DCLR_Optimiser / app.py
RFTSystems's picture
Update app.py
a8da7b7 verified
raw
history blame
3.5 kB
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
import gradio as gr
import os # Import os to check for model file
# === Simple CNN Model Definition ===
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 8 * 8)
x = F.relu(self.fc1(x))
return self.fc2(x)
# === Model Loading ===
model = SimpleCNN()
model_path = 'simple_cnn_dclr_tuned.pth'
# Check if the model file exists before loading
if os.path.exists(model_path):
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval() # Set model to evaluation mode
print(f"Model loaded successfully from {model_path}")
else:
print(f"Warning: Model file '{model_path}' not found. Please ensure 'train_dclr_model.py' has been run.")
# Optionally, you might want to exit or raise an error if the model is crucial
# === CIFAR-10 Class Labels ===
class_labels = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
# === Image Preprocessing ===
preprocess = transforms.Compose([
transforms.Resize(32), # CIFAR-10 images are 32x32
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageNet stats are common
])
# === Inference Function ===
def inference(input_image: Image.Image):
if model.training: # Ensure model is in eval mode
model.eval()
# Preprocess the image
processed_image = preprocess(input_image)
# Add a batch dimension
processed_image = processed_image.unsqueeze(0)
# Perform inference
with torch.no_grad():
outputs = model(processed_image)
probabilities = F.softmax(outputs, dim=1)
# Convert probabilities to a dictionary of class labels and scores
confidences = {class_labels[i]: float(probabilities[0, i]) for i in range(len(class_labels))}
return confidences
# === Gradio Interface Setup ===
# Example images (replace with actual paths if available, or keep as dummy for now)
# For a Hugging Face Space, you might place example images in an 'examples/' directory.
example_images = [
# os.path.join(os.path.dirname(__file__), "examples/example_car.png"),
# os.path.join(os.path.dirname(__file__), "examples/example_dog.png"),
# os.path.join(os.path.dirname(__file__), "examples/example_plane.png")
]
# A placeholder for example images since we don't have them generated yet.
# Users can upload their own or I will add some placeholder images if needed in the next step.
# For now, an empty list of examples is fine.
interface = gr.Interface(
fn=inference,
inputs=gr.Image(type='pil', label='Input Image'),
outputs=gr.Label(num_top_classes=3, label='Predictions'),
title='CIFAR-10 Image Classification with DCLR Optimizer',
description='Upload an image and see the model\'s predictions using a SimpleCNN trained with the DCLR optimizer.',
examples=example_images,
allow_flagging='never'
)
# === Launch Gradio App ===
if __name__ == '__main__':
interface.launch()