Spaces:
Sleeping
Sleeping
Initial commit
Browse files
gradio-app.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import librosa
|
| 6 |
+
import pytube as pt
|
| 7 |
+
from models import asr, processor
|
| 8 |
+
from utils import format_timestamp
|
| 9 |
+
from vad import SpeechTimestampsMap, collect_chunks, get_speech_timestamps
|
| 10 |
+
|
| 11 |
+
## details: https://huggingface.co/docs/diffusers/optimization/fp16#automatic-mixed-precision-amp
|
| 12 |
+
# from torch import autocast
|
| 13 |
+
|
| 14 |
+
apply_vad = True
|
| 15 |
+
vad_parameters = {}
|
| 16 |
+
|
| 17 |
+
# task = "transcribe" # transcribe or translate
|
| 18 |
+
# language = "bn"
|
| 19 |
+
# asr.model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
| 20 |
+
# asr.model.config.max_new_tokens = 448 #default is 448
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _preprocess(filename):
|
| 24 |
+
audio_name = "audio.wav"
|
| 25 |
+
subprocess.call(
|
| 26 |
+
[
|
| 27 |
+
"ffmpeg",
|
| 28 |
+
"-y",
|
| 29 |
+
"-i",
|
| 30 |
+
filename,
|
| 31 |
+
"-acodec",
|
| 32 |
+
"pcm_s16le",
|
| 33 |
+
"-ar",
|
| 34 |
+
"16000",
|
| 35 |
+
"-ac",
|
| 36 |
+
"1",
|
| 37 |
+
"-loglevel",
|
| 38 |
+
"quiet",
|
| 39 |
+
audio_name,
|
| 40 |
+
]
|
| 41 |
+
)
|
| 42 |
+
return audio_name
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def transcribe(microphone, file_upload):
|
| 46 |
+
warn_output = ""
|
| 47 |
+
if (microphone is not None) and (file_upload is not None):
|
| 48 |
+
warn_output = (
|
| 49 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
| 50 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
elif (microphone is None) and (file_upload is None):
|
| 54 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
| 55 |
+
|
| 56 |
+
file = microphone if microphone is not None else file_upload
|
| 57 |
+
print(f"\n\nFile is: {file}\n\n")
|
| 58 |
+
|
| 59 |
+
# for _preprocess(). No need if name of file provided in string format to asr pipeline as automatically uses ffmeg.
|
| 60 |
+
# Only required if ndarray given by using librosa.load() to load a file
|
| 61 |
+
start_time = time.time()
|
| 62 |
+
print("Starting Preprocessing")
|
| 63 |
+
# speech_array = _preprocess(filename=file)
|
| 64 |
+
filename = _preprocess(filename=file)
|
| 65 |
+
speech_array, sample_rate = librosa.load(f"{filename}", sr=16_000)
|
| 66 |
+
if apply_vad:
|
| 67 |
+
duration = speech_array.shape[0] / sample_rate
|
| 68 |
+
print(f"Processing audio with duration: {format_timestamp(duration)}")
|
| 69 |
+
speech_chunks = get_speech_timestamps(speech_array, **vad_parameters)
|
| 70 |
+
speech_array = collect_chunks(speech_array, speech_chunks)
|
| 71 |
+
print(f"VAD filter removed {format_timestamp(duration - (speech_array.shape[0] / sample_rate))}")
|
| 72 |
+
remaining_segments = ", ".join(
|
| 73 |
+
f'[{format_timestamp(chunk["start"] / sample_rate)} -> {format_timestamp(chunk["end"] / sample_rate)}]'
|
| 74 |
+
for chunk in speech_chunks
|
| 75 |
+
)
|
| 76 |
+
print(f"VAD filter kept the following audio segments: {remaining_segments}")
|
| 77 |
+
if not remaining_segments:
|
| 78 |
+
return "ERROR: No speech detected in the audio file"
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
print(f"\n Preprocessing COMPLETED in {round(time.time()-start_time, 2)}s \n")
|
| 83 |
+
|
| 84 |
+
start_time = time.time()
|
| 85 |
+
print("Starting Inference")
|
| 86 |
+
text = asr(speech_array)["text"]
|
| 87 |
+
# text = asr(file)["text"]
|
| 88 |
+
# with autocast("cuda"):
|
| 89 |
+
# text = asr(speech_array)["text"]
|
| 90 |
+
print(f"\n Inference COMPLETED in {round(time.time()-start_time, 2)}s \n")
|
| 91 |
+
|
| 92 |
+
return warn_output + text
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def _return_yt_html_embed(yt_url):
|
| 96 |
+
if "?v=" in yt_url:
|
| 97 |
+
video_id = yt_url.split("?v=")[-1].split("&")[0]
|
| 98 |
+
else:
|
| 99 |
+
video_id = yt_url.split("/")[-1].split("?feature=")[0]
|
| 100 |
+
|
| 101 |
+
print(f"\n\nYT ID is: {video_id}\n\n")
|
| 102 |
+
return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def yt_transcribe(yt_url):
|
| 106 |
+
start_time = time.time()
|
| 107 |
+
yt = pt.YouTube(yt_url)
|
| 108 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
| 109 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
| 110 |
+
filename = "audio.mp3"
|
| 111 |
+
stream.download(filename=filename)
|
| 112 |
+
print(f"\n YT Audio Downloaded in {round(time.time()-start_time, 2)}s \n")
|
| 113 |
+
|
| 114 |
+
# for _preprocess(). No need if name of file provided in string format to asr pipeline as automatically uses ffmeg.
|
| 115 |
+
# Only required if ndarray given by using librosa.load() to load a file
|
| 116 |
+
start_time = time.time()
|
| 117 |
+
# print("Starting Preprocessing")
|
| 118 |
+
# speech_array = _preprocess(filename=filename)
|
| 119 |
+
# filename = _preprocess(filename=filename)
|
| 120 |
+
# speech_array, sample_rate = librosa.load(f"{filename}", sr=16_000)
|
| 121 |
+
# print(f"\n Preprocessing COMPLETED in {round(time.time()-start_time, 2)}s \n")
|
| 122 |
+
|
| 123 |
+
start_time = time.time()
|
| 124 |
+
print("Starting Inference")
|
| 125 |
+
text = asr(filename)["text"]
|
| 126 |
+
# with autocast("cuda"):
|
| 127 |
+
# text = asr(speech_array)["text"]
|
| 128 |
+
print(f"\n Inference COMPLETED in {round(time.time()-start_time, 2)}s \n")
|
| 129 |
+
|
| 130 |
+
return html_embed_str, text
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
mf_transcribe = gr.Interface(
|
| 134 |
+
fn=transcribe,
|
| 135 |
+
inputs=[
|
| 136 |
+
gr.Audio(source="microphone", type="filepath", label="Microphone"),
|
| 137 |
+
gr.Audio(source="upload", type="filepath", label="Upload File"),
|
| 138 |
+
],
|
| 139 |
+
outputs="text",
|
| 140 |
+
title="Bangla Demo: Transcribe Audio",
|
| 141 |
+
description=(
|
| 142 |
+
"Transcribe long-form microphone or audio inputs in BANGLA with the click of a button!"
|
| 143 |
+
),
|
| 144 |
+
allow_flagging="never",
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
yt_transcribe = gr.Interface(
|
| 148 |
+
fn=yt_transcribe,
|
| 149 |
+
inputs=[
|
| 150 |
+
gr.Textbox(
|
| 151 |
+
lines=1,
|
| 152 |
+
placeholder="Paste the URL to a Bangla language YouTube video here",
|
| 153 |
+
label="YouTube URL",
|
| 154 |
+
)
|
| 155 |
+
],
|
| 156 |
+
outputs=["html", "text"],
|
| 157 |
+
title="Bangla Demo: Transcribe YouTube",
|
| 158 |
+
description=(
|
| 159 |
+
"Transcribe long-form YouTube videos in BANGLA with the click of a button!"
|
| 160 |
+
),
|
| 161 |
+
allow_flagging="never",
|
| 162 |
+
)
|
| 163 |
+
# def transcribe2(audio, state=""):
|
| 164 |
+
# text = "text"
|
| 165 |
+
# state += text + " "
|
| 166 |
+
# return state, state
|
| 167 |
+
|
| 168 |
+
# Set the starting state to an empty string
|
| 169 |
+
|
| 170 |
+
# real_transcribe = gr.Interface(
|
| 171 |
+
# fn=transcribe2,
|
| 172 |
+
# inputs=[
|
| 173 |
+
# gr.Audio(source="microphone", type="filepath", streaming=True),
|
| 174 |
+
# "state"
|
| 175 |
+
# ],
|
| 176 |
+
# outputs=[
|
| 177 |
+
# "textbox",
|
| 178 |
+
# "state"
|
| 179 |
+
# ],
|
| 180 |
+
# live=True)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# demo = gr.TabbedInterface([mf_transcribe, yt_transcribe,real_transcribe], ["Transcribe Bangla Audio", "Transcribe Bangla YouTube Video","real time"])
|
| 184 |
+
demo = gr.TabbedInterface(
|
| 185 |
+
[mf_transcribe, yt_transcribe],
|
| 186 |
+
["Transcribe Bangla Audio", "Transcribe Bangla YouTube Video"],
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
demo.queue()
|
| 192 |
+
demo.launch(share="True")
|
| 193 |
+
# demo.launch(share='True', server_name="0.0.0.0", server_port=8080)
|
models.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
abs_path = os.path.abspath('.')
|
| 4 |
+
base_dir = os.path.dirname(os.path.dirname(abs_path))
|
| 5 |
+
os.environ['TRANSFORMERS_CACHE'] = os.path.join(base_dir, 'models_cache')
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
# Details: https://huggingface.co/docs/diffusers/optimization/fp16#enable-cudnn-autotuner
|
| 9 |
+
torch.backends.cudnn.benchmark = True
|
| 10 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 11 |
+
from transformers import pipeline, AutoTokenizer, AutoFeatureExtractor, AutoConfig, WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor
|
| 12 |
+
from typing import Union, BinaryIO
|
| 13 |
+
# from optimum.bettertransformer import BetterTransformer
|
| 14 |
+
|
| 15 |
+
language = '<|bn|>'
|
| 16 |
+
# language = '<|en|>'
|
| 17 |
+
task = "transcribe" # transcribe or translate
|
| 18 |
+
|
| 19 |
+
# model_name = 'openai/whisper-tiny.en'
|
| 20 |
+
# model_name = 'openai/whisper-base.en'
|
| 21 |
+
# model_name = 'openai/whisper-small.en'
|
| 22 |
+
# model_name = 'openai/whisper-medium'
|
| 23 |
+
## v2: trained on more epochs with regularization
|
| 24 |
+
# model_name = 'openai/whisper-large-v2'
|
| 25 |
+
|
| 26 |
+
## bangla
|
| 27 |
+
# model_name = 'Rakib/whisper-tiny-bn'
|
| 28 |
+
#model_name = 'anuragshas/whisper-small-bn'
|
| 29 |
+
# model_name = 'anuragshas/whisper-large-v2-bn'
|
| 30 |
+
# model_name = "Rakib/whisper-small-bn"
|
| 31 |
+
# model_name = "Rakib/whisper-small-bn-all"
|
| 32 |
+
# model_name = "Rakib/whisper-small-bn-all-600"
|
| 33 |
+
# model_name = "Rakib/whisper-small-bn-all-600-v2"
|
| 34 |
+
model_name = "Rakib/whisper-small-bn-crblp"
|
| 35 |
+
|
| 36 |
+
## lets you know the device count: cuda:0 or cuda:1
|
| 37 |
+
# print(torch.cuda.device_count())
|
| 38 |
+
|
| 39 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 40 |
+
# device = -1 #Exclusively CPU
|
| 41 |
+
|
| 42 |
+
print(f"Using device: {'GPU' if device==0 else 'CPU'}")
|
| 43 |
+
|
| 44 |
+
if device !=0:
|
| 45 |
+
print("[Warning!] Using CPU could hamper performance")
|
| 46 |
+
|
| 47 |
+
print("Loading Tokenizer for ASR Speech-to-Text Model...\n" + "*" * 100)
|
| 48 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, language=language, task=task)
|
| 49 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 50 |
+
tokenizer = WhisperTokenizer.from_pretrained(model_name)
|
| 51 |
+
# tokenizer(['�', '�্র'],add_prefix_space=True, add_special_tokens=False).input_ids
|
| 52 |
+
|
| 53 |
+
print("Loading Feature Extractor for ASR Speech-to-Text Model...\n" + "*" * 100)
|
| 54 |
+
# feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 55 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name)
|
| 56 |
+
|
| 57 |
+
print("Loading Config for ASR Speech-to-Text Model...\n" + "*" * 100)
|
| 58 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 59 |
+
|
| 60 |
+
print("Loading Processor for ASR Speech-to-Text Model...\n" + "*" * 100)
|
| 61 |
+
processor = WhisperProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
| 62 |
+
|
| 63 |
+
print("Loading WHISPER ASR Speech-to-Text Model...\n" + "*" * 100)
|
| 64 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 65 |
+
|
| 66 |
+
## BetterTransformer (No Need if PyTorch 2.0 works!!)
|
| 67 |
+
## (currently 2secs faster inference than PyTorch 2.0 )
|
| 68 |
+
# model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 69 |
+
# model = BetterTransformer.transform(model)
|
| 70 |
+
|
| 71 |
+
## bitsandbytes (only Linux & GPU) (requires conda env with conda-based pytorch!!!)
|
| 72 |
+
## currently only reduces size. slower inference than native models!!!
|
| 73 |
+
## from_pretrained doc: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/model#transformers.PreTrainedModel.from_pretrained
|
| 74 |
+
# model = WhisperForConditionalGeneration.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
| 75 |
+
|
| 76 |
+
## For PyTorch 2.0 (Only Linux)
|
| 77 |
+
# model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device="cuda:0")
|
| 78 |
+
##mode options are "default", "reduce-overhead" and "max-autotune". See: https://pytorch.org/get-started/pytorch-2.0/#modes
|
| 79 |
+
# model = torch.compile(model, mode="default")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
asr = pipeline(
|
| 83 |
+
task="automatic-speech-recognition",
|
| 84 |
+
model=model,
|
| 85 |
+
tokenizer=tokenizer,
|
| 86 |
+
feature_extractor=feature_extractor,
|
| 87 |
+
# processor=processor, #no effect see: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/automatic_speech_recognition.py
|
| 88 |
+
# config=config, #no effect see: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/automatic_speech_recognition.py
|
| 89 |
+
device=device, # for gpu 1 for cpu -1
|
| 90 |
+
## chunk files longer than 30s into shorted samples
|
| 91 |
+
chunk_length_s=30,
|
| 92 |
+
## the amount of overlap (in secs) to be discarded while stitching the inferenced chunks
|
| 93 |
+
## stride_length_s is a tuple of the left and right stride(overlap) length.
|
| 94 |
+
## With only 1 number, both sides get the same stride, by default
|
| 95 |
+
## The stride_length on one side is 1/6th of the chunk_length_s if stride_length no provided
|
| 96 |
+
# stride_length_s=[8, 8],
|
| 97 |
+
stride_length_s=[5, 5],
|
| 98 |
+
# stride_length_s=[6,0],
|
| 99 |
+
batch_size=16,
|
| 100 |
+
ignore_warning=True,
|
| 101 |
+
## force whisper to generate timestamps so that the chunking and stitching can be accurate
|
| 102 |
+
# return_timestamps=True,
|
| 103 |
+
generate_kwargs = {
|
| 104 |
+
'language':language,
|
| 105 |
+
'task':task,
|
| 106 |
+
'repetition_penalty':1.8,
|
| 107 |
+
'num_beams':2,
|
| 108 |
+
'max_new_tokens':448,
|
| 109 |
+
'early_stopping':True,
|
| 110 |
+
# 'renormalize_logits':True,
|
| 111 |
+
# [16867]: �, [16867, 156, 100, 235, 156, 12811]: �্র
|
| 112 |
+
'bad_words_ids':[[16867], [16867, 156, 100, 235, 156, 12811]],
|
| 113 |
+
# 'supress_tokens': [16867, 156, 100, 235, 156, 12811],
|
| 114 |
+
}
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def transcribe(speech_array: Union[str, BinaryIO], language: str = "en") -> str:
|
| 119 |
+
"""
|
| 120 |
+
Transcribes an audio array to text
|
| 121 |
+
Args:
|
| 122 |
+
speech_array (np.ndarray): audio in numpy array format
|
| 123 |
+
language (str): "sv" or "en"
|
| 124 |
+
Returns:
|
| 125 |
+
a string containing transcription
|
| 126 |
+
"""
|
| 127 |
+
asr.model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
| 128 |
+
# asr.model.config.max_new_tokens = 448 #default is 448
|
| 129 |
+
|
| 130 |
+
result = asr(speech_array)
|
| 131 |
+
|
| 132 |
+
return str(result["text"])
|
utils.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
def format_timestamp(
|
| 4 |
+
seconds: float,
|
| 5 |
+
always_include_hours: bool = False,
|
| 6 |
+
decimal_marker: str = ".",
|
| 7 |
+
) -> str:
|
| 8 |
+
assert seconds >= 0, "non-negative timestamp expected"
|
| 9 |
+
milliseconds = round(seconds * 1000.0)
|
| 10 |
+
|
| 11 |
+
hours = milliseconds // 3_600_000
|
| 12 |
+
milliseconds -= hours * 3_600_000
|
| 13 |
+
|
| 14 |
+
minutes = milliseconds // 60_000
|
| 15 |
+
milliseconds -= minutes * 60_000
|
| 16 |
+
|
| 17 |
+
seconds = milliseconds // 1_000
|
| 18 |
+
milliseconds -= seconds * 1_000
|
| 19 |
+
|
| 20 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
| 21 |
+
return (
|
| 22 |
+
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 23 |
+
)
|
vad.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bisect
|
| 2 |
+
import functools
|
| 3 |
+
import os
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
from typing import List, Optional
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
# The code below is adapted from https://github.com/snakers4/silero-vad.
|
| 11 |
+
|
| 12 |
+
def get_assets_path():
|
| 13 |
+
"""Returns the path to the assets directory."""
|
| 14 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_speech_timestamps(
|
| 18 |
+
audio: np.ndarray,
|
| 19 |
+
*,
|
| 20 |
+
threshold: float = 0.5,
|
| 21 |
+
# min_speech_duration_ms: int = 250,
|
| 22 |
+
min_speech_duration_ms: int = 800,
|
| 23 |
+
max_speech_duration_s: float = float("inf"),
|
| 24 |
+
# min_silence_duration_ms: int = 2000,
|
| 25 |
+
min_silence_duration_ms: int = 1000,
|
| 26 |
+
window_size_samples: int = 1024,
|
| 27 |
+
speech_pad_ms: int = 200,
|
| 28 |
+
) -> List[dict]:
|
| 29 |
+
"""This method is used for splitting long audios into speech chunks using silero VAD.
|
| 30 |
+
Args:
|
| 31 |
+
audio: One dimensional float array.
|
| 32 |
+
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
|
| 33 |
+
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
| 34 |
+
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
| 35 |
+
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
|
| 36 |
+
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
|
| 37 |
+
than max_speech_duration_s will be split at the timestamp of the last silence that
|
| 38 |
+
lasts more than 100s (if any), to prevent agressive cutting. Otherwise, they will be
|
| 39 |
+
split aggressively just before max_speech_duration_s.
|
| 40 |
+
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
|
| 41 |
+
before separating it
|
| 42 |
+
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
|
| 43 |
+
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
|
| 44 |
+
Values other than these may affect model perfomance!!
|
| 45 |
+
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
|
| 46 |
+
Returns:
|
| 47 |
+
List of dicts containing begin and end samples of each speech chunk.
|
| 48 |
+
"""
|
| 49 |
+
if window_size_samples not in [512, 1024, 1536]:
|
| 50 |
+
warnings.warn(
|
| 51 |
+
"Unusual window_size_samples! Supported window_size_samples:\n"
|
| 52 |
+
" - [512, 1024, 1536] for 16000 sampling_rate"
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
sampling_rate = 16000
|
| 56 |
+
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
| 57 |
+
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
| 58 |
+
max_speech_samples = (
|
| 59 |
+
sampling_rate * max_speech_duration_s
|
| 60 |
+
- window_size_samples
|
| 61 |
+
- 2 * speech_pad_samples
|
| 62 |
+
)
|
| 63 |
+
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
| 64 |
+
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
| 65 |
+
|
| 66 |
+
audio_length_samples = len(audio)
|
| 67 |
+
|
| 68 |
+
model = get_vad_model()
|
| 69 |
+
state = model.get_initial_state(batch_size=1)
|
| 70 |
+
|
| 71 |
+
speech_probs = []
|
| 72 |
+
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
| 73 |
+
chunk = audio[current_start_sample : current_start_sample + window_size_samples]
|
| 74 |
+
if len(chunk) < window_size_samples:
|
| 75 |
+
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
| 76 |
+
speech_prob, state = model(chunk, state, sampling_rate)
|
| 77 |
+
speech_probs.append(speech_prob)
|
| 78 |
+
|
| 79 |
+
triggered = False
|
| 80 |
+
speeches = []
|
| 81 |
+
current_speech = {}
|
| 82 |
+
neg_threshold = threshold - 0.15
|
| 83 |
+
|
| 84 |
+
# to save potential segment end (and tolerate some silence)
|
| 85 |
+
temp_end = 0
|
| 86 |
+
# to save potential segment limits in case of maximum segment size reached
|
| 87 |
+
prev_end = next_start = 0
|
| 88 |
+
|
| 89 |
+
for i, speech_prob in enumerate(speech_probs):
|
| 90 |
+
if (speech_prob >= threshold) and temp_end:
|
| 91 |
+
temp_end = 0
|
| 92 |
+
if next_start < prev_end:
|
| 93 |
+
next_start = window_size_samples * i
|
| 94 |
+
|
| 95 |
+
if (speech_prob >= threshold) and not triggered:
|
| 96 |
+
triggered = True
|
| 97 |
+
current_speech["start"] = window_size_samples * i
|
| 98 |
+
continue
|
| 99 |
+
|
| 100 |
+
if (
|
| 101 |
+
triggered
|
| 102 |
+
and (window_size_samples * i) - current_speech["start"] > max_speech_samples
|
| 103 |
+
):
|
| 104 |
+
if prev_end:
|
| 105 |
+
current_speech["end"] = prev_end
|
| 106 |
+
speeches.append(current_speech)
|
| 107 |
+
current_speech = {}
|
| 108 |
+
# previously reached silence (< neg_thres) and is still not speech (< thres)
|
| 109 |
+
if next_start < prev_end:
|
| 110 |
+
triggered = False
|
| 111 |
+
else:
|
| 112 |
+
current_speech["start"] = next_start
|
| 113 |
+
prev_end = next_start = temp_end = 0
|
| 114 |
+
else:
|
| 115 |
+
current_speech["end"] = window_size_samples * i
|
| 116 |
+
speeches.append(current_speech)
|
| 117 |
+
current_speech = {}
|
| 118 |
+
prev_end = next_start = temp_end = 0
|
| 119 |
+
triggered = False
|
| 120 |
+
continue
|
| 121 |
+
|
| 122 |
+
if (speech_prob < neg_threshold) and triggered:
|
| 123 |
+
if not temp_end:
|
| 124 |
+
temp_end = window_size_samples * i
|
| 125 |
+
# condition to avoid cutting in very short silence
|
| 126 |
+
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech:
|
| 127 |
+
prev_end = temp_end
|
| 128 |
+
if (window_size_samples * i) - temp_end < min_silence_samples:
|
| 129 |
+
continue
|
| 130 |
+
else:
|
| 131 |
+
current_speech["end"] = temp_end
|
| 132 |
+
if (
|
| 133 |
+
current_speech["end"] - current_speech["start"]
|
| 134 |
+
) > min_speech_samples:
|
| 135 |
+
speeches.append(current_speech)
|
| 136 |
+
current_speech = {}
|
| 137 |
+
prev_end = next_start = temp_end = 0
|
| 138 |
+
triggered = False
|
| 139 |
+
continue
|
| 140 |
+
|
| 141 |
+
if (
|
| 142 |
+
current_speech
|
| 143 |
+
and (audio_length_samples - current_speech["start"]) > min_speech_samples
|
| 144 |
+
):
|
| 145 |
+
current_speech["end"] = audio_length_samples
|
| 146 |
+
speeches.append(current_speech)
|
| 147 |
+
|
| 148 |
+
for i, speech in enumerate(speeches):
|
| 149 |
+
if i == 0:
|
| 150 |
+
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
| 151 |
+
if i != len(speeches) - 1:
|
| 152 |
+
silence_duration = speeches[i + 1]["start"] - speech["end"]
|
| 153 |
+
if silence_duration < 2 * speech_pad_samples:
|
| 154 |
+
speech["end"] += int(silence_duration // 2)
|
| 155 |
+
speeches[i + 1]["start"] = int(
|
| 156 |
+
max(0, speeches[i + 1]["start"] - silence_duration // 2)
|
| 157 |
+
)
|
| 158 |
+
else:
|
| 159 |
+
speech["end"] = int(
|
| 160 |
+
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
| 161 |
+
)
|
| 162 |
+
speeches[i + 1]["start"] = int(
|
| 163 |
+
max(0, speeches[i + 1]["start"] - speech_pad_samples)
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
speech["end"] = int(
|
| 167 |
+
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
return speeches
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
| 174 |
+
"""Collects and concatenates audio chunks."""
|
| 175 |
+
if not chunks:
|
| 176 |
+
return np.array([], dtype=np.float32)
|
| 177 |
+
|
| 178 |
+
return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks])
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class SpeechTimestampsMap:
|
| 182 |
+
"""Helper class to restore original speech timestamps."""
|
| 183 |
+
|
| 184 |
+
def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2):
|
| 185 |
+
self.sampling_rate = sampling_rate
|
| 186 |
+
self.time_precision = time_precision
|
| 187 |
+
self.chunk_end_sample = []
|
| 188 |
+
self.total_silence_before = []
|
| 189 |
+
|
| 190 |
+
previous_end = 0
|
| 191 |
+
silent_samples = 0
|
| 192 |
+
|
| 193 |
+
for chunk in chunks:
|
| 194 |
+
silent_samples += chunk["start"] - previous_end
|
| 195 |
+
previous_end = chunk["end"]
|
| 196 |
+
|
| 197 |
+
self.chunk_end_sample.append(chunk["end"] - silent_samples)
|
| 198 |
+
self.total_silence_before.append(silent_samples / sampling_rate)
|
| 199 |
+
|
| 200 |
+
def get_original_time(
|
| 201 |
+
self,
|
| 202 |
+
time: float,
|
| 203 |
+
chunk_index: Optional[int] = None,
|
| 204 |
+
) -> float:
|
| 205 |
+
if chunk_index is None:
|
| 206 |
+
chunk_index = self.get_chunk_index(time)
|
| 207 |
+
|
| 208 |
+
total_silence_before = self.total_silence_before[chunk_index]
|
| 209 |
+
return round(total_silence_before + time, self.time_precision)
|
| 210 |
+
|
| 211 |
+
def get_chunk_index(self, time: float) -> int:
|
| 212 |
+
sample = int(time * self.sampling_rate)
|
| 213 |
+
return min(
|
| 214 |
+
bisect.bisect(self.chunk_end_sample, sample),
|
| 215 |
+
len(self.chunk_end_sample) - 1,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
@functools.lru_cache
|
| 220 |
+
def get_vad_model():
|
| 221 |
+
"""Returns the VAD model instance."""
|
| 222 |
+
path = os.path.join(get_assets_path(), "silero_vad.onnx")
|
| 223 |
+
return SileroVADModel(path)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class SileroVADModel:
|
| 227 |
+
def __init__(self, path):
|
| 228 |
+
try:
|
| 229 |
+
import onnxruntime
|
| 230 |
+
except ImportError as e:
|
| 231 |
+
raise RuntimeError(
|
| 232 |
+
"Applying the VAD filter requires the onnxruntime package"
|
| 233 |
+
) from e
|
| 234 |
+
|
| 235 |
+
opts = onnxruntime.SessionOptions()
|
| 236 |
+
opts.inter_op_num_threads = 1
|
| 237 |
+
opts.intra_op_num_threads = 1
|
| 238 |
+
opts.log_severity_level = 4
|
| 239 |
+
|
| 240 |
+
self.session = onnxruntime.InferenceSession(
|
| 241 |
+
path,
|
| 242 |
+
providers=["CPUExecutionProvider"],
|
| 243 |
+
sess_options=opts,
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
def get_initial_state(self, batch_size: int):
|
| 247 |
+
h = np.zeros((2, batch_size, 64), dtype=np.float32)
|
| 248 |
+
c = np.zeros((2, batch_size, 64), dtype=np.float32)
|
| 249 |
+
return h, c
|
| 250 |
+
|
| 251 |
+
def __call__(self, x, state, sr: int):
|
| 252 |
+
if len(x.shape) == 1:
|
| 253 |
+
x = np.expand_dims(x, 0)
|
| 254 |
+
if len(x.shape) > 2:
|
| 255 |
+
raise ValueError(
|
| 256 |
+
f"Too many dimensions for input audio chunk {len(x.shape)}"
|
| 257 |
+
)
|
| 258 |
+
if sr / x.shape[1] > 31.25:
|
| 259 |
+
raise ValueError("Input audio chunk is too short")
|
| 260 |
+
|
| 261 |
+
h, c = state
|
| 262 |
+
|
| 263 |
+
ort_inputs = {
|
| 264 |
+
"input": x,
|
| 265 |
+
"h": h,
|
| 266 |
+
"c": c,
|
| 267 |
+
"sr": np.array(sr, dtype="int64"),
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
out, h, c = self.session.run(None, ort_inputs)
|
| 271 |
+
state = (h, c)
|
| 272 |
+
|
| 273 |
+
return out, state
|