Spaces:
Sleeping
Sleeping
File size: 28,315 Bytes
4a247f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
# app.py — Sentiment Analysis with Copy & Export (CSV/XLSX)
import gradio as gr
from transformers import pipeline
import re
from functools import lru_cache
import logging
from typing import List, Dict, Tuple
import json
import os
import tempfile
# ===== NEW: pandas สำหรับ export CSV/XLSX =====
try:
import pandas as pd
except Exception:
pd = None
# ===== Logging =====
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ===== Model list =====
MODEL_LIST = [
("ZombitX64/MultiSent-E5-Pro", "🏆 MultiSent E5 Pro - แนะนำ (ความแม่นยำสูงสุด)"),
("ZombitX64/Thai-sentiment-e5", "🎯 Thai Sentiment E5 - เฉพาะภาษาไทย"),
("poom-sci/WangchanBERTa-finetuned-sentiment", "🔥 WangchanBERTa - โมเดลไทยยอดนิยม"),
("SandboxBhh/sentiment-thai-text-model", "✨ Sandbox Thai - เร็วและแม่นยำ"),
("ZombitX64/MultiSent-E5", "⚡ MultiSent E5 - รวดเร็ว"),
("Thaweewat/wangchanberta-hyperopt-sentiment-01", "🧠 WangchanBERTa Hyperopt"),
("cardiffnlp/twitter-xlm-roberta-base-sentiment", "🌐 XLM-RoBERTa - หลายภาษา"),
("phoner45/wangchan-sentiment-thai-text-model", "📱 Wangchan Mobile"),
("ZombitX64/Sentiment-01", "🔬 Sentiment v1"),
("ZombitX64/Sentiment-02", "🔬 Sentiment v2"),
("ZombitX64/Sentiment-03", "🔬 Sentiment v3"),
("ZombitX64/sentiment-103", "🔬 Sentiment 103"),
("ZombitX64/sentimentSumdata-v1", "🔬 sentimentSumdata-v1"),
("ZombitX64/wangchanberta-att-spm-uncased-sentiment", "wangchanberta-att-spm-uncased-sentiment"),
]
# ===== Cache model loading =====
@lru_cache(maxsize=3)
def get_nlp(model_name: str):
try:
return pipeline("sentiment-analysis", model=model_name)
except Exception as e:
logger.error(f"Error loading model {model_name}: {e}")
raise gr.Error(f"ไม่สามารถโหลดโมเดล {model_name} ได้: {str(e)}")
# ===== Label mappings =====
MODEL_LABEL_MAPPINGS = {
"ZombitX64/wangchanberta-att-spm-uncased-sentiment": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/MultiSent-E5-Pro": {
"LABEL_0": {"code": 0, "name": "question", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96,165,250,.2)", "description": "คำถาม"},
"LABEL_1": {"code": 1, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_2": {"code": 2, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_3": {"code": 3, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/Thai-sentiment-e5": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"poom-sci/WangchanBERTa-finetuned-sentiment": {
"neg": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"neu": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"pos": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"SandboxBhh/sentiment-thai-text-model": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/MultiSent-E5": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"Thaweewat/wangchanberta-hyperopt-sentiment-01": {
"neg": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"neu": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"pos": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"cardiffnlp/twitter-xlm-roberta-base-sentiment": {
"NEGATIVE": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"NEUTRAL": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"POSITIVE": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"phoner45/wangchan-sentiment-thai-text-model": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/Sentiment-01": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/Sentiment-02": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/Sentiment-03": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/sentiment-103": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
"ZombitX64/sentimentSumdata-v1": {
"LABEL_0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248,113,113,.2)", "description": "เชิงลบ"},
"LABEL_1": {"code": 1, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250,204,21,.2)", "description": "เป็นกลาง"},
"LABEL_2": {"code": 2, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52,211,153,.2)", "description": "เชิงบวก"},
},
}
def get_label_info(label: str, model_name: str) -> Dict:
model_mappings = MODEL_LABEL_MAPPINGS.get(model_name, {})
if label in model_mappings:
return model_mappings[label]
return {
"code": -1, "name": label.lower(), "emoji": "🔍",
"color": "#64748b", "bg": "rgba(100,116,139,.2)",
"description": f"ไม่ทราบ ({label})"
}
# ===== Helpers =====
def split_sentences(text: str) -> List[str]:
sentences = re.split(r'[.!?।\n]+', text)
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 2]
return sentences
def create_confidence_bar(score: float) -> str:
percentage = int(score * 100)
return f"""
<div style="display:flex;align-items:center;gap:10px;margin:8px 0;">
<div style="flex:1;height:8px;background:#334155;border-radius:4px;overflow:hidden;">
<div style="width:{percentage}%;height:100%;background:linear-gradient(90deg,#60a5fa,#3b82f6);"></div>
</div>
<span style="font-weight:600;color:#cbd5e1;min-width:50px;">{percentage}%</span>
</div>
"""
# ===== Main analyzer (HTML) — ใช้ของเดิมได้เลย =====
def analyze_text(text: str, model_name: str) -> str:
if not text or not text.strip():
return """
<div style="padding:20px;background:rgba(248,113,113,.2);border-radius:12px;border-left:4px solid #f87171;">
<div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
<span style="font-size:20px;">⚠️</span> กรุณาใส่ข้อความที่ต้องการวิเคราะห์
</div>
</div>
"""
sentences = split_sentences(text)
if not sentences:
return """
<div style="padding:20px;background:rgba(248,113,113,.2);border-radius:12px;border-left:4px solid #f87171;">
<div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
<span style="font-size:20px;">⚠️</span> ไม่พบประโยคที่สามารถวิเคราะห์ได้ กรุณาใส่ข้อความที่ยาวกว่านี้
</div>
</div>
"""
try:
nlp = get_nlp(model_name)
except Exception as e:
return f"""
<div style="padding:20px;background:rgba(248,113,113,.2);border-radius:12px;border-left:4px solid #f87171;">
<div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
<span style="font-size:20px;">❌</span> เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}
</div>
</div>
"""
html_parts = [f"""
<div style="background:linear-gradient(135deg,#1e3a8a 0%,#3b82f6 100%);color:#f8fafc;padding:24px;border-radius:16px 16px 0 0;margin-bottom:0;">
<h2 style="margin:0;font-size:24px;font-weight:700;display:flex;align-items:center;gap:12px;">
<span style="font-size:28px;">🧠</span> ผลการวิเคราะห์ความรู้สึก
</h2>
<p style="margin:8px 0 0 0;opacity:.9;font-size:14px;">โมเดล: {model_name.split('/')[-1]}</p>
</div>
"""]
sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0, "question": 0, "other": 0}
total_confidence = 0
sentence_results = []
for i, sentence in enumerate(sentences, 1):
try:
result = nlp(sentence)[0]
label = result['label']; score = float(result['score'])
label_info = get_label_info(label, model_name)
label_name = label_info["name"]
if label_name in sentiment_counts:
sentiment_counts[label_name] += 1
else:
sentiment_counts["other"] += 1
total_confidence += score
sentence_results.append({
'sentence': sentence, 'label_info': label_info, 'score': score,
'index': i, 'original_label': label
})
except Exception as e:
logger.error(f"Error analyzing sentence {i}: {e}")
sentence_results.append({'sentence': sentence, 'error': str(e), 'index': i})
html_parts.append("""<div style="background:#0f172a;padding:0;border-radius:0 0 16px 16px;box-shadow:0 4px 20px rgba(0,0,0,.3);overflow:hidden;">""")
for r in sentence_results:
if 'error' in r:
html_parts.append(f"""
<div style="padding:20px;border-bottom:1px solid #1e293b;">
<div style="color:#f87171;font-weight:600;display:flex;align-items:center;gap:8px;">
<span style="font-size:18px;">❌</span> เกิดข้อผิดพลาดในการวิเคราะห์ประโยคที่ {r['index']}
</div>
<p style="color:#94a3b8;margin:8px 0 0 0;font-size:14px;">{r['error']}</p>
</div>
""")
else:
li = r['label_info']; conf = create_confidence_bar(r['score'])
html_parts.append(f"""
<div style="padding:20px;border-bottom:1px solid #1e293b;transition:.2s;" onmouseover="this.style.background='#1e293b'" onmouseout="this.style.background='#0f172a'">
<div style="display:flex;align-items:flex-start;gap:16px;">
<div style="background:{li['bg']};padding:12px;border-radius:50%;min-width:48px;height:48px;display:flex;align-items:center;justify-content:center;">
<span style="font-size:20px;">{li['emoji']}</span>
</div>
<div style="flex:1;">
<div style="display:flex;align-items:center;gap:8px;margin-bottom:8px;">
<span style="background:{li['color']};color:#f8fafc;padding:4px 12px;border-radius:20px;font-size:12px;font-weight:600;text-transform:uppercase;">{li['description']}</span>
<span style="color:#94a3b8;font-size:12px;background:#1e293b;padding:2px 8px;border-radius:12px;">{r['original_label']}</span>
<span style="color:#94a3b8;font-size:14px;">ประโยคที่ {r['index']}</span>
</div>
<p style="color:#f8fafc;margin:0 0 12px 0;font-size:16px;line-height:1.5;">"{r['sentence'][:150]}{'...' if len(r['sentence'])>150 else ''}"</p>
<div style="color:#94a3b8;font-size:14px;margin-bottom:8px;">ความมั่นใจ:</div>
{conf}
</div>
</div>
</div>
""")
total_sentences = len(sentences)
avg_conf = total_confidence / total_sentences if total_sentences > 0 else 0
colors = {"positive":"#34d399","negative":"#f87171","neutral":"#facc15","question":"#60a5fa","other":"#64748b"}
emojis = {"positive":"😊","negative":"😢","neutral":"😐","question":"🤔","other":"🔍"}
chart_items = []
for s, c in sentiment_counts.items():
if c > 0:
pct = (c/total_sentences)*100
chart_items.append(f"""
<div style="display:flex;align-items:center;gap:12px;padding:12px;background:rgba(59,130,246,.1);border-radius:8px;">
<span style="font-size:24px;">{emojis.get(s,'🔍')}</span>
<div style="flex:1;">
<div style="font-weight:600;color:#f8fafc;text-transform:capitalize;">{s}</div>
<div style="color:#94a3b8;font-size:14px;">{c} ประโยค ({pct:.1f}%)</div>
</div>
<div style="width:60px;height:6px;background:#334155;border-radius:3px;overflow:hidden;">
<div style="width:{pct}%;height:100%;background:{colors.get(s,'#64748b')};"></div>
</div>
</div>
""")
html_parts.append(f"""
<div style="padding:24px;background:linear-gradient(135deg,#1e293b 0%,#0f172a 100%);">
<h3 style="color:#f8fafc;margin:0 0 20px 0;font-size:20px;font-weight:700;display:flex;align-items:center;gap:8px;">
<span style="font-size:24px;">📊</span> สรุปผลการวิเคราะห์
</h3>
<div style="display:grid;grid-template-columns:repeat(auto-fit,minmax(200px,1fr));gap:16px;margin-bottom:20px;">
<div style="background:#1e293b;padding:20px;border-radius:12px;text-align:center;">
<div style="font-size:32px;font-weight:700;color:#60a5fa;margin-bottom:4px;">{total_sentences}</div>
<div style="color:#94a3b8;font-size:14px;">ประโยคทั้งหมด</div>
</div>
<div style="background:#1e293b;padding:20px;border-radius:12px;text-align:center;">
<div style="font-size:32px;font-weight:700;color:#34d399;margin-bottom:4px;">{avg_conf*100:.0f}%</div>
<div style="color:#94a3b8;font-size:14px;">ความมั่นใจเฉลี่ย</div>
</div>
</div>
<div style="display:grid;gap:8px;">{"".join(chart_items)}</div>
</div>
</div>
""")
html_parts.append("</div>")
return "".join(html_parts)
# ===== NEW: คืน HTML + JSON โครงสร้าง =====
def analyze_text_with_data(text: str, model_name: str) -> Tuple[str, str]:
html = analyze_text(text, model_name)
sentences = split_sentences(text)
if not sentences:
return html, json.dumps({"model": model_name, "items": [], "summary": {}}, ensure_ascii=False)
try:
nlp = get_nlp(model_name)
except Exception:
return html, json.dumps({"model": model_name, "items": [], "summary": {}}, ensure_ascii=False)
items = []
sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0, "question": 0, "other": 0}
for i, sentence in enumerate(sentences, 1):
try:
r = nlp(sentence)[0]
raw_label = r["label"]; score = float(r["score"])
label_info = get_label_info(raw_label, model_name)
label = label_info.get("name", "other")
if label not in sentiment_counts:
label = "other"
sentiment_counts[label] += 1
items.append({
"index": i, "sentence": sentence, "label": label,
"score": score, "raw_label": raw_label
})
except Exception as e:
items.append({
"index": i, "sentence": sentence, "label": "error",
"score": 0.0, "raw_label": f"error: {e}"
})
results_json = json.dumps({"model": model_name, "items": items, "summary": sentiment_counts}, ensure_ascii=False)
return html, results_json
# ===== NEW: ข้อความรวมตาม sentiment สำหรับ Copy =====
def build_copy_texts(results_json: str) -> Tuple[str, str, str, str, str]:
try:
data = json.loads(results_json)
except Exception:
return "", "", "", "", ""
buckets = {"positive": [], "negative": [], "neutral": [], "question": [], "other": []}
for it in data.get("items", []):
lb = it.get("label", "other")
if lb not in buckets:
lb = "other"
buckets[lb].append(f"{it.get('index','')}. {it.get('sentence','')}")
j = lambda xs: "\n".join(xs) if xs else ""
return j(buckets["positive"]), j(buckets["negative"]), j(buckets["neutral"]), j(buckets["question"]), j(buckets["other"])
# ===== NEW: Export CSV/XLSX =====
def export_csv(results_json: str) -> str:
data = json.loads(results_json)
items = data.get("items", [])
if pd is None:
import csv
path = os.path.join(tempfile.gettempdir(), "sentiment_results.csv")
with open(path, "w", encoding="utf-8", newline="") as f:
w = csv.writer(f)
w.writerow(["index","sentence","label","score","raw_label"])
for it in items:
w.writerow([it.get("index",""), it.get("sentence",""), it.get("label",""), it.get("score",""), it.get("raw_label","")])
return path
df = pd.DataFrame(items, columns=["index","sentence","label","score","raw_label"])
path = os.path.join(tempfile.gettempdir(), "sentiment_results.csv")
df.to_csv(path, index=False)
return path
def export_xlsx(results_json: str) -> str:
if pd is None:
raise gr.Error("ต้องติดตั้ง pandas/openpyxl ก่อนจึงจะส่งออก .xlsx ได้")
data = json.loads(results_json)
items = data.get("items", [])
df = pd.DataFrame(items, columns=["index","sentence","label","score","raw_label"])
path = os.path.join(tempfile.gettempdir(), "sentiment_results.xlsx")
with pd.ExcelWriter(path, engine="openpyxl") as writer:
df.to_excel(writer, index=False, sheet_name="all")
for s in ["positive","negative","neutral","question","other"]:
sdf = df[df["label"] == s]
if not sdf.empty:
sdf.to_excel(writer, index=False, sheet_name=s)
return path
# ===== CSS (ย่อเพื่อความกระชับ) =====
CUSTOM_CSS = """
* { font-family: 'Inter','Noto Sans Thai',sans-serif !important; }
body, .gradio-container { background: linear-gradient(135deg,#181f2a 0%,#232e3c 100%) !important; }
.main-uxui-card { background:#232e3c;border-radius:20px;border:1.5px solid #2d3a4d;padding:24px;color:#e3e8ef; }
.main-uxui-btn { padding:.9em 2em;border-radius:12px;font-weight:600;background:linear-gradient(90deg,#2563eb 0%,#1e293b 100%);color:#f8fafc;border:none; }
.main-uxui-input, .main-uxui-dropdown { border:1.5px solid #2d3a4d;background:#1e2533;color:#e3e8ef;padding:14px;border-radius:10px; }
.main-uxui-output { background:#1e2533;border:1.5px solid #2d3a4d;border-radius:14px;padding:18px; }
"""
# ===== UI =====
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base(), title="Sentiment Analysis") as demo:
with gr.Column(elem_classes="main-uxui-card"):
gr.HTML("<h1 style='text-align:center;margin:0 0 8px 0;'>Sentiment Analysis</h1><p style='text-align:center;color:#7da2e3;margin:0;'>วิเคราะห์ความรู้สึกหลายภาษา + Export ไฟล์</p>")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=[(desc, name) for name, desc in MODEL_LIST], # label, value
value=MODEL_LIST[0][0],
label="เลือกโมเดล (Model)",
elem_classes="main-uxui-dropdown"
)
with gr.Row():
input_box = gr.Textbox(
lines=5,
placeholder="พิมพ์ข้อความ (รองรับหลายประโยค แยกด้วย ., ?, ! หรือขึ้นบรรทัดใหม่)",
label="ข้อความที่ต้องการวิเคราะห์",
elem_classes="main-uxui-input"
)
with gr.Row():
analyze_btn = gr.Button("วิเคราะห์", elem_classes="main-uxui-btn")
clear_btn = gr.Button("ล้างผลลัพธ์", elem_classes="main-uxui-btn")
with gr.Tab("ผลลัพธ์"):
output_html = gr.HTML(label="ผลลัพธ์", elem_classes="main-uxui-output")
with gr.Tab("Copy ตาม Sentiment"):
gr.Markdown("**คัดลอกข้อความที่จัดกลุ่มแล้วตาม sentiment**")
pos_copy = gr.Textbox(label="😊 Positive", lines=8, show_copy_button=True)
neg_copy = gr.Textbox(label="😢 Negative", lines=8, show_copy_button=True)
neu_copy = gr.Textbox(label="😐 Neutral", lines=8, show_copy_button=True)
q_copy = gr.Textbox(label="🤔 Question", lines=6, show_copy_button=True)
other_copy = gr.Textbox(label="🔍 Other/Unknown", lines=6, show_copy_button=True)
with gr.Tab("Export"):
results_json = gr.Textbox(visible=False)
with gr.Row():
export_csv_btn = gr.Button("⬇️ Export CSV", elem_classes="main-uxui-btn")
export_xlsx_btn = gr.Button("⬇️ Export Excel (.xlsx)", elem_classes="main-uxui-btn")
export_file = gr.File(label="ดาวน์โหลดไฟล์ที่นี่", interactive=False)
gr.Examples(
examples=[
["วันนี้อากาศดีมากๆ รู้สึกสดชื่นและมีความสุขมาก!"],
["เศร้ามากเลยวันนี้ งานเยอะเกินไป"],
["อาหารอร่อยดี แต่บริการช้ามาก"],
["คุณคิดอย่างไรกับเศรษฐกิจไทย?"],
["I love this product! It's amazing."],
["이 제품은 별로예요. 다시는 안 살 거예요."],
["This is the worst experience I've ever had."]
],
inputs=input_box,
label="ตัวอย่างข้อความ",
)
# ===== Callbacks =====
def on_analyze(text, model):
html, rjson = analyze_text_with_data(text, model)
pos, neg, neu, qn, other = build_copy_texts(rjson)
return html, rjson, pos, neg, neu, qn, other
analyze_btn.click(on_analyze, [input_box, model_dropdown],
[output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])
input_box.submit(on_analyze, [input_box, model_dropdown],
[output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])
model_dropdown.change(on_analyze, [input_box, model_dropdown],
[output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])
clear_btn.click(lambda: ("", "", "", "", "", "", ""), None,
[output_html, results_json, pos_copy, neg_copy, neu_copy, q_copy, other_copy])
export_csv_btn.click(export_csv, inputs=results_json, outputs=export_file)
export_xlsx_btn.click(export_xlsx, inputs=results_json, outputs=export_file)
# ===== Launch =====
if __name__ == "__main__":
demo.queue(max_size=50, default_concurrency_limit=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
show_api=False,
quiet=False,
ssl_verify=False,
app_kwargs={"docs_url": None, "redoc_url": None},
)
|