
            )

    return demo


# ---------------------------------------------------------------------
# MAIN ENTRY
# ---------------------------------------------------------------------

if __name__ == "__main__":
    demo = build_interface()
    demo.launch()