File size: 28,315 Bytes
4a247f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# app.py — Sentiment Analysis with Copy & Export (CSV/XLSX)

import gradio as gr
from transformers import pipeline
import re
from functools import lru_cache
import logging
from typing import List, Dict, Tuple
import json
import os
import tempfile

# ===== NEW: pandas สำหรับ export CSV/XLSX =====
try:
    import pandas as pd
except Exception:
    pd = None

# ===== Logging =====
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# ===== Model list =====
MODEL_LIST = [
    ("ZombitX64/MultiSent-E5-Pro", "🏆 MultiSent E5 Pro - แนะนำ (ความแม่นยำสูงสุด)"),
    ("ZombitX64/Thai-sentiment-e5", "🎯 Thai Sentiment E5 - เฉพาะภาษาไทย"),
    ("poom-sci/WangchanBERTa-finetuned-sentiment", "🔥 WangchanBERTa - โมเดลไทยยอดนิยม"),
    ("SandboxBhh/sentiment-thai-text-model", "✨ Sandbox Thai - เร็วและแม่นยำ"),
    ("ZombitX64/MultiSent-E5", "⚡ MultiSent E5 - รวดเร็ว"),
    ("Thaweewat/wangchanberta-hyperopt-sentiment-01", "🧠 WangchanBERTa Hyperopt"),
    ("cardiffnlp/twitter-xlm-roberta-base-sentiment", "🌐 XLM-RoBERTa - หลายภาษา"),
    ("phoner45/wangchan-sentiment-thai-text-model", "📱 Wangchan Mobile"),
    ("ZombitX64/Sentiment-01", "🔬 Sentiment v1"),
    ("ZombitX64/Sentiment-02", "🔬 Sentiment v2"),
    ("ZombitX64/Sentiment-03", "🔬 Sentiment v3"),
    ("ZombitX64/sentiment-103", "🔬 Sentiment 103"),
    ("ZombitX64/sentimentSumdata-v1", "🔬 sentimentSumdata-v1"),
    ("ZombitX64/wangchanberta-att-spm-uncased-sentiment", "wangchanberta-att-spm-uncased-sentiment"),
]

# ===== Cache model loading =====
@lru_cache(maxsize=3)
def get_nlp(model_name: str):
    try:
        return pipeline("sentiment-analysis", model=model_name)
    except Exception as e:
        logger.error(f"Error loading model {model_name}: {e}")
        raise gr.Error(f"ไม่สามารถโหลดโมเดล {model_name} ได้: {str(e)}")

# ===== Label mappings =====
MODEL_LABEL_MAPPINGS = {
    "ZombitX64/wangchanberta-att-spm-uncased-sentiment": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/MultiSent-E5-Pro": {
        "LABEL_0": {"code": 0, "name": "question", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96,165,250,.2)", "description": "คำถาม"},
        "LABEL_1": {"code": 1, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_2": {"code": 2, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_3": {"code": 3, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/Thai-sentiment-e5": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "poom-sci/WangchanBERTa-finetuned-sentiment": {
        "neg": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "neu": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "pos": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "SandboxBhh/sentiment-thai-text-model": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/MultiSent-E5": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "Thaweewat/wangchanberta-hyperopt-sentiment-01": {
        "neg": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "neu": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "pos": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "cardiffnlp/twitter-xlm-roberta-base-sentiment": {
        "NEGATIVE": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "NEUTRAL":  {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "POSITIVE": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "phoner45/wangchan-sentiment-thai-text-model": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/Sentiment-01": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/Sentiment-02": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/Sentiment-03": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/sentiment-103": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
    "ZombitX64/sentimentSumdata-v1": {
        "LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
        "LABEL_1": {"code": 1, "name": "neutral",  "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
        "LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
    },
}

def get_label_info(label: str, model_name: str) -> Dict:
    model_mappings = MODEL_LABEL_MAPPINGS.get(model_name, {})
    if label in model_mappings:
        return model_mappings[label]
    return {
        "code": -1, "name": label.lower(), "emoji": "🔍",
        "color": "#64748b", "bg": "rgba(100,116,139,.2)",
        "description": f"ไม่ทราบ ({label})"
    }

# ===== Helpers =====
def split_sentences(text: str) -> List[str]:
    sentences = re.split(r'[.!?।\n]+', text)
    sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 2]
    return sentences

def create_confidence_bar(score: float) -> str:
    percentage = int(score * 100)
    return f"""
    <div style="display:flex;align-items:center;gap:10px;margin:8px 0;">
      <div style="flex:1;height:8px;background:#334155;border-radius:4px;overflow:hidden;">
        <div style="width:{percentage}%;height:100%;background:linear-gradient(90deg,#60a5fa,#3b82f6);"></div>
      </div>
      <span style="font-weight:600;color:#cbd5e1;min-width:50px;">{percentage}%</span>
    </div>
    """

# ===== Main analyzer (HTML) — ใช้ของเดิมได้เลย =====
def analyze_text(text: str, model_name: str) -> str:
    if not text or not text.strip():
        return """
        <div style="padding:20px;background:rgba(248,113,113,.2);border-radius:12px;border-left:4px solid #f87171;">
          <div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
            <span style="font-size:20px;">⚠️</span> กรุณาใส่ข้อความที่ต้องการวิเคราะห์
          </div>
        </div>
        """
    sentences = split_sentences(text)
    if not sentences:
        return """
        <div style="padding:20px;background:rgba(248,113,113,.2);border-radius:12px;border-left:4px solid #f87171;">
          <div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
            <span style="font-size:20px;">⚠️</span> ไม่พบประโยคที่สามารถวิเคราะห์ได้ กรุณาใส่ข้อความที่ยาวกว่านี้
          </div>
        </div>
        """
    try:
        nlp = get_nlp(model_name)
    except Exception as e:
        return f"""
        <div style="padding:20px;background:rgba(248,113,113,.2);border-radius:12px;border-left:4px solid #f87171;">
          <div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
            <span style="font-size:20px;">❌</span> เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}
          </div>
        </div>
        """

    html_parts = [f"""
    <div style="background:linear-gradient(135deg,#1e3a8a 0%,#3b82f6 100%);color:#f8fafc;padding:24px;border-radius:16px 16px 0 0;margin-bottom:0;">
      <h2 style="margin:0;font-size:24px;font-weight:700;display:flex;align-items:center;gap:12px;">
        <span style="font-size:28px;">🧠</span> ผลการวิเคราะห์ความรู้สึก
      </h2>
      <p style="margin:8px 0 0 0;opacity:.9;font-size:14px;">โมเดล: {model_name.split('/')[-1]}</p>
    </div>
    """]

    sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0, "question": 0, "other": 0}
    total_confidence = 0
    sentence_results = []

    for i, sentence in enumerate(sentences, 1):
        try:
            result = nlp(sentence)[0]
            label = result['label']; score = float(result['score'])
            label_info = get_label_info(label, model_name)
            label_name = label_info["name"]
            if label_name in sentiment_counts:
                sentiment_counts[label_name] += 1
            else:
                sentiment_counts["other"] += 1
            total_confidence += score
            sentence_results.append({
                'sentence': sentence, 'label_info': label_info, 'score': score,
                'index': i, 'original_label': label
            })
        except Exception as e:
            logger.error(f"Error analyzing sentence {i}: {e}")
            sentence_results.append({'sentence': sentence, 'error': str(e), 'index': i})

    html_parts.append("""<div style="background:#0f172a;padding:0;border-radius:0 0 16px 16px;box-shadow:0 4px 20px rgba(0,0,0,.3);overflow:hidden;">""")

    for r in sentence_results:
        if 'error' in r:
            html_parts.append(f"""
            <div style="padding:20px;border-bottom:1px solid #1e293b;">
              <div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
                <span style="font-size:18px;">❌</span> เกิดข้อผิดพลาดในการวิเคราะห์ประโยคที่ {r['index']}
              </div>
              <p style="color:#94a3b8;margin:8px 0 0 0;font-size:14px;">{r['error']}</p>
            </div>
            """)
        else:
            li = r['label_info']; conf = create_confidence_bar(r['score'])
            html_parts.append(f"""
            <div style="padding:20px;border-bottom:1px solid #1e293b;transition:.2s;" onmouseover="this.style.background='#1e293b'" onmouseout="this.style.background='#0f172a'">
              <div style="display:flex;align-items:flex-start;gap:16px;">
                <div style="background:{li['bg']};padding:12px;border-radius:50%;min-width:48px;height:48px;display:flex;align-items:center;justify-content:center;">
                  <span style="font-size:20px;">{li['emoji']}</span>
                </div>
                <div style="flex:1;">
                  <div style="display:flex;align-items:center;gap:8px;margin-bottom:8px;">
                    <span style="background:{li['color']};color:#f8fafc;padding:4px 12px;border-radius:20px;font-size:12px;font-weight:600;text-transform:uppercase;">{li['description']}</span>
                    <span style="color:#94a3b8;font-size:12px;background:#1e293b;padding:2px 8px;border-radius:12px;">{r['original_label']}</span>
                    <span style="color:#94a3b8;font-size:14px;">ประโยคที่ {r['index']}</span>
                  </div>
                  <p style="color:#f8fafc;margin:0 0 12px 0;font-size:16px;line-height:1.5;">"{r['sentence'][:150]}{'...' if len(r['sentence'])>150 else ''}"</p>
                  <div style="color:#94a3b8;font-size:14px;margin-bottom:8px;">ความมั่นใจ:</div>
                  {conf}
                </div>
              </div>
            </div>
            """)

    total_sentences = len(sentences)
    avg_conf = total_confidence / total_sentences if total_sentences > 0 else 0
    colors = {"positive":"#34d399","negative":"#f87171","neutral":"#facc15","question":"#60a5fa","other":"#64748b"}
    emojis = {"positive":"😊","negative":"😢","neutral":"😐","question":"🤔","other":"🔍"}

    chart_items = []
    for s, c in sentiment_counts.items():
        if c > 0:
            pct = (c/total_sentences)*100
            chart_items.append(f"""
            <div style="display:flex;align-items:center;gap:12px;padding:12px;background:rgba(59,130,246,.1);border-radius:8px;">
              <span style="font-size:24px;">{emojis.get(s,'🔍')}</span>
              <div style="flex:1;">
                <div style="font-weight:600;color:#f8fafc;text-transform:capitalize;">{s}</div>
                <div style="color:#94a3b8;font-size:14px;">{c} ประโยค ({pct:.1f}%)</div>
              </div>
              <div style="width:60px;height:6px;background:#334155;border-radius:3px;overflow:hidden;">
                <div style="width:{pct}%;height:100%;background:{colors.get(s,'#64748b')};"></div>
              </div>
            </div>
            """)

    html_parts.append(f"""
      <div style="padding:24px;background:linear-gradient(135deg,#1e293b 0%,#0f172a 100%);">
        <h3 style="color:#f8fafc;margin:0 0 20px 0;font-size:20px;font-weight:700;display:flex;align-items:center;gap:8px;">
          <span style="font-size:24px;">📊</span> สรุปผลการวิเคราะห์
        </h3>
        <div style="display:grid;grid-template-columns:repeat(auto-fit,minmax(200px,1fr));gap:16px;margin-bottom:20px;">
          <div style="background:#1e293b;padding:20px;border-radius:12px;text-align:center;">
            <div style="font-size:32px;font-weight:700;color:#60a5fa;margin-bottom:4px;">{total_sentences}</div>
            <div style="color:#94a3b8;font-size:14px;">ประโยคทั้งหมด</div>
          </div>
          <div style="background:#1e293b;padding:20px;border-radius:12px;text-align:center;">
            <div style="font-size:32px;font-weight:700;color:#34d399;margin-bottom:4px;">{avg_conf*100:.0f}%</div>
            <div style="color:#94a3b8;font-size:14px;">ความมั่นใจเฉลี่ย</div>
          </div>
        </div>
        <div style="display:grid;gap:8px;">{"".join(chart_items)}</div>
      </div>
    </div>
    """)
    html_parts.append("</div>")
    return "".join(html_parts)

# ===== NEW: คืน HTML + JSON โครงสร้าง =====
def analyze_text_with_data(text: str, model_name: str) -> Tuple[str, str]:
    html = analyze_text(text, model_name)
    sentences = split_sentences(text)
    if not sentences:
        return html, json.dumps({"model": model_name, "items": [], "summary": {}}, ensure_ascii=False)
    try:
        nlp = get_nlp(model_name)
    except Exception:
        return html, json.dumps({"model": model_name, "items": [], "summary": {}}, ensure_ascii=False)

    items = []
    sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0, "question": 0, "other": 0}
    for i, sentence in enumerate(sentences, 1):
        try:
            r = nlp(sentence)[0]
            raw_label = r["label"]; score = float(r["score"])
            label_info = get_label_info(raw_label, model_name)
            label = label_info.get("name", "other")
            if label not in sentiment_counts:
                label = "other"
            sentiment_counts[label] += 1
            items.append({
                "index": i, "sentence": sentence, "label": label,
                "score": score, "raw_label": raw_label
            })
        except Exception as e:
            items.append({
                "index": i, "sentence": sentence, "label": "error",
                "score": 0.0, "raw_label": f"error: {e}"
            })

    results_json = json.dumps({"model": model_name, "items": items, "summary": sentiment_counts}, ensure_ascii=False)
    return html, results_json

# ===== NEW: ข้อความรวมตาม sentiment สำหรับ Copy =====
def build_copy_texts(results_json: str) -> Tuple[str, str, str, str, str]:
    try:
        data = json.loads(results_json)
    except Exception:
        return "", "", "", "", ""
    buckets = {"positive": [], "negative": [], "neutral": [], "question": [], "other": []}
    for it in data.get("items", []):
        lb = it.get("label", "other")
        if lb not in buckets:
            lb = "other"
        buckets[lb].append(f"{it.get('index','')}. {it.get('sentence','')}")
    j = lambda xs: "\n".join(xs) if xs else ""
    return j(buckets["positive"]), j(buckets["negative"]), j(buckets["neutral"]), j(buckets["question"]), j(buckets["other"])

# ===== NEW: Export CSV/XLSX =====
def export_csv(results_json: str) -> str:
    data = json.loads(results_json)
    items = data.get("items", [])
    if pd is None:
        import csv
        path = os.path.join(tempfile.gettempdir(), "sentiment_results.csv")
        with open(path, "w", encoding="utf-8", newline="") as f:
            w = csv.writer(f)
            w.writerow(["index","sentence","label","score","raw_label"])
            for it in items:
                w.writerow([it.get("index",""), it.get("sentence",""), it.get("label",""), it.get("score",""), it.get("raw_label","")])
        return path
    df = pd.DataFrame(items, columns=["index","sentence","label","score","raw_label"])
    path = os.path.join(tempfile.gettempdir(), "sentiment_results.csv")
    df.to_csv(path, index=False)
    return path

def export_xlsx(results_json: str) -> str:
    if pd is None:
        raise gr.Error("ต้องติดตั้ง pandas/openpyxl ก่อนจึงจะส่งออก .xlsx ได้")
    data = json.loads(results_json)
    items = data.get("items", [])
    df = pd.DataFrame(items, columns=["index","sentence","label","score","raw_label"])
    path = os.path.join(tempfile.gettempdir(), "sentiment_results.xlsx")
    with pd.ExcelWriter(path, engine="openpyxl") as writer:
        df.to_excel(writer, index=False, sheet_name="all")
        for s in ["positive","negative","neutral","question","other"]:
            sdf = df[df["label"] == s]
            if not sdf.empty:
                sdf.to_excel(writer, index=False, sheet_name=s)
    return path

# ===== CSS (ย่อเพื่อความกระชับ) =====
CUSTOM_CSS = """
* { font-family: 'Inter','Noto Sans Thai',sans-serif !important; }
body, .gradio-container { background: linear-gradient(135deg,#181f2a 0%,#232e3c 100%) !important; }
.main-uxui-card { background:#232e3c;border-radius:20px;border:1.5px solid #2d3a4d;padding:24px;color:#e3e8ef; }
.main-uxui-btn { padding:.9em 2em;border-radius:12px;font-weight:600;background:linear-gradient(90deg,#2563eb 0%,#1e293b 100%);color:#f8fafc;border:none; }
.main-uxui-input, .main-uxui-dropdown { border:1.5px solid #2d3a4d;background:#1e2533;color:#e3e8ef;padding:14px;border-radius:10px; }
.main-uxui-output { background:#1e2533;border:1.5px solid #2d3a4d;border-radius:14px;padding:18px; }
"""

# ===== UI =====
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base(), title="Sentiment Analysis") as demo:
    with gr.Column(elem_classes="main-uxui-card"):
        gr.HTML("<h1 style='text-align:center;margin:0 0 8px 0;'>Sentiment Analysis</h1><p style='text-align:center;color:#7da2e3;margin:0;'>วิเคราะห์ความรู้สึกหลายภาษา + Export ไฟล์</p>")

        with gr.Row():
            model_dropdown = gr.Dropdown(
                choices=[(desc, name) for name, desc in MODEL_LIST],  # label, value
                value=MODEL_LIST[0][0],
                label="เลือกโมเดล (Model)",
                elem_classes="main-uxui-dropdown"
            )
        with gr.Row():
            input_box = gr.Textbox(
                lines=5,
                placeholder="พิมพ์ข้อความ (รองรับหลายประโยค แยกด้วย ., ?, ! หรือขึ้นบรรทัดใหม่)",
                label="ข้อความที่ต้องการวิเคราะห์",
                elem_classes="main-uxui-input"
            )
        with gr.Row():
            analyze_btn = gr.Button("วิเคราะห์", elem_classes="main-uxui-btn")
            clear_btn = gr.Button("ล้างผลลัพธ์", elem_classes="main-uxui-btn")

        with gr.Tab("ผลลัพธ์"):
            output_html = gr.HTML(label="ผลลัพธ์", elem_classes="main-uxui-output")

        with gr.Tab("Copy ตาม Sentiment"):
            gr.Markdown("**คัดลอกข้อความที่จัดกลุ่มแล้วตาม sentiment**")
            pos_copy = gr.Textbox(label="😊 Positive", lines=8, show_copy_button=True)
            neg_copy = gr.Textbox(label="😢 Negative", lines=8, show_copy_button=True)
            neu_copy = gr.Textbox(label="😐 Neutral", lines=8, show_copy_button=True)
            q_copy   = gr.Textbox(label="🤔 Question", lines=6, show_copy_button=True)
            other_copy = gr.Textbox(label="🔍 Other/Unknown", lines=6, show_copy_button=True)

        with gr.Tab("Export"):
            results_json = gr.Textbox(visible=False)
            with gr.Row():
                export_csv_btn = gr.Button("⬇️ Export CSV", elem_classes="main-uxui-btn")
                export_xlsx_btn = gr.Button("⬇️ Export Excel (.xlsx)", elem_classes="main-uxui-btn")
            export_file = gr.File(label="ดาวน์โหลดไฟล์ที่นี่", interactive=False)

        gr.Examples(
            examples=[
                ["วันนี้อากาศดีมากๆ รู้สึกสดชื่นและมีความสุขมาก!"],
                ["เศร้ามากเลยวันนี้ งานเยอะเกินไป"],
                ["อาหารอร่อยดี แต่บริการช้ามาก"],
                ["คุณคิดอย่างไรกับเศรษฐกิจไทย?"],
                ["I love this product! It's amazing."],
                ["이 제품은 별로예요. 다시는 안 살 거예요."],
                ["This is the worst experience I've ever had."]
            ],
            inputs=input_box,
            label="ตัวอย่างข้อความ",
        )

    # ===== Callbacks =====
    def on_analyze(text, model):
        html, rjson = analyze_text_with_data(text, model)
        pos, neg, neu, qn, other = build_copy_texts(rjson)
        return html, rjson, pos, neg, neu, qn, other

    analyze_btn.click(on_analyze, [input_box, model_dropdown],
                      [output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])
    input_box.submit(on_analyze, [input_box, model_dropdown],
                     [output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])
    model_dropdown.change(on_analyze, [input_box, model_dropdown],
                          [output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])

    clear_btn.click(lambda: ("", "", "", "", "", "", ""), None,
                    [output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])

    export_csv_btn.click(export_csv, inputs=results_json, outputs=export_file)
    export_xlsx_btn.click(export_xlsx, inputs=results_json, outputs=export_file)

# ===== Launch =====
if __name__ == "__main__":
    demo.queue(max_size=50, default_concurrency_limit=10).launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True,
        show_api=False,
        quiet=False,
        ssl_verify=False,
        app_kwargs={"docs_url": None, "redoc_url": None},
    )