Spaces:
Runtime error
Runtime error
File size: 199,920 Bytes
d383abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 🤖 RAG Chatbot: ML/AI Knowledge Assistant\n",
"\n",
"[](https://colab.research.google.com/github/your-username/your-repo/blob/main/rag_notebook.ipynb)\n",
"\n",
"## 📋 Project Overview\n",
"\n",
"This notebook implements a sophisticated **Retrieval-Augmented Generation (RAG) chatbot** that provides comprehensive information about machine learning, deep learning, AI, and related topics. The chatbot combines the power of modern AI technologies to deliver accurate, contextual responses.\n",
"\n",
"### 🎯 What This Notebook Does\n",
"\n",
"1. **Loads ML/AI Knowledge**: Accesses The Pile dataset from Hugging Face\n",
"2. **Processes Text Data**: Filters and chunks relevant ML/AI content\n",
"3. **Creates Vector Database**: Stores embeddings in Chroma for fast retrieval\n",
"4. **Implements RAG Pipeline**: Retrieves relevant context and generates answers\n",
"5. **Tests the System**: Validates functionality with sample questions\n",
"\n",
"### 🛠️ Technologies Used\n",
"\n",
"- **🤖 Generation Model**: Google Gemini 2.5 Flash\n",
"- **🔗 RAG Framework**: LangChain\n",
"- **🗄️ Vector Database**: Chroma\n",
"- **📚 Dataset**: The Pile (EleutherAI/the_pile) from Hugging Face\n",
"- **🧠 Embeddings**: Sentence Transformers\n",
"\n",
"### 🚀 How to Run This Notebook\n",
"\n",
"1. **Open in Colab**: Click the badge above or upload to Google Colab\n",
"2. **Set API Key**: Add your Gemini API key to Colab secrets\n",
"3. **Run All Cells**: Execute cells sequentially (Ctrl+F9)\n",
"4. **Test Chatbot**: Try the sample questions at the end\n",
"\n",
"### 📊 Expected Outputs\n",
"\n",
"- **Vector Database**: Chroma collection with ML/AI knowledge\n",
"- **RAG Pipeline**: Fully functional question-answering system\n",
"- **Test Results**: Sample Q&A demonstrating chatbot capabilities\n",
"- **Configuration**: Settings file for deployment\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 📦 Step 1: Installation and Setup\n",
"\n",
"### 🔧 Required Packages\n",
"\n",
"This cell installs all necessary dependencies for the RAG chatbot:\n",
"\n",
"- **Streamlit**: Web interface framework\n",
"- **LangChain**: RAG pipeline orchestration\n",
"- **Chroma**: Vector database for embeddings\n",
"- **Sentence Transformers**: Text embedding models\n",
"- **Google Generative AI**: Gemini API integration\n",
"- **Hugging Face Datasets**: Dataset access\n",
"\n",
"### ⚠️ Important Notes\n",
"\n",
"- Run this cell first before any other cells\n",
"- Installation may take 2-3 minutes\n",
"- Restart runtime if you encounter import errors\n",
"- All packages are pinned to specific versions for compatibility\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install required packages\n",
"!pip install streamlit==1.28.1\n",
"!pip install langchain==0.1.0\n",
"!pip install langchain-community==0.0.10\n",
"!pip install langchain-google-genai==0.0.6\n",
"!pip install chromadb==0.4.18\n",
"!pip install datasets==2.14.6\n",
"!pip install transformers==4.35.2\n",
"!pip install sentence-transformers==2.2.2\n",
"!pip install google-generativeai==0.3.2\n",
"!pip install tiktoken==0.5.1\n",
"!pip install numpy==1.24.3\n",
"!pip install pandas==2.0.3\n",
"!pip install tqdm==4.66.1\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 🔑 Step 2: API Key Configuration\n",
"\n",
"### 🔐 Google Gemini API Setup\n",
"\n",
"To use this chatbot, you need a Google Gemini API key:\n",
"\n",
"1. **Get API Key**: Visit [Google AI Studio](https://makersuite.google.com/app/apikey)\n",
"2. **Create Key**: Generate a new API key\n",
"3. **Add to Colab**: Use the secrets manager (🔑 icon in sidebar)\n",
"4. **Set Secret Name**: `GEMINI_API_KEY`\n",
"\n",
"### 🛡️ Security Best Practices\n",
"\n",
"- Never hardcode API keys in notebooks\n",
"- Use Colab secrets for secure storage\n",
"- Keep your API key private and don't share it\n",
"- Monitor your API usage to avoid unexpected charges\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set up Google Gemini API key\n",
"import os\n",
"from google.colab import userdata\n",
"\n",
"# Get API key from Colab secrets\n",
"try:\n",
" GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')\n",
" os.environ['GOOGLE_API_KEY'] = GEMINI_API_KEY\n",
" print(\"✅ Gemini API key loaded successfully!\")\n",
"except:\n",
" print(\"❌ Please add your Gemini API key to Colab secrets:\")\n",
" print(\"1. Go to the key icon (🔑) in the left sidebar\")\n",
" print(\"2. Add a new secret with key 'GEMINI_API_KEY' and your API key as value\")\n",
" print(\"3. Restart the runtime and run this cell again\")\n",
" \n",
" # Alternative: Set directly (not recommended for production)\n",
" # GEMINI_API_KEY = \"your_api_key_here\"\n",
" # os.environ['GOOGLE_API_KEY'] = GEMINI_API_KEY\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 📚 Step 3: Dataset Loading and Processing\n",
"\n",
"### 🗃️ The Pile Dataset Overview\n",
"\n",
"**The Pile** is a large-scale, diverse text dataset created by EleutherAI for training language models. For this project, we:\n",
"\n",
"- **Access via API**: Use Hugging Face Datasets library (no local downloads)\n",
"- **Filter for ML/AI**: Extract content relevant to machine learning and AI\n",
"- **Process Text**: Clean, chunk, and prepare for embedding\n",
"- **Create Knowledge Base**: Build a searchable vector database\n",
"\n",
"### 🔍 Content Filtering Strategy\n",
"\n",
"We filter text samples using ML/AI keywords:\n",
"- Machine learning, deep learning, neural networks\n",
"- Artificial intelligence, algorithms, models\n",
"- Training, data, features, classification\n",
"- Regression, clustering, optimization, gradient, tensor\n",
"\n",
"### 📊 Processing Pipeline\n",
"\n",
"1. **Load Dataset**: Stream data from Hugging Face\n",
"2. **Filter Content**: Keep only ML/AI relevant text\n",
"3. **Clean Text**: Remove extra whitespace and format\n",
"4. **Chunk Text**: Split into manageable pieces (500 words)\n",
"5. **Validate Length**: Keep chunks between 100-2000 characters\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import required libraries\n",
"import pandas as pd\n",
"import numpy as np\n",
"from datasets import load_dataset\n",
"from tqdm import tqdm\n",
"import re\n",
"import os\n",
"\n",
"print(\"📚 Loading The Pile dataset...\")\n",
"\n",
"# Load a subset of The Pile dataset\n",
"# We'll use a smaller subset for demonstration to avoid memory issues\n",
"try:\n",
" # Load a specific subset that contains ML/AI content\n",
" dataset = load_dataset(\"EleutherAI/the_pile\", split=\"train\", streaming=True)\n",
" \n",
" # Take first 1000 samples for demonstration\n",
" texts = []\n",
" ml_keywords = ['machine learning', 'deep learning', 'neural network', 'artificial intelligence', \n",
" 'algorithm', 'model', 'training', 'data', 'feature', 'classification', \n",
" 'regression', 'clustering', 'optimization', 'gradient', 'tensor']\n",
" \n",
" print(\"🔍 Filtering ML/AI related content...\")\n",
" count = 0\n",
" for sample in tqdm(dataset, desc=\"Processing samples\"):\n",
" if count >= 1000: # Limit to 1000 samples for Colab\n",
" break\n",
" \n",
" text = sample['text']\n",
" # Check if text contains ML/AI keywords\n",
" if any(keyword in text.lower() for keyword in ml_keywords):\n",
" # Clean and preprocess text\n",
" text = re.sub(r'\\s+', ' ', text) # Remove extra whitespace\n",
" text = text.strip()\n",
" \n",
" # Only keep texts that are reasonable length (not too short or too long)\n",
" if 100 <= len(text) <= 2000:\n",
" texts.append(text)\n",
" count += 1\n",
" \n",
" print(f\"✅ Loaded {len(texts)} ML/AI related text samples\")\n",
" \n",
"except Exception as e:\n",
" print(f\"❌ Error loading dataset: {e}\")\n",
" print(\"🔄 Using fallback sample data...\")\n",
" \n",
" # Fallback sample data if The Pile is not accessible\n",
" texts = [\n",
" \"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data. Deep learning uses neural networks with multiple layers to process complex patterns in data.\",\n",
" \"Neural networks are computing systems inspired by biological neural networks. They consist of interconnected nodes that process information using a connectionist approach.\",\n",
" \"Supervised learning uses labeled training data to learn a mapping from inputs to outputs. Common algorithms include linear regression, decision trees, and support vector machines.\",\n",
" \"Unsupervised learning finds hidden patterns in data without labeled examples. Clustering algorithms like K-means group similar data points together.\",\n",
" \"Natural language processing combines computational linguistics with machine learning to help computers understand human language. It includes tasks like text classification and sentiment analysis.\",\n",
" \"Computer vision enables machines to interpret and understand visual information from the world. It uses deep learning models like convolutional neural networks.\",\n",
" \"Reinforcement learning is a type of machine learning where agents learn to make decisions by interacting with an environment and receiving rewards or penalties.\",\n",
" \"Feature engineering is the process of selecting and transforming raw data into features that can be used by machine learning algorithms. Good features can significantly improve model performance.\",\n",
" \"Cross-validation is a technique used to assess how well a machine learning model generalizes to new data. It involves splitting data into training and validation sets multiple times.\",\n",
" \"Overfitting occurs when a model learns the training data too well and performs poorly on new data. Regularization techniques help prevent overfitting.\"\n",
" ]\n",
" print(f\"✅ Using {len(texts)} sample texts\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 🧠 Step 4: Vector Database and Embeddings Setup\n",
"\n",
"### 🔧 Embedding Model Selection\n",
"\n",
"We use **Sentence Transformers** with the `all-MiniLM-L6-v2` model:\n",
"\n",
"- **Lightweight**: Fast and efficient for Colab environments\n",
"- **High Quality**: Good semantic understanding for ML/AI content\n",
"- **Multilingual**: Handles various text formats\n",
"- **Optimized**: Designed for similarity search tasks\n",
"\n",
"### 🗄️ Chroma Vector Database\n",
"\n",
"**Chroma** is our vector database choice because:\n",
"\n",
"- **Easy Setup**: Simple Python API\n",
"- **Persistent Storage**: Saves embeddings between sessions\n",
"- **Efficient Search**: Fast similarity search capabilities\n",
"- **Scalable**: Can handle large collections of documents\n",
"\n",
"### 📊 Database Architecture\n",
"\n",
"- **Collection Name**: `ml_ai_knowledge`\n",
"- **Storage**: Local directory `./chroma_db`\n",
"- **Metadata**: Document source, chunk index, text length\n",
"- **Indexing**: Automatic vector indexing for fast retrieval\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize embeddings and vector database\n",
"from sentence_transformers import SentenceTransformer\n",
"import chromadb\n",
"from chromadb.config import Settings\n",
"\n",
"print(\"🧠 Initializing embeddings model...\")\n",
"\n",
"# Use a lightweight sentence transformer model\n",
"embedding_model = SentenceTransformer('all-MiniLM-L6-v2')\n",
"print(\"✅ Embedding model loaded!\")\n",
"\n",
"print(\"🗄️ Setting up Chroma vector database...\")\n",
"\n",
"# Create Chroma client with persistent storage\n",
"chroma_client = chromadb.Client(Settings(\n",
" persist_directory=\"./chroma_db\",\n",
" anonymized_telemetry=False\n",
"))\n",
"\n",
"# Create or get collection\n",
"collection_name = \"ml_ai_knowledge\"\n",
"try:\n",
" collection = chroma_client.get_collection(collection_name)\n",
" print(f\"✅ Found existing collection: {collection_name}\")\n",
"except:\n",
" collection = chroma_client.create_collection(\n",
" name=collection_name,\n",
" metadata={\"description\": \"ML/AI knowledge base from The Pile dataset\"}\n",
" )\n",
" print(f\"✅ Created new collection: {collection_name}\")\n",
"\n",
"print(\"🎯 Vector database ready!\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 📝 Step 5: Text Processing and Embedding Storage\n",
"\n",
"### 🔄 Text Chunking Strategy\n",
"\n",
"We implement intelligent text chunking to optimize retrieval:\n",
"\n",
"- **Chunk Size**: 500 words per chunk\n",
"- **Overlap**: 50 words between chunks (prevents information loss)\n",
"- **Minimum Length**: 50 characters (filters out empty chunks)\n",
"- **Metadata**: Track source document and chunk position\n",
"\n",
"### 💾 Batch Processing\n",
"\n",
"To handle large datasets efficiently:\n",
"\n",
"- **Batch Size**: 100 documents per batch\n",
"- **Memory Management**: Process in chunks to avoid OOM errors\n",
"- **Progress Tracking**: Visual progress bars for long operations\n",
"- **Error Handling**: Graceful handling of processing errors\n",
"\n",
"### 🏷️ Document Metadata\n",
"\n",
"Each document chunk includes:\n",
"\n",
"- **Source ID**: Original document identifier\n",
"- **Chunk Index**: Position within the document\n",
"- **Total Chunks**: Number of chunks in the document\n",
"- **Text Length**: Character count for quality control\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Process and embed text data\n",
"import uuid\n",
"from tqdm import tqdm\n",
"\n",
"def chunk_text(text, chunk_size=500, overlap=50):\n",
" \"\"\"Split text into overlapping chunks\"\"\"\n",
" words = text.split()\n",
" chunks = []\n",
" \n",
" for i in range(0, len(words), chunk_size - overlap):\n",
" chunk = ' '.join(words[i:i + chunk_size])\n",
" if len(chunk.strip()) > 50: # Only keep substantial chunks\n",
" chunks.append(chunk)\n",
" \n",
" return chunks\n",
"\n",
"print(\"📝 Processing and chunking text data...\")\n",
"\n",
"# Check if collection already has data\n",
"existing_count = collection.count()\n",
"print(f\"📊 Current documents in collection: {existing_count}\")\n",
"\n",
"if existing_count == 0:\n",
" print(\"🔄 Adding new documents to collection...\")\n",
" \n",
" all_chunks = []\n",
" chunk_ids = []\n",
" chunk_metadatas = []\n",
" \n",
" for i, text in enumerate(tqdm(texts, desc=\"Processing texts\")):\n",
" chunks = chunk_text(text)\n",
" \n",
" for j, chunk in enumerate(chunks):\n",
" chunk_id = f\"doc_{i}_chunk_{j}\"\n",
" metadata = {\n",
" \"source\": f\"the_pile_doc_{i}\",\n",
" \"chunk_index\": j,\n",
" \"total_chunks\": len(chunks),\n",
" \"text_length\": len(chunk)\n",
" }\n",
" \n",
" all_chunks.append(chunk)\n",
" chunk_ids.append(chunk_id)\n",
" chunk_metadatas.append(metadata)\n",
" \n",
" print(f\"📊 Created {len(all_chunks)} text chunks\")\n",
" \n",
" # Add documents to Chroma in batches to avoid memory issues\n",
" batch_size = 100\n",
" for i in tqdm(range(0, len(all_chunks), batch_size), desc=\"Adding to Chroma\"):\n",
" batch_chunks = all_chunks[i:i + batch_size]\n",
" batch_ids = chunk_ids[i:i + batch_size]\n",
" batch_metadatas = chunk_metadatas[i:i + batch_size]\n",
" \n",
" collection.add(\n",
" documents=batch_chunks,\n",
" ids=batch_ids,\n",
" metadatas=batch_metadatas\n",
" )\n",
" \n",
" print(\"✅ All documents added to Chroma!\")\n",
"else:\n",
" print(\"✅ Collection already contains data, skipping addition\")\n",
"\n",
"# Verify the collection\n",
"final_count = collection.count()\n",
"print(f\"📊 Final document count: {final_count}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 🤖 Step 6: Google Gemini Model Integration\n",
"\n",
"### 🧠 Model Configuration\n",
"\n",
"We use **Google Gemini 2.5 Flash** for text generation:\n",
"\n",
"- **Model**: `gemini-2.0-flash-exp` (latest available)\n",
"- **Temperature**: 0.7 (balanced creativity and accuracy)\n",
"- **Max Tokens**: 1024 (sufficient for detailed responses)\n",
"- **System Integration**: LangChain wrapper for easy use\n",
"\n",
"### 🔧 LangChain Integration\n",
"\n",
"**LangChain** provides:\n",
"\n",
"- **Unified Interface**: Consistent API across different LLMs\n",
"- **Message Handling**: System and human message management\n",
"- **Error Handling**: Robust error management and retries\n",
"- **Streaming**: Optional streaming responses\n",
"\n",
"### 🧪 Model Testing\n",
"\n",
"We test the model to ensure:\n",
"\n",
"- **API Connectivity**: Verify API key and connection\n",
"- **Response Quality**: Check output format and content\n",
"- **Error Handling**: Test error scenarios\n",
"- **Performance**: Measure response times\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize Gemini model\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"from langchain.schema import HumanMessage, SystemMessage\n",
"\n",
"print(\"🤖 Initializing Gemini 2.5 Flash model...\")\n",
"\n",
"# Initialize the Gemini model\n",
"llm = ChatGoogleGenerativeAI(\n",
" model=\"gemini-2.0-flash-exp\", # Using the latest available model\n",
" temperature=0.7,\n",
" max_output_tokens=1024,\n",
" convert_system_message_to_human=True\n",
")\n",
"\n",
"print(\"✅ Gemini model initialized!\")\n",
"\n",
"# Test the model\n",
"try:\n",
" test_response = llm.invoke(\"Hello! Can you tell me about machine learning?\")\n",
" print(\"🧪 Test response:\", test_response.content[:100] + \"...\")\n",
" print(\"✅ Gemini model is working!\")\n",
"except Exception as e:\n",
" print(f\"❌ Error testing Gemini model: {e}\")\n",
" print(\"Please check your API key and try again.\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 🔍 Step 7: RAG Pipeline Implementation\n",
"\n",
"### 🔄 Complete RAG Workflow\n",
"\n",
"The RAG pipeline combines retrieval and generation:\n",
"\n",
"1. **Query Processing**: User question is received\n",
"2. **Document Retrieval**: Similar documents are found using vector search\n",
"3. **Context Assembly**: Retrieved documents are combined into context\n",
"4. **Answer Generation**: Gemini generates response using context\n",
"5. **Response Delivery**: Formatted answer is returned to user\n",
"\n",
"### 🎯 Retrieval Strategy\n",
"\n",
"- **Similarity Search**: Cosine similarity between query and documents\n",
"- **Top-K Results**: Retrieve top 5 most relevant documents\n",
"- **Context Length**: Combine retrieved documents for comprehensive context\n",
"- **Metadata Tracking**: Track similarity scores and document sources\n",
"\n",
"### 🤖 Generation Strategy\n",
"\n",
"- **System Prompt**: Specialized instructions for ML/AI responses\n",
"- **Context Integration**: Retrieved documents used as context\n",
"- **Response Formatting**: Markdown support for rich text\n",
"- **Error Handling**: Graceful handling of generation errors\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create RAG pipeline\n",
"def retrieve_relevant_docs(query, n_results=5):\n",
" \"\"\"Retrieve relevant documents from Chroma\"\"\"\n",
" try:\n",
" results = collection.query(\n",
" query_texts=[query],\n",
" n_results=n_results\n",
" )\n",
" \n",
" # Extract documents and metadata\n",
" documents = results['documents'][0]\n",
" metadatas = results['metadatas'][0]\n",
" distances = results['distances'][0]\n",
" \n",
" return documents, metadatas, distances\n",
" except Exception as e:\n",
" print(f\"Error retrieving documents: {e}\")\n",
" return [], [], []\n",
"\n",
"def create_context(documents):\n",
" \"\"\"Create context string from retrieved documents\"\"\"\n",
" context = \"\\n\\n\".join(documents)\n",
" return context\n",
"\n",
"def generate_answer(query, context):\n",
" \"\"\"Generate answer using Gemini with retrieved context\"\"\"\n",
" system_prompt = \"\"\"You are an AI assistant specialized in machine learning, deep learning, and artificial intelligence. \n",
" Use the provided context to answer questions accurately and comprehensively. If the context doesn't contain enough \n",
" information, you can supplement with your general knowledge, but always prioritize the provided context.\n",
" \n",
" Provide clear, well-structured answers with examples when appropriate.\"\"\"\n",
" \n",
" user_prompt = f\"\"\"Context:\n",
" {context}\n",
" \n",
" Question: {query}\n",
" \n",
" Please provide a comprehensive answer based on the context above.\"\"\"\n",
" \n",
" try:\n",
" messages = [\n",
" SystemMessage(content=system_prompt),\n",
" HumanMessage(content=user_prompt)\n",
" ]\n",
" \n",
" response = llm.invoke(messages)\n",
" return response.content\n",
" except Exception as e:\n",
" return f\"Error generating answer: {e}\"\n",
"\n",
"def rag_pipeline(query, n_results=5):\n",
" \"\"\"Complete RAG pipeline\"\"\"\n",
" print(f\"🔍 Processing query: '{query}'\")\n",
" \n",
" # Retrieve relevant documents\n",
" documents, metadatas, distances = retrieve_relevant_docs(query, n_results)\n",
" \n",
" if not documents:\n",
" return \"Sorry, I couldn't find relevant information for your query.\"\n",
" \n",
" print(f\"📚 Retrieved {len(documents)} relevant documents\")\n",
" \n",
" # Create context\n",
" context = create_context(documents)\n",
" \n",
" # Generate answer\n",
" answer = generate_answer(query, context)\n",
" \n",
" return answer, documents, metadatas, distances\n",
"\n",
"print(\"✅ RAG pipeline created!\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 🧪 Step 8: System Testing and Validation\n",
"\n",
"### 🎯 Test Questions\n",
"\n",
"We test the RAG system with diverse ML/AI questions covering:\n",
"\n",
"- **Basic Concepts**: Fundamental ML/AI definitions\n",
"- **Algorithms**: Specific algorithm explanations\n",
"- **Applications**: Real-world use cases\n",
"- **Technical Details**: Deep technical concepts\n",
"- **Advanced Topics**: Cutting-edge AI research\n",
"\n",
"### 📊 Performance Metrics\n",
"\n",
"During testing, we evaluate:\n",
"\n",
"- **Response Quality**: Accuracy and relevance of answers\n",
"- **Retrieval Performance**: Quality of retrieved documents\n",
"- **Response Time**: Speed of query processing\n",
"- **Context Relevance**: How well retrieved context matches queries\n",
"\n",
"### 🔍 Debugging Information\n",
"\n",
"Each test shows:\n",
"\n",
"- **Retrieved Documents**: Number and content of retrieved chunks\n",
"- **Similarity Scores**: Distance metrics for relevance assessment\n",
"- **Response Content**: Generated answer quality\n",
"- **Error Handling**: Any issues encountered\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test the RAG system\n",
"test_questions = [\n",
" \"What is machine learning?\",\n",
" \"How do neural networks work?\",\n",
" \"What is the difference between supervised and unsupervised learning?\",\n",
" \"Explain deep learning\",\n",
" \"What is overfitting in machine learning?\"\n",
"]\n",
"\n",
"print(\"🧪 Testing RAG system with sample questions...\\n\")\n",
"\n",
"for i, question in enumerate(test_questions, 1):\n",
" print(f\"❓ Question {i}: {question}\")\n",
" print(\"-\" * 50)\n",
" \n",
" try:\n",
" answer, documents, metadatas, distances = rag_pipeline(question)\n",
" print(f\"🤖 Answer: {answer}\")\n",
" print(f\"📊 Retrieved {len(documents)} documents\")\n",
" print(f\"🎯 Similarity scores: {[f'{d:.3f}' for d in distances]}\")\n",
" print(\"\\n\" + \"=\"*80 + \"\\n\")\n",
" except Exception as e:\n",
" print(f\"❌ Error: {e}\")\n",
" print(\"\\n\" + \"=\"*80 + \"\\n\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 💾 Step 9: Configuration and Deployment Preparation\n",
"\n",
"### 🔧 Configuration Management\n",
"\n",
"We save system configuration for deployment:\n",
"\n",
"- **Model Settings**: Embedding model, LLM parameters\n",
"- **Database Config**: Collection name, storage settings\n",
"- **Pipeline Settings**: Retrieval parameters, generation settings\n",
"- **Version Info**: Component versions for reproducibility\n",
"\n",
"### 📁 Output Files\n",
"\n",
"The notebook generates:\n",
"\n",
"- **Vector Database**: `./chroma_db/` directory with embeddings\n",
"- **Configuration**: `rag_config.json` with system settings\n",
"- **Test Results**: Validation of system functionality\n",
"- **Documentation**: Setup and usage instructions\n",
"\n",
"### 🚀 Deployment Readiness\n",
"\n",
"The system is now ready for:\n",
"\n",
"- **Streamlit Deployment**: Use `app.py` for web interface\n",
"- **Hugging Face Spaces**: Deploy to cloud platform\n",
"- **Local Development**: Run in local environment\n",
"- **Production Use**: Scale for multiple users\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Save components for Streamlit app\n",
"import pickle\n",
"import json\n",
"\n",
"print(\"💾 Saving components for Streamlit app...\")\n",
"\n",
"# Save the RAG pipeline functions and configuration\n",
"rag_config = {\n",
" 'collection_name': collection_name,\n",
" 'embedding_model_name': 'all-MiniLM-L6-v2',\n",
" 'gemini_model': 'gemini-2.0-flash-exp',\n",
" 'temperature': 0.7,\n",
" 'max_output_tokens': 1024,\n",
" 'n_results': 5\n",
"}\n",
"\n",
"# Save configuration\n",
"with open('rag_config.json', 'w') as f:\n",
" json.dump(rag_config, f, indent=2)\n",
"\n",
"print(\"✅ Configuration saved to rag_config.json\")\n",
"\n",
"# Create a simple test to verify everything works\n",
"print(\"\\n🎯 Final verification test...\")\n",
"test_query = \"What is artificial intelligence?\"\n",
"try:\n",
" answer, docs, metas, dists = rag_pipeline(test_query)\n",
" print(f\"✅ Test successful! Answer length: {len(answer)} characters\")\n",
" print(f\"📊 Retrieved {len(docs)} documents\")\n",
"except Exception as e:\n",
" print(f\"❌ Test failed: {e}\")\n",
"\n",
"print(\"\\n🎉 RAG system is ready!\")\n",
"print(\"📁 Files created:\")\n",
"print(\" - chroma_db/ (vector database)\")\n",
"print(\" - rag_config.json (configuration)\")\n",
"print(\"\\n🚀 You can now use this system in the Streamlit app!\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iKl63WFB8KGV"
},
"source": [
"# 🤖 RAG Chatbot: ML/AI Knowledge Assistant\n",
"\n",
"This notebook implements a Retrieval-Augmented Generation (RAG) chatbot that provides information about machine learning, deep learning, AI, and related topics using:\n",
"\n",
"- **Generation Model**: Google Gemini 2.5 Flash\n",
"- **RAG Framework**: LangChain\n",
"- **Vector Database**: Chroma\n",
"- **Dataset**: The Pile (EleutherAI/the_pile) from Hugging Face\n",
"\n",
"## 🎯 Project Overview\n",
"\n",
"The chatbot works by:\n",
"1. Loading text data from The Pile dataset\n",
"2. Preprocessing and embedding the text\n",
"3. Storing embeddings in Chroma vector database\n",
"4. Retrieving relevant context for user queries\n",
"5. Generating answers using Gemini 2.5 Flash with retrieved context\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_ZAXLi2l8KGX"
},
"source": [
"## 📦 Installation and Setup\n",
"\n",
"First, let's install all required packages:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"collapsed": true,
"id": "fDpasd0-8KGX",
"outputId": "6b2904de-54e4-4808-ab4b-074636ca272f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting streamlit==1.28.1\n",
" Downloading streamlit-1.28.1-py2.py3-none-any.whl.metadata (8.1 kB)\n",
"Requirement already satisfied: altair<6,>=4.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (5.5.0)\n",
"Requirement already satisfied: blinker<2,>=1.0.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (1.9.0)\n",
"Requirement already satisfied: cachetools<6,>=4.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (5.5.2)\n",
"Requirement already satisfied: click<9,>=7.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (8.3.0)\n",
"Collecting importlib-metadata<7,>=1.4 (from streamlit==1.28.1)\n",
" Downloading importlib_metadata-6.11.0-py3-none-any.whl.metadata (4.9 kB)\n",
"Collecting numpy<2,>=1.19.3 (from streamlit==1.28.1)\n",
" Downloading numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.0/61.0 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting packaging<24,>=16.8 (from streamlit==1.28.1)\n",
" Downloading packaging-23.2-py3-none-any.whl.metadata (3.2 kB)\n",
"Requirement already satisfied: pandas<3,>=1.3.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (2.2.2)\n",
"Collecting pillow<11,>=7.1.0 (from streamlit==1.28.1)\n",
" Downloading pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl.metadata (9.2 kB)\n",
"Collecting protobuf<5,>=3.20 (from streamlit==1.28.1)\n",
" Downloading protobuf-4.25.8-cp37-abi3-manylinux2014_x86_64.whl.metadata (541 bytes)\n",
"Requirement already satisfied: pyarrow>=6.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (18.1.0)\n",
"Requirement already satisfied: python-dateutil<3,>=2.7.3 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (2.9.0.post0)\n",
"Requirement already satisfied: requests<3,>=2.27 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (2.32.4)\n",
"Requirement already satisfied: rich<14,>=10.14.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (13.9.4)\n",
"Requirement already satisfied: tenacity<9,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (8.5.0)\n",
"Requirement already satisfied: toml<2,>=0.10.1 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (0.10.2)\n",
"Requirement already satisfied: typing-extensions<5,>=4.3.0 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (4.15.0)\n",
"Requirement already satisfied: tzlocal<6,>=1.1 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (5.3.1)\n",
"Collecting validators<1,>=0.2 (from streamlit==1.28.1)\n",
" Downloading validators-0.35.0-py3-none-any.whl.metadata (3.9 kB)\n",
"Requirement already satisfied: gitpython!=3.1.19,<4,>=3.0.7 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (3.1.45)\n",
"Collecting pydeck<1,>=0.8.0b4 (from streamlit==1.28.1)\n",
" Downloading pydeck-0.9.1-py2.py3-none-any.whl.metadata (4.1 kB)\n",
"Requirement already satisfied: tornado<7,>=6.0.3 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (6.5.1)\n",
"Requirement already satisfied: watchdog>=2.1.5 in /usr/local/lib/python3.12/dist-packages (from streamlit==1.28.1) (6.0.0)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from altair<6,>=4.0->streamlit==1.28.1) (3.1.6)\n",
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.12/dist-packages (from altair<6,>=4.0->streamlit==1.28.1) (4.25.1)\n",
"Requirement already satisfied: narwhals>=1.14.2 in /usr/local/lib/python3.12/dist-packages (from altair<6,>=4.0->streamlit==1.28.1) (2.9.0)\n",
"Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.12/dist-packages (from gitpython!=3.1.19,<4,>=3.0.7->streamlit==1.28.1) (4.0.12)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.12/dist-packages (from importlib-metadata<7,>=1.4->streamlit==1.28.1) (3.23.0)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas<3,>=1.3.0->streamlit==1.28.1) (2025.2)\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas<3,>=1.3.0->streamlit==1.28.1) (2025.2)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil<3,>=2.7.3->streamlit==1.28.1) (1.17.0)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit==1.28.1) (3.4.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit==1.28.1) (3.11)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit==1.28.1) (2.5.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit==1.28.1) (2025.10.5)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.12/dist-packages (from rich<14,>=10.14.0->streamlit==1.28.1) (4.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.12/dist-packages (from rich<14,>=10.14.0->streamlit==1.28.1) (2.19.2)\n",
"Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.12/dist-packages (from gitdb<5,>=4.0.1->gitpython!=3.1.19,<4,>=3.0.7->streamlit==1.28.1) (5.0.2)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->altair<6,>=4.0->streamlit==1.28.1) (3.0.3)\n",
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit==1.28.1) (25.4.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit==1.28.1) (2025.9.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit==1.28.1) (0.37.0)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit==1.28.1) (0.27.1)\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.12/dist-packages (from markdown-it-py>=2.2.0->rich<14,>=10.14.0->streamlit==1.28.1) (0.1.2)\n",
"Downloading streamlit-1.28.1-py2.py3-none-any.whl (8.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.4/8.4 MB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading importlib_metadata-6.11.0-py3-none-any.whl (23 kB)\n",
"Downloading numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.0/18.0 MB\u001b[0m \u001b[31m64.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading packaging-23.2-py3-none-any.whl (53 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl (4.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m92.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading protobuf-4.25.8-cp37-abi3-manylinux2014_x86_64.whl (294 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m294.9/294.9 kB\u001b[0m \u001b[31m17.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading pydeck-0.9.1-py2.py3-none-any.whl (6.9 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.9/6.9 MB\u001b[0m \u001b[31m68.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading validators-0.35.0-py3-none-any.whl (44 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.7/44.7 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: validators, protobuf, pillow, packaging, numpy, importlib-metadata, pydeck, streamlit\n",
" Attempting uninstall: protobuf\n",
" Found existing installation: protobuf 5.29.5\n",
" Uninstalling protobuf-5.29.5:\n",
" Successfully uninstalled protobuf-5.29.5\n",
" Attempting uninstall: pillow\n",
" Found existing installation: pillow 11.3.0\n",
" Uninstalling pillow-11.3.0:\n",
" Successfully uninstalled pillow-11.3.0\n",
" Attempting uninstall: packaging\n",
" Found existing installation: packaging 25.0\n",
" Uninstalling packaging-25.0:\n",
" Successfully uninstalled packaging-25.0\n",
" Attempting uninstall: numpy\n",
" Found existing installation: numpy 2.0.2\n",
" Uninstalling numpy-2.0.2:\n",
" Successfully uninstalled numpy-2.0.2\n",
" Attempting uninstall: importlib-metadata\n",
" Found existing installation: importlib_metadata 8.7.0\n",
" Uninstalling importlib_metadata-8.7.0:\n",
" Successfully uninstalled importlib_metadata-8.7.0\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"db-dtypes 1.4.3 requires packaging>=24.2.0, but you have packaging 23.2 which is incompatible.\n",
"google-cloud-bigquery 3.38.0 requires packaging>=24.2.0, but you have packaging 23.2 which is incompatible.\n",
"xarray 2025.10.1 requires packaging>=24.1, but you have packaging 23.2 which is incompatible.\n",
"jaxlib 0.7.2 requires numpy>=2.0, but you have numpy 1.26.4 which is incompatible.\n",
"opencv-contrib-python 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= \"3.9\", but you have numpy 1.26.4 which is incompatible.\n",
"jax 0.7.2 requires numpy>=2.0, but you have numpy 1.26.4 which is incompatible.\n",
"ydf 0.13.0 requires protobuf<7.0.0,>=5.29.1, but you have protobuf 4.25.8 which is incompatible.\n",
"opencv-python-headless 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= \"3.9\", but you have numpy 1.26.4 which is incompatible.\n",
"opencv-python 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= \"3.9\", but you have numpy 1.26.4 which is incompatible.\n",
"pytensor 2.35.1 requires numpy>=2.0, but you have numpy 1.26.4 which is incompatible.\n",
"grpcio-status 1.71.2 requires protobuf<6.0dev,>=5.26.1, but you have protobuf 4.25.8 which is incompatible.\n",
"thinc 8.3.6 requires numpy<3.0.0,>=2.0.0, but you have numpy 1.26.4 which is incompatible.\n",
"opentelemetry-proto 1.37.0 requires protobuf<7.0,>=5.0, but you have protobuf 4.25.8 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed importlib-metadata-6.11.0 numpy-1.26.4 packaging-23.2 pillow-10.4.0 protobuf-4.25.8 pydeck-0.9.1 streamlit-1.28.1 validators-0.35.0\n"
]
},
{
"data": {
"application/vnd.colab-display-data+json": {
"id": "5e32996eb2e54f5eb325b2894ed2cc8b",
"pip_warning": {
"packages": [
"PIL",
"google",
"numpy",
"packaging"
]
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting langchain==0.1.0\n",
" Downloading langchain-0.1.0-py3-none-any.whl.metadata (13 kB)\n",
"Requirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (6.0.3)\n",
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.0.44)\n",
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (3.13.1)\n",
"Collecting dataclasses-json<0.7,>=0.5.7 (from langchain==0.1.0)\n",
" Downloading dataclasses_json-0.6.7-py3-none-any.whl.metadata (25 kB)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (1.33)\n",
"Collecting langchain-community<0.1,>=0.0.9 (from langchain==0.1.0)\n",
" Downloading langchain_community-0.0.38-py3-none-any.whl.metadata (8.7 kB)\n",
"Collecting langchain-core<0.2,>=0.1.7 (from langchain==0.1.0)\n",
" Downloading langchain_core-0.1.53-py3-none-any.whl.metadata (5.9 kB)\n",
"Collecting langsmith<0.1.0,>=0.0.77 (from langchain==0.1.0)\n",
" Downloading langsmith-0.0.92-py3-none-any.whl.metadata (9.9 kB)\n",
"Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (1.26.4)\n",
"Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.11.10)\n",
"Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.32.4)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (8.5.0)\n",
"Requirement already satisfied: aiohappyeyeballs>=2.5.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (2.6.1)\n",
"Requirement already satisfied: aiosignal>=1.4.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.4.0)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (25.4.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.8.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (6.7.0)\n",
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (0.4.1)\n",
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.22.0)\n",
"Collecting marshmallow<4.0.0,>=3.18.0 (from dataclasses-json<0.7,>=0.5.7->langchain==0.1.0)\n",
" Downloading marshmallow-3.26.1-py3-none-any.whl.metadata (7.3 kB)\n",
"Collecting typing-inspect<1,>=0.4.0 (from dataclasses-json<0.7,>=0.5.7->langchain==0.1.0)\n",
" Downloading typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.12/dist-packages (from jsonpatch<2.0,>=1.33->langchain==0.1.0) (3.0.0)\n",
"INFO: pip is looking at multiple versions of langchain-community to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting langchain-community<0.1,>=0.0.9 (from langchain==0.1.0)\n",
" Downloading langchain_community-0.0.37-py3-none-any.whl.metadata (8.7 kB)\n",
" Downloading langchain_community-0.0.36-py3-none-any.whl.metadata (8.7 kB)\n",
" Downloading langchain_community-0.0.35-py3-none-any.whl.metadata (8.7 kB)\n",
" Downloading langchain_community-0.0.34-py3-none-any.whl.metadata (8.5 kB)\n",
" Downloading langchain_community-0.0.33-py3-none-any.whl.metadata (8.5 kB)\n",
" Downloading langchain_community-0.0.32-py3-none-any.whl.metadata (8.5 kB)\n",
" Downloading langchain_community-0.0.31-py3-none-any.whl.metadata (8.4 kB)\n",
"INFO: pip is still looking at multiple versions of langchain-community to determine which version is compatible with other requirements. This could take a while.\n",
" Downloading langchain_community-0.0.30-py3-none-any.whl.metadata (8.4 kB)\n",
" Downloading langchain_community-0.0.29-py3-none-any.whl.metadata (8.3 kB)\n",
" Downloading langchain_community-0.0.28-py3-none-any.whl.metadata (8.3 kB)\n",
" Downloading langchain_community-0.0.27-py3-none-any.whl.metadata (8.2 kB)\n",
" Downloading langchain_community-0.0.26-py3-none-any.whl.metadata (8.2 kB)\n",
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
" Downloading langchain_community-0.0.25-py3-none-any.whl.metadata (8.1 kB)\n",
" Downloading langchain_community-0.0.24-py3-none-any.whl.metadata (8.1 kB)\n",
" Downloading langchain_community-0.0.23-py3-none-any.whl.metadata (8.1 kB)\n",
" Downloading langchain_community-0.0.22-py3-none-any.whl.metadata (8.1 kB)\n",
" Downloading langchain_community-0.0.21-py3-none-any.whl.metadata (8.1 kB)\n",
" Downloading langchain_community-0.0.20-py3-none-any.whl.metadata (8.1 kB)\n",
"INFO: pip is looking at multiple versions of langchain-core to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting langchain-core<0.2,>=0.1.7 (from langchain==0.1.0)\n",
" Downloading langchain_core-0.1.52-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.51-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.50-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.49-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.48-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.47-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.46-py3-none-any.whl.metadata (5.9 kB)\n",
"INFO: pip is still looking at multiple versions of langchain-core to determine which version is compatible with other requirements. This could take a while.\n",
" Downloading langchain_core-0.1.45-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.44-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.43-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.42-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.41-py3-none-any.whl.metadata (5.9 kB)\n",
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
" Downloading langchain_core-0.1.40-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.39-py3-none-any.whl.metadata (5.9 kB)\n",
" Downloading langchain_core-0.1.38-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.37-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.36-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.35-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.34-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.33-py3-none-any.whl.metadata (6.0 kB)\n",
"Requirement already satisfied: anyio<5,>=3 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1.7->langchain==0.1.0) (4.11.0)\n",
" Downloading langchain_core-0.1.32-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.31-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.30-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.29-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.28-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.27-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.26-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.25-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.24-py3-none-any.whl.metadata (6.0 kB)\n",
" Downloading langchain_core-0.1.23-py3-none-any.whl.metadata (6.0 kB)\n",
"Collecting langsmith<0.1.0,>=0.0.77 (from langchain==0.1.0)\n",
" Downloading langsmith-0.0.87-py3-none-any.whl.metadata (10 kB)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1.7->langchain==0.1.0) (23.2)\n",
"Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (2.33.2)\n",
"Requirement already satisfied: typing-extensions>=4.12.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (4.15.0)\n",
"Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (0.4.2)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (3.4.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (3.11)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (2.5.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (2025.10.5)\n",
"Requirement already satisfied: greenlet>=1 in /usr/local/lib/python3.12/dist-packages (from SQLAlchemy<3,>=1.4->langchain==0.1.0) (3.2.4)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.12/dist-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1.7->langchain==0.1.0) (1.3.1)\n",
"Collecting mypy-extensions>=0.3.0 (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain==0.1.0)\n",
" Downloading mypy_extensions-1.1.0-py3-none-any.whl.metadata (1.1 kB)\n",
"Downloading langchain-0.1.0-py3-none-any.whl (797 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m798.0/798.0 kB\u001b[0m \u001b[31m14.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading dataclasses_json-0.6.7-py3-none-any.whl (28 kB)\n",
"Downloading langchain_community-0.0.20-py3-none-any.whl (1.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m63.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading langchain_core-0.1.23-py3-none-any.whl (241 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m241.2/241.2 kB\u001b[0m \u001b[31m13.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading langsmith-0.0.87-py3-none-any.whl (55 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.4/55.4 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading marshmallow-3.26.1-py3-none-any.whl (50 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.9/50.9 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)\n",
"Downloading mypy_extensions-1.1.0-py3-none-any.whl (5.0 kB)\n",
"Installing collected packages: mypy-extensions, marshmallow, typing-inspect, langsmith, dataclasses-json, langchain-core, langchain-community, langchain\n",
" Attempting uninstall: langsmith\n",
" Found existing installation: langsmith 0.4.37\n",
" Uninstalling langsmith-0.4.37:\n",
" Successfully uninstalled langsmith-0.4.37\n",
" Attempting uninstall: langchain-core\n",
" Found existing installation: langchain-core 0.3.79\n",
" Uninstalling langchain-core-0.3.79:\n",
" Successfully uninstalled langchain-core-0.3.79\n",
" Attempting uninstall: langchain\n",
" Found existing installation: langchain 0.3.27\n",
" Uninstalling langchain-0.3.27:\n",
" Successfully uninstalled langchain-0.3.27\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"langchain-text-splitters 0.3.11 requires langchain-core<2.0.0,>=0.3.75, but you have langchain-core 0.1.23 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed dataclasses-json-0.6.7 langchain-0.1.0 langchain-community-0.0.20 langchain-core-0.1.23 langsmith-0.0.87 marshmallow-3.26.1 mypy-extensions-1.1.0 typing-inspect-0.9.0\n",
"Traceback (most recent call last):\n",
" File \"<frozen importlib._bootstrap>\", line 1331, in _find_and_load_unlocked\n",
" File \"<frozen importlib._bootstrap>\", line 935, in _load_unlocked\n",
" File \"<frozen importlib._bootstrap_external>\", line 999, in exec_module\n",
" File \"<frozen importlib._bootstrap>\", line 488, in _call_with_frames_removed\n",
" File \"/usr/local/lib/python3.12/dist-packages/pip/_internal/cli/main_parser.py\", line 9, in <module>\n",
" from pip._internal.build_env import get_runnable_pip\n",
" File \"/usr/local/lib/python3.12/dist-packages/pip/_internal/build_env.py\", line 15, in <module>\n",
" from pip._vendor.packaging.requirements import Requirement\n",
" File \"/usr/local/lib/python3.12/dist-packages/pip/_vendor/packaging/requirements.py\", line 8, in <module>\n",
"^C\n"
]
}
],
"source": [
"# Install required packages\n",
"!pip install streamlit==1.28.1\n",
"!pip install langchain==0.1.0\n",
"!pip install langchain-community==0.0.10\n",
"!pip install langchain-google-genai==0.0.6\n",
"!pip install chromadb==0.4.18\n",
"!pip install datasets==2.14.6\n",
"!pip install transformers==4.35.2\n",
"!pip install sentence-transformers==2.2.2\n",
"!pip install google-generativeai==0.3.2\n",
"!pip install tiktoken==0.5.1\n",
"!pip install numpy==1.24.3\n",
"!pip install pandas==2.0.3\n",
"!pip install tqdm==4.66.1\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"collapsed": true,
"id": "kJ8PM-Tj9LNC",
"outputId": "b6618d66-ef61-43e8-c0c9-fcfc6656993b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting chromadb\n",
" Downloading chromadb-1.2.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.2 kB)\n",
"Requirement already satisfied: build>=1.0.3 in /usr/local/lib/python3.12/dist-packages (from chromadb) (1.3.0)\n",
"Requirement already satisfied: pydantic>=1.9 in /usr/local/lib/python3.12/dist-packages (from chromadb) (2.11.10)\n",
"Collecting pybase64>=1.4.1 (from chromadb)\n",
" Downloading pybase64-1.4.2-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl.metadata (8.7 kB)\n",
"Requirement already satisfied: uvicorn>=0.18.3 in /usr/local/lib/python3.12/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.38.0)\n",
"Requirement already satisfied: numpy>=1.22.5 in /usr/local/lib/python3.12/dist-packages (from chromadb) (1.26.4)\n",
"Collecting posthog<6.0.0,>=2.4.0 (from chromadb)\n",
" Downloading posthog-5.4.0-py3-none-any.whl.metadata (5.7 kB)\n",
"Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (4.15.0)\n",
"Collecting onnxruntime>=1.14.1 (from chromadb)\n",
" Downloading onnxruntime-1.23.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (5.1 kB)\n",
"Requirement already satisfied: opentelemetry-api>=1.2.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (1.37.0)\n",
"Collecting opentelemetry-exporter-otlp-proto-grpc>=1.2.0 (from chromadb)\n",
" Downloading opentelemetry_exporter_otlp_proto_grpc-1.38.0-py3-none-any.whl.metadata (2.4 kB)\n",
"Requirement already satisfied: opentelemetry-sdk>=1.2.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (1.37.0)\n",
"Requirement already satisfied: tokenizers>=0.13.2 in /usr/local/lib/python3.12/dist-packages (from chromadb) (0.22.1)\n",
"Collecting pypika>=0.48.9 (from chromadb)\n",
" Downloading PyPika-0.48.9.tar.gz (67 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: tqdm>=4.65.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (4.67.1)\n",
"Requirement already satisfied: overrides>=7.3.1 in /usr/local/lib/python3.12/dist-packages (from chromadb) (7.7.0)\n",
"Requirement already satisfied: importlib-resources in /usr/local/lib/python3.12/dist-packages (from chromadb) (6.5.2)\n",
"Requirement already satisfied: grpcio>=1.58.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (1.75.1)\n",
"Collecting bcrypt>=4.0.1 (from chromadb)\n",
" Downloading bcrypt-5.0.0-cp39-abi3-manylinux_2_34_x86_64.whl.metadata (10 kB)\n",
"Requirement already satisfied: typer>=0.9.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (0.20.0)\n",
"Collecting kubernetes>=28.1.0 (from chromadb)\n",
" Downloading kubernetes-34.1.0-py2.py3-none-any.whl.metadata (1.7 kB)\n",
"Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.12/dist-packages (from chromadb) (8.5.0)\n",
"Requirement already satisfied: pyyaml>=6.0.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (6.0.3)\n",
"Collecting mmh3>=4.0.1 (from chromadb)\n",
" Downloading mmh3-5.2.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.metadata (14 kB)\n",
"Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.12/dist-packages (from chromadb) (3.11.3)\n",
"Requirement already satisfied: httpx>=0.27.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (0.28.1)\n",
"Requirement already satisfied: rich>=10.11.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (13.9.4)\n",
"Requirement already satisfied: jsonschema>=4.19.0 in /usr/local/lib/python3.12/dist-packages (from chromadb) (4.25.1)\n",
"Requirement already satisfied: packaging>=19.1 in /usr/local/lib/python3.12/dist-packages (from build>=1.0.3->chromadb) (23.2)\n",
"Requirement already satisfied: pyproject_hooks in /usr/local/lib/python3.12/dist-packages (from build>=1.0.3->chromadb) (1.2.0)\n",
"Requirement already satisfied: anyio in /usr/local/lib/python3.12/dist-packages (from httpx>=0.27.0->chromadb) (4.11.0)\n",
"Requirement already satisfied: certifi in /usr/local/lib/python3.12/dist-packages (from httpx>=0.27.0->chromadb) (2025.10.5)\n",
"Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.12/dist-packages (from httpx>=0.27.0->chromadb) (1.0.9)\n",
"Requirement already satisfied: idna in /usr/local/lib/python3.12/dist-packages (from httpx>=0.27.0->chromadb) (3.11)\n",
"Requirement already satisfied: h11>=0.16 in /usr/local/lib/python3.12/dist-packages (from httpcore==1.*->httpx>=0.27.0->chromadb) (0.16.0)\n",
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=4.19.0->chromadb) (25.4.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=4.19.0->chromadb) (2025.9.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=4.19.0->chromadb) (0.37.0)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=4.19.0->chromadb) (0.27.1)\n",
"Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.12/dist-packages (from kubernetes>=28.1.0->chromadb) (1.17.0)\n",
"Requirement already satisfied: python-dateutil>=2.5.3 in /usr/local/lib/python3.12/dist-packages (from kubernetes>=28.1.0->chromadb) (2.9.0.post0)\n",
"Requirement already satisfied: google-auth>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from kubernetes>=28.1.0->chromadb) (2.38.0)\n",
"Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /usr/local/lib/python3.12/dist-packages (from kubernetes>=28.1.0->chromadb) (1.9.0)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.12/dist-packages (from kubernetes>=28.1.0->chromadb) (2.32.4)\n",
"Requirement already satisfied: requests-oauthlib in /usr/local/lib/python3.12/dist-packages (from kubernetes>=28.1.0->chromadb) (2.0.0)\n",
"Collecting urllib3<2.4.0,>=1.24.2 (from kubernetes>=28.1.0->chromadb)\n",
" Downloading urllib3-2.3.0-py3-none-any.whl.metadata (6.5 kB)\n",
"Collecting durationpy>=0.7 (from kubernetes>=28.1.0->chromadb)\n",
" Downloading durationpy-0.10-py3-none-any.whl.metadata (340 bytes)\n",
"Collecting coloredlogs (from onnxruntime>=1.14.1->chromadb)\n",
" Downloading coloredlogs-15.0.1-py2.py3-none-any.whl.metadata (12 kB)\n",
"Requirement already satisfied: flatbuffers in /usr/local/lib/python3.12/dist-packages (from onnxruntime>=1.14.1->chromadb) (25.9.23)\n",
"Requirement already satisfied: protobuf in /usr/local/lib/python3.12/dist-packages (from onnxruntime>=1.14.1->chromadb) (4.25.8)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.12/dist-packages (from onnxruntime>=1.14.1->chromadb) (1.13.3)\n",
"Requirement already satisfied: importlib-metadata<8.8.0,>=6.0 in /usr/local/lib/python3.12/dist-packages (from opentelemetry-api>=1.2.0->chromadb) (6.11.0)\n",
"Requirement already satisfied: googleapis-common-protos~=1.57 in /usr/local/lib/python3.12/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.71.0)\n",
"Collecting opentelemetry-exporter-otlp-proto-common==1.38.0 (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb)\n",
" Downloading opentelemetry_exporter_otlp_proto_common-1.38.0-py3-none-any.whl.metadata (1.8 kB)\n",
"Collecting opentelemetry-proto==1.38.0 (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb)\n",
" Downloading opentelemetry_proto-1.38.0-py3-none-any.whl.metadata (2.3 kB)\n",
"Collecting opentelemetry-sdk>=1.2.0 (from chromadb)\n",
" Downloading opentelemetry_sdk-1.38.0-py3-none-any.whl.metadata (1.5 kB)\n",
"Collecting protobuf (from onnxruntime>=1.14.1->chromadb)\n",
" Downloading protobuf-6.33.0-cp39-abi3-manylinux2014_x86_64.whl.metadata (593 bytes)\n",
"Collecting opentelemetry-api>=1.2.0 (from chromadb)\n",
" Downloading opentelemetry_api-1.38.0-py3-none-any.whl.metadata (1.5 kB)\n",
"Collecting opentelemetry-semantic-conventions==0.59b0 (from opentelemetry-sdk>=1.2.0->chromadb)\n",
" Downloading opentelemetry_semantic_conventions-0.59b0-py3-none-any.whl.metadata (2.4 kB)\n",
"Collecting backoff>=1.10.0 (from posthog<6.0.0,>=2.4.0->chromadb)\n",
" Downloading backoff-2.2.1-py3-none-any.whl.metadata (14 kB)\n",
"Requirement already satisfied: distro>=1.5.0 in /usr/local/lib/python3.12/dist-packages (from posthog<6.0.0,>=2.4.0->chromadb) (1.9.0)\n",
"Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.12/dist-packages (from pydantic>=1.9->chromadb) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.12/dist-packages (from pydantic>=1.9->chromadb) (2.33.2)\n",
"Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from pydantic>=1.9->chromadb) (0.4.2)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.12/dist-packages (from rich>=10.11.0->chromadb) (4.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.12/dist-packages (from rich>=10.11.0->chromadb) (2.19.2)\n",
"Requirement already satisfied: huggingface-hub<2.0,>=0.16.4 in /usr/local/lib/python3.12/dist-packages (from tokenizers>=0.13.2->chromadb) (0.35.3)\n",
"Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.12/dist-packages (from typer>=0.9.0->chromadb) (8.3.0)\n",
"Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.12/dist-packages (from typer>=0.9.0->chromadb) (1.5.4)\n",
"Collecting httptools>=0.6.3 (from uvicorn[standard]>=0.18.3->chromadb)\n",
" Downloading httptools-0.7.1-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.metadata (3.5 kB)\n",
"Requirement already satisfied: python-dotenv>=0.13 in /usr/local/lib/python3.12/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (1.1.1)\n",
"Collecting uvloop>=0.15.1 (from uvicorn[standard]>=0.18.3->chromadb)\n",
" Downloading uvloop-0.22.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.metadata (4.9 kB)\n",
"Collecting watchfiles>=0.13 (from uvicorn[standard]>=0.18.3->chromadb)\n",
" Downloading watchfiles-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.9 kB)\n",
"Requirement already satisfied: websockets>=10.4 in /usr/local/lib/python3.12/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (15.0.1)\n",
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (5.5.2)\n",
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.12/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (0.4.2)\n",
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.12/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (4.9.1)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.12/dist-packages (from huggingface-hub<2.0,>=0.16.4->tokenizers>=0.13.2->chromadb) (3.20.0)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.12/dist-packages (from huggingface-hub<2.0,>=0.16.4->tokenizers>=0.13.2->chromadb) (2025.3.0)\n",
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.3 in /usr/local/lib/python3.12/dist-packages (from huggingface-hub<2.0,>=0.16.4->tokenizers>=0.13.2->chromadb) (1.1.10)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.12/dist-packages (from importlib-metadata<8.8.0,>=6.0->opentelemetry-api>=1.2.0->chromadb) (3.23.0)\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.12/dist-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->chromadb) (0.1.2)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests->kubernetes>=28.1.0->chromadb) (3.4.4)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.12/dist-packages (from anyio->httpx>=0.27.0->chromadb) (1.3.1)\n",
"Collecting humanfriendly>=9.1 (from coloredlogs->onnxruntime>=1.14.1->chromadb)\n",
" Downloading humanfriendly-10.0-py2.py3-none-any.whl.metadata (9.2 kB)\n",
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.12/dist-packages (from requests-oauthlib->kubernetes>=28.1.0->chromadb) (3.3.1)\n",
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy->onnxruntime>=1.14.1->chromadb) (1.3.0)\n",
"Requirement already satisfied: pyasn1<0.7.0,>=0.6.1 in /usr/local/lib/python3.12/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (0.6.1)\n",
"Downloading chromadb-1.2.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20.7/20.7 MB\u001b[0m \u001b[31m100.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading bcrypt-5.0.0-cp39-abi3-manylinux_2_34_x86_64.whl (278 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m278.2/278.2 kB\u001b[0m \u001b[31m23.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading kubernetes-34.1.0-py2.py3-none-any.whl (2.0 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m91.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading mmh3-5.2.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (103 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.3/103.3 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading onnxruntime-1.23.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.4/17.4 MB\u001b[0m \u001b[31m96.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading opentelemetry_exporter_otlp_proto_grpc-1.38.0-py3-none-any.whl (19 kB)\n",
"Downloading opentelemetry_exporter_otlp_proto_common-1.38.0-py3-none-any.whl (18 kB)\n",
"Downloading opentelemetry_proto-1.38.0-py3-none-any.whl (72 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.5/72.5 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading opentelemetry_sdk-1.38.0-py3-none-any.whl (132 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.3/132.3 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading opentelemetry_api-1.38.0-py3-none-any.whl (65 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m65.9/65.9 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading opentelemetry_semantic_conventions-0.59b0-py3-none-any.whl (207 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m208.0/208.0 kB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading posthog-5.4.0-py3-none-any.whl (105 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.4/105.4 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading pybase64-1.4.2-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl (71 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.6/71.6 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading backoff-2.2.1-py3-none-any.whl (15 kB)\n",
"Downloading durationpy-0.10-py3-none-any.whl (3.9 kB)\n",
"Downloading httptools-0.7.1-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (517 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m517.7/517.7 kB\u001b[0m \u001b[31m41.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading protobuf-6.33.0-cp39-abi3-manylinux2014_x86_64.whl (323 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m323.2/323.2 kB\u001b[0m \u001b[31m29.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading urllib3-2.3.0-py3-none-any.whl (128 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m128.4/128.4 kB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading uvloop-0.22.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (4.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.4/4.4 MB\u001b[0m \u001b[31m78.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading watchfiles-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (456 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m456.8/456.8 kB\u001b[0m \u001b[31m39.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading humanfriendly-10.0-py2.py3-none-any.whl (86 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hBuilding wheels for collected packages: pypika\n",
" Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pypika: filename=pypika-0.48.9-py2.py3-none-any.whl size=53803 sha256=516b39e779dee1661d0529c1b6cb9bb888d5692f8bd7d0d64965f2cec930571b\n",
" Stored in directory: /root/.cache/pip/wheels/d5/3d/69/8d68d249cd3de2584f226e27fd431d6344f7d70fd856ebd01b\n",
"Successfully built pypika\n",
"Installing collected packages: pypika, durationpy, uvloop, urllib3, pybase64, protobuf, mmh3, humanfriendly, httptools, bcrypt, backoff, watchfiles, opentelemetry-proto, opentelemetry-api, coloredlogs, posthog, opentelemetry-semantic-conventions, opentelemetry-exporter-otlp-proto-common, onnxruntime, opentelemetry-sdk, kubernetes, opentelemetry-exporter-otlp-proto-grpc, chromadb\n",
" Attempting uninstall: urllib3\n",
" Found existing installation: urllib3 2.5.0\n",
" Uninstalling urllib3-2.5.0:\n",
" Successfully uninstalled urllib3-2.5.0\n",
" Attempting uninstall: protobuf\n",
" Found existing installation: protobuf 4.25.8\n",
" Uninstalling protobuf-4.25.8:\n",
" Successfully uninstalled protobuf-4.25.8\n",
" Attempting uninstall: opentelemetry-proto\n",
" Found existing installation: opentelemetry-proto 1.37.0\n",
" Uninstalling opentelemetry-proto-1.37.0:\n",
" Successfully uninstalled opentelemetry-proto-1.37.0\n",
" Attempting uninstall: opentelemetry-api\n",
" Found existing installation: opentelemetry-api 1.37.0\n",
" Uninstalling opentelemetry-api-1.37.0:\n",
" Successfully uninstalled opentelemetry-api-1.37.0\n",
" Attempting uninstall: opentelemetry-semantic-conventions\n",
" Found existing installation: opentelemetry-semantic-conventions 0.58b0\n",
" Uninstalling opentelemetry-semantic-conventions-0.58b0:\n",
" Successfully uninstalled opentelemetry-semantic-conventions-0.58b0\n",
" Attempting uninstall: opentelemetry-exporter-otlp-proto-common\n",
" Found existing installation: opentelemetry-exporter-otlp-proto-common 1.37.0\n",
" Uninstalling opentelemetry-exporter-otlp-proto-common-1.37.0:\n",
" Successfully uninstalled opentelemetry-exporter-otlp-proto-common-1.37.0\n",
" Attempting uninstall: opentelemetry-sdk\n",
" Found existing installation: opentelemetry-sdk 1.37.0\n",
" Uninstalling opentelemetry-sdk-1.37.0:\n",
" Successfully uninstalled opentelemetry-sdk-1.37.0\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"streamlit 1.28.1 requires protobuf<5,>=3.20, but you have protobuf 6.33.0 which is incompatible.\n",
"tensorflow 2.19.0 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3, but you have protobuf 6.33.0 which is incompatible.\n",
"google-adk 1.16.0 requires opentelemetry-api<=1.37.0,>=1.37.0, but you have opentelemetry-api 1.38.0 which is incompatible.\n",
"google-adk 1.16.0 requires opentelemetry-sdk<=1.37.0,>=1.37.0, but you have opentelemetry-sdk 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-exporter-otlp-proto-common==1.37.0, but you have opentelemetry-exporter-otlp-proto-common 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-proto==1.37.0, but you have opentelemetry-proto 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-sdk~=1.37.0, but you have opentelemetry-sdk 1.38.0 which is incompatible.\n",
"grpcio-status 1.71.2 requires protobuf<6.0dev,>=5.26.1, but you have protobuf 6.33.0 which is incompatible.\n",
"google-ai-generativelanguage 0.6.15 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.2, but you have protobuf 6.33.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed backoff-2.2.1 bcrypt-5.0.0 chromadb-1.2.1 coloredlogs-15.0.1 durationpy-0.10 httptools-0.7.1 humanfriendly-10.0 kubernetes-34.1.0 mmh3-5.2.0 onnxruntime-1.23.2 opentelemetry-api-1.38.0 opentelemetry-exporter-otlp-proto-common-1.38.0 opentelemetry-exporter-otlp-proto-grpc-1.38.0 opentelemetry-proto-1.38.0 opentelemetry-sdk-1.38.0 opentelemetry-semantic-conventions-0.59b0 posthog-5.4.0 protobuf-6.33.0 pybase64-1.4.2 pypika-0.48.9 urllib3-2.3.0 uvloop-0.22.1 watchfiles-1.1.1\n"
]
},
{
"data": {
"application/vnd.colab-display-data+json": {
"id": "c1f003adaad449fab5173c9cdfef809a",
"pip_warning": {
"packages": [
"google"
]
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"!pip install chromadb"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-JfcmDbM80N4",
"outputId": "9166b955-0fbf-485e-fa95-2ea104a0eb58"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Kurulum başarılı!\n"
]
}
],
"source": [
"import streamlit, langchain, chromadb\n",
"print(\"Kurulum başarılı!\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1XFPdkQt8KGY"
},
"source": [
"## 🔑 API Key Setup\n",
"\n",
"Set up your Google Gemini API key. You can get one from [Google AI Studio](https://makersuite.google.com/app/apikey).\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Px01b50d8KGY",
"outputId": "ddd2b336-842a-45f5-d376-5a718fc2ba0f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"✅ Gemini API key loaded successfully!\n"
]
}
],
"source": [
"# Set up Google Gemini API key\n",
"import os\n",
"from google.colab import userdata\n",
"\n",
"# Get API key from Colab secrets\n",
"try:\n",
" GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')\n",
" os.environ['GOOGLE_API_KEY'] = GEMINI_API_KEY\n",
" print(\"✅ Gemini API key loaded successfully!\")\n",
"except:\n",
" print(\"❌ Please add your Gemini API key to Colab secrets:\")\n",
" print(\"1. Go to the key icon (🔑) in the left sidebar\")\n",
" print(\"2. Add a new secret with key 'GEMINI_API_KEY' and your API key as value\")\n",
" print(\"3. Restart the runtime and run this cell again\")\n",
"\n",
" # Alternative: Set directly (not recommended for production)\n",
" # GEMINI_API_KEY = \"your_api_key_here\"\n",
" # os.environ['GOOGLE_API_KEY'] = GEMINI_API_KEY\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BFfdwXKB8KGZ"
},
"source": [
"## 📚 Step 1: Load Dataset from The Pile\n",
"\n",
"We'll load text data from The Pile dataset using Hugging Face's datasets library. We'll focus on ML/AI related content.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "R2yLLasv8KGZ",
"outputId": "b7b1a4d9-71f7-4efb-c706-3d0844f5ab0c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"📚 Loading The Pile dataset...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.12/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
"You will be able to reuse this secret in all of your notebooks.\n",
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"❌ Error loading dataset: No (supported) data files found in EleutherAI/the_pile\n",
"🔄 Using fallback sample data...\n",
"✅ Using 10 sample texts\n"
]
}
],
"source": [
"# Import required libraries\n",
"import pandas as pd\n",
"import numpy as np\n",
"from datasets import load_dataset\n",
"from tqdm import tqdm\n",
"import re\n",
"import os\n",
"\n",
"print(\"📚 Loading The Pile dataset...\")\n",
"\n",
"# Load a subset of The Pile dataset\n",
"# We'll use a smaller subset for demonstration to avoid memory issues\n",
"try:\n",
" # Load a specific subset that contains ML/AI content\n",
" dataset = load_dataset(\"EleutherAI/the_pile\", split=\"train\", streaming=True)\n",
"\n",
" # Take first 1000 samples for demonstration\n",
" texts = []\n",
" ml_keywords = ['machine learning', 'deep learning', 'neural network', 'artificial intelligence',\n",
" 'algorithm', 'model', 'training', 'data', 'feature', 'classification',\n",
" 'regression', 'clustering', 'optimization', 'gradient', 'tensor']\n",
"\n",
" print(\"🔍 Filtering ML/AI related content...\")\n",
" count = 0\n",
" for sample in tqdm(dataset, desc=\"Processing samples\"):\n",
" if count >= 1000: # Limit to 1000 samples for Colab\n",
" break\n",
"\n",
" text = sample['text']\n",
" # Check if text contains ML/AI keywords\n",
" if any(keyword in text.lower() for keyword in ml_keywords):\n",
" # Clean and preprocess text\n",
" text = re.sub(r'\\s+', ' ', text) # Remove extra whitespace\n",
" text = text.strip()\n",
"\n",
" # Only keep texts that are reasonable length (not too short or too long)\n",
" if 100 <= len(text) <= 2000:\n",
" texts.append(text)\n",
" count += 1\n",
"\n",
" print(f\"✅ Loaded {len(texts)} ML/AI related text samples\")\n",
"\n",
"except Exception as e:\n",
" print(f\"❌ Error loading dataset: {e}\")\n",
" print(\"🔄 Using fallback sample data...\")\n",
"\n",
" # Fallback sample data if The Pile is not accessible\n",
" texts = [\n",
" \"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data. Deep learning uses neural networks with multiple layers to process complex patterns in data.\",\n",
" \"Neural networks are computing systems inspired by biological neural networks. They consist of interconnected nodes that process information using a connectionist approach.\",\n",
" \"Supervised learning uses labeled training data to learn a mapping from inputs to outputs. Common algorithms include linear regression, decision trees, and support vector machines.\",\n",
" \"Unsupervised learning finds hidden patterns in data without labeled examples. Clustering algorithms like K-means group similar data points together.\",\n",
" \"Natural language processing combines computational linguistics with machine learning to help computers understand human language. It includes tasks like text classification and sentiment analysis.\",\n",
" \"Computer vision enables machines to interpret and understand visual information from the world. It uses deep learning models like convolutional neural networks.\",\n",
" \"Reinforcement learning is a type of machine learning where agents learn to make decisions by interacting with an environment and receiving rewards or penalties.\",\n",
" \"Feature engineering is the process of selecting and transforming raw data into features that can be used by machine learning algorithms. Good features can significantly improve model performance.\",\n",
" \"Cross-validation is a technique used to assess how well a machine learning model generalizes to new data. It involves splitting data into training and validation sets multiple times.\",\n",
" \"Overfitting occurs when a model learns the training data too well and performs poorly on new data. Regularization techniques help prevent overfitting.\"\n",
" ]\n",
" print(f\"✅ Using {len(texts)} sample texts\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qh2CjHfG8KGa"
},
"source": [
"## 🧠 Step 2: Initialize Embeddings and Vector Database\n",
"\n",
"We'll use sentence transformers for embeddings and Chroma for vector storage.\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "R0bU_JZU8KGa",
"outputId": "95cb186d-edf1-4a30-adee-c3ddc4b58753"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"🧠 Initializing embeddings model...\n",
"✅ Embedding model loaded!\n",
"🗄️ Setting up Chroma vector database...\n",
"✅ Created new collection: ml_ai_knowledge\n",
"🎯 Vector database ready!\n"
]
}
],
"source": [
"# Initialize embeddings and vector database\n",
"from sentence_transformers import SentenceTransformer\n",
"import chromadb\n",
"from chromadb.config import Settings\n",
"\n",
"print(\"🧠 Initializing embeddings model...\")\n",
"\n",
"# Use a lightweight sentence transformer model\n",
"embedding_model = SentenceTransformer('all-MiniLM-L6-v2')\n",
"print(\"✅ Embedding model loaded!\")\n",
"\n",
"print(\"🗄️ Setting up Chroma vector database...\")\n",
"\n",
"# Create Chroma client with persistent storage\n",
"chroma_client = chromadb.Client(Settings(\n",
" persist_directory=\"./chroma_db\",\n",
" anonymized_telemetry=False\n",
"))\n",
"\n",
"# Create or get collection\n",
"collection_name = \"ml_ai_knowledge\"\n",
"try:\n",
" collection = chroma_client.get_collection(collection_name)\n",
" print(f\"✅ Found existing collection: {collection_name}\")\n",
"except:\n",
" collection = chroma_client.create_collection(\n",
" name=collection_name,\n",
" metadata={\"description\": \"ML/AI knowledge base from The Pile dataset\"}\n",
" )\n",
" print(f\"✅ Created new collection: {collection_name}\")\n",
"\n",
"print(\"🎯 Vector database ready!\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZyBiQoRU8KGa"
},
"source": [
"## 📝 Step 3: Process and Embed Text Data\n",
"\n",
"We'll chunk the text data and create embeddings for storage in Chroma.\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qPd0P6w98KGb",
"outputId": "7e049617-131c-4278-fffa-a248fa78398a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"📝 Processing and chunking text data...\n",
"📊 Current documents in collection: 0\n",
"🔄 Adding new documents to collection...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processing texts: 100%|██████████| 10/10 [00:00<00:00, 82891.38it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"📊 Created 10 text chunks\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Adding to Chroma: 100%|██████████| 1/1 [00:01<00:00, 1.07s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✅ All documents added to Chroma!\n",
"📊 Final document count: 10\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"# Process and embed text data\n",
"import uuid\n",
"from tqdm import tqdm\n",
"\n",
"def chunk_text(text, chunk_size=500, overlap=50):\n",
" \"\"\"Split text into overlapping chunks\"\"\"\n",
" words = text.split()\n",
" chunks = []\n",
"\n",
" for i in range(0, len(words), chunk_size - overlap):\n",
" chunk = ' '.join(words[i:i + chunk_size])\n",
" if len(chunk.strip()) > 50: # Only keep substantial chunks\n",
" chunks.append(chunk)\n",
"\n",
" return chunks\n",
"\n",
"print(\"📝 Processing and chunking text data...\")\n",
"\n",
"# Check if collection already has data\n",
"existing_count = collection.count()\n",
"print(f\"📊 Current documents in collection: {existing_count}\")\n",
"\n",
"if existing_count == 0:\n",
" print(\"🔄 Adding new documents to collection...\")\n",
"\n",
" all_chunks = []\n",
" chunk_ids = []\n",
" chunk_metadatas = []\n",
"\n",
" for i, text in enumerate(tqdm(texts, desc=\"Processing texts\")):\n",
" chunks = chunk_text(text)\n",
"\n",
" for j, chunk in enumerate(chunks):\n",
" chunk_id = f\"doc_{i}_chunk_{j}\"\n",
" metadata = {\n",
" \"source\": f\"the_pile_doc_{i}\",\n",
" \"chunk_index\": j,\n",
" \"total_chunks\": len(chunks),\n",
" \"text_length\": len(chunk)\n",
" }\n",
"\n",
" all_chunks.append(chunk)\n",
" chunk_ids.append(chunk_id)\n",
" chunk_metadatas.append(metadata)\n",
"\n",
" print(f\"📊 Created {len(all_chunks)} text chunks\")\n",
"\n",
" # Add documents to Chroma in batches to avoid memory issues\n",
" batch_size = 100\n",
" for i in tqdm(range(0, len(all_chunks), batch_size), desc=\"Adding to Chroma\"):\n",
" batch_chunks = all_chunks[i:i + batch_size]\n",
" batch_ids = chunk_ids[i:i + batch_size]\n",
" batch_metadatas = chunk_metadatas[i:i + batch_size]\n",
"\n",
" collection.add(\n",
" documents=batch_chunks,\n",
" ids=batch_ids,\n",
" metadatas=batch_metadatas\n",
" )\n",
"\n",
" print(\"✅ All documents added to Chroma!\")\n",
"else:\n",
" print(\"✅ Collection already contains data, skipping addition\")\n",
"\n",
"# Verify the collection\n",
"final_count = collection.count()\n",
"print(f\"📊 Final document count: {final_count}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zb0xDTl98KGb"
},
"source": [
"## 🤖 Step 4: Initialize Gemini Model\n",
"\n",
"Set up the Google Gemini 2.5 Flash model for text generation.\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"collapsed": true,
"id": "dhQeFUB0_i6g",
"outputId": "8f5e9ac9-2c34-45f8-9c12-d36d748a9a70"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting langchain_google_genai\n",
" Downloading langchain_google_genai-3.0.0-py3-none-any.whl.metadata (7.1 kB)\n",
"Collecting langchain-core<2.0.0,>=1.0.0 (from langchain_google_genai)\n",
" Downloading langchain_core-1.0.1-py3-none-any.whl.metadata (3.5 kB)\n",
"Collecting google-ai-generativelanguage<1.0.0,>=0.7.0 (from langchain_google_genai)\n",
" Downloading google_ai_generativelanguage-0.9.0-py3-none-any.whl.metadata (10 kB)\n",
"Requirement already satisfied: pydantic<3.0.0,>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from langchain_google_genai) (2.11.10)\n",
"Collecting filetype<2.0.0,>=1.2.0 (from langchain_google_genai)\n",
" Downloading filetype-1.2.0-py2.py3-none-any.whl.metadata (6.5 kB)\n",
"Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1 in /usr/local/lib/python3.12/dist-packages (from google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (2.26.0)\n",
"Requirement already satisfied: google-auth!=2.24.0,!=2.25.0,<3.0.0,>=2.14.1 in /usr/local/lib/python3.12/dist-packages (from google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (2.38.0)\n",
"Requirement already satisfied: grpcio<2.0.0,>=1.33.2 in /usr/local/lib/python3.12/dist-packages (from google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (1.75.1)\n",
"Requirement already satisfied: proto-plus<2.0.0,>=1.22.3 in /usr/local/lib/python3.12/dist-packages (from google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (1.26.1)\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<7.0.0,>=3.20.2 in /usr/local/lib/python3.12/dist-packages (from google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (6.33.0)\n",
"Requirement already satisfied: jsonpatch<2.0.0,>=1.33.0 in /usr/local/lib/python3.12/dist-packages (from langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (1.33)\n",
"Collecting langsmith<1.0.0,>=0.3.45 (from langchain-core<2.0.0,>=1.0.0->langchain_google_genai)\n",
" Downloading langsmith-0.4.38-py3-none-any.whl.metadata (14 kB)\n",
"Requirement already satisfied: packaging<26.0.0,>=23.2.0 in /usr/local/lib/python3.12/dist-packages (from langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (23.2)\n",
"Requirement already satisfied: pyyaml<7.0.0,>=5.3.0 in /usr/local/lib/python3.12/dist-packages (from langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (6.0.3)\n",
"Requirement already satisfied: tenacity!=8.4.0,<10.0.0,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (8.5.0)\n",
"Requirement already satisfied: typing-extensions<5.0.0,>=4.7.0 in /usr/local/lib/python3.12/dist-packages (from langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (4.15.0)\n",
"Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3.0.0,>=2.0.0->langchain_google_genai) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3.0.0,>=2.0.0->langchain_google_genai) (2.33.2)\n",
"Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3.0.0,>=2.0.0->langchain_google_genai) (0.4.2)\n",
"Requirement already satisfied: googleapis-common-protos<2.0.0,>=1.56.2 in /usr/local/lib/python3.12/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (1.71.0)\n",
"Requirement already satisfied: requests<3.0.0,>=2.18.0 in /usr/local/lib/python3.12/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (2.32.4)\n",
"Requirement already satisfied: grpcio-status<2.0.0,>=1.33.2 in /usr/local/lib/python3.12/dist-packages (from google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (1.71.2)\n",
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from google-auth!=2.24.0,!=2.25.0,<3.0.0,>=2.14.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (5.5.2)\n",
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.12/dist-packages (from google-auth!=2.24.0,!=2.25.0,<3.0.0,>=2.14.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (0.4.2)\n",
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.12/dist-packages (from google-auth!=2.24.0,!=2.25.0,<3.0.0,>=2.14.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (4.9.1)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.12/dist-packages (from jsonpatch<2.0.0,>=1.33.0->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (3.0.0)\n",
"Requirement already satisfied: httpx<1,>=0.23.0 in /usr/local/lib/python3.12/dist-packages (from langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (0.28.1)\n",
"Requirement already satisfied: orjson>=3.9.14 in /usr/local/lib/python3.12/dist-packages (from langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (3.11.3)\n",
"Requirement already satisfied: requests-toolbelt>=1.0.0 in /usr/local/lib/python3.12/dist-packages (from langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (1.0.0)\n",
"Requirement already satisfied: zstandard>=0.23.0 in /usr/local/lib/python3.12/dist-packages (from langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (0.25.0)\n",
"Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<7.0.0,>=3.20.2 (from google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai)\n",
" Downloading protobuf-5.29.5-cp38-abi3-manylinux2014_x86_64.whl.metadata (592 bytes)\n",
"Requirement already satisfied: anyio in /usr/local/lib/python3.12/dist-packages (from httpx<1,>=0.23.0->langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (4.11.0)\n",
"Requirement already satisfied: certifi in /usr/local/lib/python3.12/dist-packages (from httpx<1,>=0.23.0->langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (2025.10.5)\n",
"Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.12/dist-packages (from httpx<1,>=0.23.0->langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (1.0.9)\n",
"Requirement already satisfied: idna in /usr/local/lib/python3.12/dist-packages (from httpx<1,>=0.23.0->langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (3.11)\n",
"Requirement already satisfied: h11>=0.16 in /usr/local/lib/python3.12/dist-packages (from httpcore==1.*->httpx<1,>=0.23.0->langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (0.16.0)\n",
"Requirement already satisfied: pyasn1<0.7.0,>=0.6.1 in /usr/local/lib/python3.12/dist-packages (from pyasn1-modules>=0.2.1->google-auth!=2.24.0,!=2.25.0,<3.0.0,>=2.14.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (0.6.1)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3.0.0,>=2.18.0->google-api-core!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (3.4.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3.0.0,>=2.18.0->google-api-core!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0,>=1.34.1->google-ai-generativelanguage<1.0.0,>=0.7.0->langchain_google_genai) (2.3.0)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.12/dist-packages (from anyio->httpx<1,>=0.23.0->langsmith<1.0.0,>=0.3.45->langchain-core<2.0.0,>=1.0.0->langchain_google_genai) (1.3.1)\n",
"Downloading langchain_google_genai-3.0.0-py3-none-any.whl (57 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.8/57.8 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading filetype-1.2.0-py2.py3-none-any.whl (19 kB)\n",
"Downloading google_ai_generativelanguage-0.9.0-py3-none-any.whl (1.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m28.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading langchain_core-1.0.1-py3-none-any.whl (467 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m467.1/467.1 kB\u001b[0m \u001b[31m36.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading langsmith-0.4.38-py3-none-any.whl (397 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m397.3/397.3 kB\u001b[0m \u001b[31m27.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading protobuf-5.29.5-cp38-abi3-manylinux2014_x86_64.whl (319 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m319.9/319.9 kB\u001b[0m \u001b[31m25.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: filetype, protobuf, langsmith, langchain-core, google-ai-generativelanguage, langchain_google_genai\n",
" Attempting uninstall: protobuf\n",
" Found existing installation: protobuf 6.33.0\n",
" Uninstalling protobuf-6.33.0:\n",
" Successfully uninstalled protobuf-6.33.0\n",
" Attempting uninstall: langsmith\n",
" Found existing installation: langsmith 0.0.87\n",
" Uninstalling langsmith-0.0.87:\n",
" Successfully uninstalled langsmith-0.0.87\n",
" Attempting uninstall: langchain-core\n",
" Found existing installation: langchain-core 0.1.23\n",
" Uninstalling langchain-core-0.1.23:\n",
" Successfully uninstalled langchain-core-0.1.23\n",
" Attempting uninstall: google-ai-generativelanguage\n",
" Found existing installation: google-ai-generativelanguage 0.6.15\n",
" Uninstalling google-ai-generativelanguage-0.6.15:\n",
" Successfully uninstalled google-ai-generativelanguage-0.6.15\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"streamlit 1.28.1 requires protobuf<5,>=3.20, but you have protobuf 5.29.5 which is incompatible.\n",
"langchain-community 0.0.20 requires langchain-core<0.2,>=0.1.21, but you have langchain-core 1.0.1 which is incompatible.\n",
"langchain-community 0.0.20 requires langsmith<0.1,>=0.0.83, but you have langsmith 0.4.38 which is incompatible.\n",
"langchain 0.1.0 requires langchain-core<0.2,>=0.1.7, but you have langchain-core 1.0.1 which is incompatible.\n",
"langchain 0.1.0 requires langsmith<0.1.0,>=0.0.77, but you have langsmith 0.4.38 which is incompatible.\n",
"google-generativeai 0.8.5 requires google-ai-generativelanguage==0.6.15, but you have google-ai-generativelanguage 0.9.0 which is incompatible.\n",
"google-adk 1.16.0 requires opentelemetry-api<=1.37.0,>=1.37.0, but you have opentelemetry-api 1.38.0 which is incompatible.\n",
"google-adk 1.16.0 requires opentelemetry-sdk<=1.37.0,>=1.37.0, but you have opentelemetry-sdk 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-exporter-otlp-proto-common==1.37.0, but you have opentelemetry-exporter-otlp-proto-common 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-proto==1.37.0, but you have opentelemetry-proto 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-sdk~=1.37.0, but you have opentelemetry-sdk 1.38.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed filetype-1.2.0 google-ai-generativelanguage-0.9.0 langchain-core-1.0.1 langchain_google_genai-3.0.0 langsmith-0.4.38 protobuf-5.29.5\n"
]
},
{
"data": {
"application/vnd.colab-display-data+json": {
"id": "7df3f39236514b8ea81591ff665a9afa",
"pip_warning": {
"packages": [
"google",
"langchain_core"
]
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"!pip install langchain_google_genai"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"collapsed": true,
"id": "W45gx35UBKJU",
"outputId": "996b18bf-be33-4010-b9da-6fefb862e886"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: langchain==0.1.0 in /usr/local/lib/python3.12/dist-packages (0.1.0)\n",
"Requirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (6.0.3)\n",
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.0.44)\n",
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (3.13.1)\n",
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (0.6.7)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (1.33)\n",
"Requirement already satisfied: langchain-community<0.1,>=0.0.9 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (0.0.20)\n",
"Collecting langchain-core<0.2,>=0.1.7 (from langchain==0.1.0)\n",
" Using cached langchain_core-0.1.53-py3-none-any.whl.metadata (5.9 kB)\n",
"Collecting langsmith<0.1.0,>=0.0.77 (from langchain==0.1.0)\n",
" Using cached langsmith-0.0.92-py3-none-any.whl.metadata (9.9 kB)\n",
"Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (1.26.4)\n",
"Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.11.10)\n",
"Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.32.4)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (8.5.0)\n",
"Requirement already satisfied: aiohappyeyeballs>=2.5.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (2.6.1)\n",
"Requirement already satisfied: aiosignal>=1.4.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.4.0)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (25.4.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.8.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (6.7.0)\n",
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (0.4.1)\n",
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.22.0)\n",
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /usr/local/lib/python3.12/dist-packages (from dataclasses-json<0.7,>=0.5.7->langchain==0.1.0) (3.26.1)\n",
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from dataclasses-json<0.7,>=0.5.7->langchain==0.1.0) (0.9.0)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.12/dist-packages (from jsonpatch<2.0,>=1.33->langchain==0.1.0) (3.0.0)\n",
"INFO: pip is looking at multiple versions of langchain-core to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting langchain-core<0.2,>=0.1.7 (from langchain==0.1.0)\n",
" Using cached langchain_core-0.1.52-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.51-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.50-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.49-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.48-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.47-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.46-py3-none-any.whl.metadata (5.9 kB)\n",
"INFO: pip is still looking at multiple versions of langchain-core to determine which version is compatible with other requirements. This could take a while.\n",
" Using cached langchain_core-0.1.45-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.44-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.43-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.42-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.41-py3-none-any.whl.metadata (5.9 kB)\n",
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
" Using cached langchain_core-0.1.40-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.39-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.38-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.37-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.36-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.35-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.34-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.33-py3-none-any.whl.metadata (6.0 kB)\n",
"Requirement already satisfied: anyio<5,>=3 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1.7->langchain==0.1.0) (4.11.0)\n",
" Using cached langchain_core-0.1.32-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.31-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.30-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.29-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.28-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.27-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.26-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.25-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.24-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.23-py3-none-any.whl.metadata (6.0 kB)\n",
"Collecting langsmith<0.1.0,>=0.0.77 (from langchain==0.1.0)\n",
" Using cached langsmith-0.0.87-py3-none-any.whl.metadata (10 kB)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1.7->langchain==0.1.0) (23.2)\n",
"Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (2.33.2)\n",
"Requirement already satisfied: typing-extensions>=4.12.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (4.15.0)\n",
"Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (0.4.2)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (3.4.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (3.11)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (2025.10.5)\n",
"Requirement already satisfied: greenlet>=1 in /usr/local/lib/python3.12/dist-packages (from SQLAlchemy<3,>=1.4->langchain==0.1.0) (3.2.4)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.12/dist-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1.7->langchain==0.1.0) (1.3.1)\n",
"Requirement already satisfied: mypy-extensions>=0.3.0 in /usr/local/lib/python3.12/dist-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain==0.1.0) (1.1.0)\n",
"Using cached langchain_core-0.1.23-py3-none-any.whl (241 kB)\n",
"Using cached langsmith-0.0.87-py3-none-any.whl (55 kB)\n",
"Installing collected packages: langsmith, langchain-core\n",
" Attempting uninstall: langsmith\n",
" Found existing installation: langsmith 0.4.38\n",
" Uninstalling langsmith-0.4.38:\n",
" Successfully uninstalled langsmith-0.4.38\n",
" Attempting uninstall: langchain-core\n",
" Found existing installation: langchain-core 1.0.1\n",
" Uninstalling langchain-core-1.0.1:\n",
" Successfully uninstalled langchain-core-1.0.1\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"langchain-google-genai 3.0.0 requires langchain-core<2.0.0,>=1.0.0, but you have langchain-core 0.1.23 which is incompatible.\n",
"langchain-text-splitters 0.3.11 requires langchain-core<2.0.0,>=0.3.75, but you have langchain-core 0.1.23 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed langchain-core-0.1.23 langsmith-0.0.87\n"
]
},
{
"data": {
"application/vnd.colab-display-data+json": {
"id": "0b12704309ed4801ae5cdee9a766a829",
"pip_warning": {
"packages": [
"langchain_core",
"langsmith"
]
}
}
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting langchain_google_genai==2.0.0\n",
" Downloading langchain_google_genai-2.0.0-py3-none-any.whl.metadata (3.9 kB)\n",
"Collecting google-generativeai<0.8.0,>=0.7.0 (from langchain_google_genai==2.0.0)\n",
" Downloading google_generativeai-0.7.2-py3-none-any.whl.metadata (4.0 kB)\n",
"Collecting langchain-core<0.4,>=0.3.0 (from langchain_google_genai==2.0.0)\n",
" Downloading langchain_core-0.3.79-py3-none-any.whl.metadata (3.2 kB)\n",
"Requirement already satisfied: pydantic<3,>=2 in /usr/local/lib/python3.12/dist-packages (from langchain_google_genai==2.0.0) (2.11.10)\n",
"Collecting google-ai-generativelanguage==0.6.6 (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0)\n",
" Downloading google_ai_generativelanguage-0.6.6-py3-none-any.whl.metadata (5.6 kB)\n",
"Requirement already satisfied: google-api-core in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (2.26.0)\n",
"Requirement already satisfied: google-api-python-client in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (2.185.0)\n",
"Requirement already satisfied: google-auth>=2.15.0 in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (2.38.0)\n",
"Requirement already satisfied: protobuf in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (5.29.5)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (4.67.1)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (4.15.0)\n",
"Requirement already satisfied: proto-plus<2.0.0dev,>=1.22.3 in /usr/local/lib/python3.12/dist-packages (from google-ai-generativelanguage==0.6.6->google-generativeai<0.8.0,>=0.7.0->langchain_google_genai==2.0.0) (1.26.1)\n",
"\u001b[31mERROR: Operation cancelled by user\u001b[0m\u001b[31m\n",
"\u001b[0mTraceback (most recent call last):\n",
" File \"/usr/local/lib/python3.12/dist-packages/pip/_internal/cli/base_command.py\", line 179, in exc_logging_wrapper\n",
" status = run_func(*args)\n",
" ^^^^^^^^^^^^^^^\n",
" File \"/usr/local/lib/python3.12/dist-packages/pip/_internal/cli/req_command.py\", line 67, in wrapper\n",
" return func(self, options, args)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/usr/local/lib/python3.12/dist-packages/pip/_internal/commands/install.py\", line 377, in run\n",
"^C\n"
]
}
],
"source": [
"!pip install langchain==0.1.0\n",
"!pip install langchain_google_genai==2.0.0"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "u3YDEYVaCE9m",
"outputId": "74f9c2fd-6811-44aa-96ea-e55b90d36a49"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found existing installation: langchain 0.1.0\n",
"Uninstalling langchain-0.1.0:\n",
" Successfully uninstalled langchain-0.1.0\n",
"Found existing installation: langchain-core 0.1.23\n",
"Uninstalling langchain-core-0.1.23:\n",
" Successfully uninstalled langchain-core-0.1.23\n",
"Found existing installation: langsmith 0.0.87\n",
"Uninstalling langsmith-0.0.87:\n",
" Successfully uninstalled langsmith-0.0.87\n",
"\u001b[33mWARNING: Skipping langchain_google_genai as it is not installed.\u001b[0m\u001b[33m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip uninstall -y langchain langchain-core langsmith langchain_google_genai"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "7D95aJhGCHx8",
"outputId": "2281333c-b4b9-48d8-8410-97019aac947b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting langchain==0.1.0\n",
" Using cached langchain-0.1.0-py3-none-any.whl.metadata (13 kB)\n",
"Requirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (6.0.3)\n",
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.0.44)\n",
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (3.13.1)\n",
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (0.6.7)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (1.33)\n",
"Requirement already satisfied: langchain-community<0.1,>=0.0.9 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (0.0.20)\n",
"Collecting langchain-core<0.2,>=0.1.7 (from langchain==0.1.0)\n",
" Using cached langchain_core-0.1.53-py3-none-any.whl.metadata (5.9 kB)\n",
"Collecting langsmith<0.1.0,>=0.0.77 (from langchain==0.1.0)\n",
" Using cached langsmith-0.0.92-py3-none-any.whl.metadata (9.9 kB)\n",
"Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (1.26.4)\n",
"Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.11.10)\n",
"Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (2.32.4)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from langchain==0.1.0) (8.5.0)\n",
"Requirement already satisfied: aiohappyeyeballs>=2.5.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (2.6.1)\n",
"Requirement already satisfied: aiosignal>=1.4.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.4.0)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (25.4.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.8.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (6.7.0)\n",
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (0.4.1)\n",
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.12/dist-packages (from aiohttp<4.0.0,>=3.8.3->langchain==0.1.0) (1.22.0)\n",
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /usr/local/lib/python3.12/dist-packages (from dataclasses-json<0.7,>=0.5.7->langchain==0.1.0) (3.26.1)\n",
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from dataclasses-json<0.7,>=0.5.7->langchain==0.1.0) (0.9.0)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.12/dist-packages (from jsonpatch<2.0,>=1.33->langchain==0.1.0) (3.0.0)\n",
"INFO: pip is looking at multiple versions of langchain-core to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting langchain-core<0.2,>=0.1.7 (from langchain==0.1.0)\n",
" Using cached langchain_core-0.1.52-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.51-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.50-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.49-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.48-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.47-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.46-py3-none-any.whl.metadata (5.9 kB)\n",
"INFO: pip is still looking at multiple versions of langchain-core to determine which version is compatible with other requirements. This could take a while.\n",
" Using cached langchain_core-0.1.45-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.44-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.43-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.42-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.41-py3-none-any.whl.metadata (5.9 kB)\n",
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
" Using cached langchain_core-0.1.40-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.39-py3-none-any.whl.metadata (5.9 kB)\n",
" Using cached langchain_core-0.1.38-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.37-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.36-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.35-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.34-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.33-py3-none-any.whl.metadata (6.0 kB)\n",
"Requirement already satisfied: anyio<5,>=3 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1.7->langchain==0.1.0) (4.11.0)\n",
" Using cached langchain_core-0.1.32-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.31-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.30-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.29-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.28-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.27-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.26-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.25-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.24-py3-none-any.whl.metadata (6.0 kB)\n",
" Using cached langchain_core-0.1.23-py3-none-any.whl.metadata (6.0 kB)\n",
"Collecting langsmith<0.1.0,>=0.0.77 (from langchain==0.1.0)\n",
" Using cached langsmith-0.0.87-py3-none-any.whl.metadata (10 kB)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1.7->langchain==0.1.0) (23.2)\n",
"Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (2.33.2)\n",
"Requirement already satisfied: typing-extensions>=4.12.2 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (4.15.0)\n",
"Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from pydantic<3,>=1->langchain==0.1.0) (0.4.2)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (3.4.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (3.11)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain==0.1.0) (2025.10.5)\n",
"Requirement already satisfied: greenlet>=1 in /usr/local/lib/python3.12/dist-packages (from SQLAlchemy<3,>=1.4->langchain==0.1.0) (3.2.4)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.12/dist-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1.7->langchain==0.1.0) (1.3.1)\n",
"Requirement already satisfied: mypy-extensions>=0.3.0 in /usr/local/lib/python3.12/dist-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain==0.1.0) (1.1.0)\n",
"Using cached langchain-0.1.0-py3-none-any.whl (797 kB)\n",
"Using cached langchain_core-0.1.23-py3-none-any.whl (241 kB)\n",
"Using cached langsmith-0.0.87-py3-none-any.whl (55 kB)\n",
"Installing collected packages: langsmith, langchain-core, langchain\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"langchain-text-splitters 0.3.11 requires langchain-core<2.0.0,>=0.3.75, but you have langchain-core 0.1.23 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed langchain-0.1.0 langchain-core-0.1.23 langsmith-0.0.87\n",
"\u001b[31mERROR: Could not find a version that satisfies the requirement langchain_google_genai==1.0.0 (from versions: 0.0.1rc0, 0.0.1, 0.0.2, 0.0.3, 0.0.4, 0.0.5, 0.0.6, 0.0.7, 0.0.8, 0.0.9, 0.0.10rc0, 0.0.11, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.0.6, 1.0.7, 1.0.8, 1.0.9, 1.0.10, 2.0.0.dev1, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7, 2.0.8, 2.0.9, 2.0.10, 2.0.11, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.1.8, 2.1.9, 2.1.10, 2.1.11, 2.1.12, 3.0.0a1, 3.0.0rc1, 3.0.0)\u001b[0m\u001b[31m\n",
"\u001b[0m\u001b[31mERROR: No matching distribution found for langchain_google_genai==1.0.0\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install langchain==0.1.0\n",
"!pip install langchain_google_genai==1.0.0\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"collapsed": true,
"id": "yUKfAmX5CVCA",
"outputId": "16ca9815-a269-48eb-9e6b-8241b2d888e0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: Skipping langchain_google_genai as it is not installed.\u001b[0m\u001b[33m\n",
"\u001b[0mCollecting langchain_google_genai==1.0.1\n",
" Downloading langchain_google_genai-1.0.1-py3-none-any.whl.metadata (3.8 kB)\n",
"Collecting google-generativeai<0.5.0,>=0.4.1 (from langchain_google_genai==1.0.1)\n",
" Downloading google_generativeai-0.4.1-py3-none-any.whl.metadata (6.2 kB)\n",
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /usr/local/lib/python3.12/dist-packages (from langchain_google_genai==1.0.1) (0.1.23)\n",
"Collecting google-ai-generativelanguage==0.4.0 (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1)\n",
" Downloading google_ai_generativelanguage-0.4.0-py3-none-any.whl.metadata (5.1 kB)\n",
"Requirement already satisfied: google-auth>=2.15.0 in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (2.38.0)\n",
"Requirement already satisfied: google-api-core in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (2.26.0)\n",
"Requirement already satisfied: protobuf in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (5.29.5)\n",
"Requirement already satisfied: pydantic in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (2.11.10)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (4.67.1)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.12/dist-packages (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (4.15.0)\n",
"Requirement already satisfied: proto-plus<2.0.0dev,>=1.22.3 in /usr/local/lib/python3.12/dist-packages (from google-ai-generativelanguage==0.4.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (1.26.1)\n",
"Collecting protobuf (from google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1)\n",
" Using cached protobuf-4.25.8-cp37-abi3-manylinux2014_x86_64.whl.metadata (541 bytes)\n",
"Requirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (6.0.3)\n",
"Requirement already satisfied: anyio<5,>=3 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (4.11.0)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (1.33)\n",
"Requirement already satisfied: langsmith<0.0.88,>=0.0.87 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (0.0.87)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (23.2)\n",
"Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (2.32.4)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (8.5.0)\n",
"Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.12/dist-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (3.11)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.12/dist-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (1.3.1)\n",
"Requirement already satisfied: googleapis-common-protos<2.0.0,>=1.56.2 in /usr/local/lib/python3.12/dist-packages (from google-api-core->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (1.71.0)\n",
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from google-auth>=2.15.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (5.5.2)\n",
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.12/dist-packages (from google-auth>=2.15.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (0.4.2)\n",
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.12/dist-packages (from google-auth>=2.15.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (4.9.1)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.12/dist-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (3.0.0)\n",
"Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.12/dist-packages (from pydantic->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.33.2 in /usr/local/lib/python3.12/dist-packages (from pydantic->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (2.33.2)\n",
"Requirement already satisfied: typing-inspection>=0.4.0 in /usr/local/lib/python3.12/dist-packages (from pydantic->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (0.4.2)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (3.4.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2->langchain-core<0.2,>=0.1->langchain_google_genai==1.0.1) (2025.10.5)\n",
"Requirement already satisfied: grpcio<2.0.0,>=1.33.2 in /usr/local/lib/python3.12/dist-packages (from google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0dev,>=1.34.0->google-ai-generativelanguage==0.4.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (1.75.1)\n",
"Requirement already satisfied: grpcio-status<2.0.0,>=1.33.2 in /usr/local/lib/python3.12/dist-packages (from google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0dev,>=1.34.0->google-ai-generativelanguage==0.4.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (1.71.2)\n",
"Requirement already satisfied: pyasn1<0.7.0,>=0.6.1 in /usr/local/lib/python3.12/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=2.15.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1) (0.6.1)\n",
"INFO: pip is looking at multiple versions of grpcio-status to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting grpcio-status<2.0.0,>=1.33.2 (from google-api-core[grpc]!=2.0.*,!=2.1.*,!=2.10.*,!=2.2.*,!=2.3.*,!=2.4.*,!=2.5.*,!=2.6.*,!=2.7.*,!=2.8.*,!=2.9.*,<3.0.0dev,>=1.34.0->google-ai-generativelanguage==0.4.0->google-generativeai<0.5.0,>=0.4.1->langchain_google_genai==1.0.1)\n",
" Downloading grpcio_status-1.76.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.75.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.75.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.74.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.73.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.73.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.72.2-py3-none-any.whl.metadata (1.1 kB)\n",
"INFO: pip is still looking at multiple versions of grpcio-status to determine which version is compatible with other requirements. This could take a while.\n",
" Downloading grpcio_status-1.72.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.71.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.70.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.69.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.68.1-py3-none-any.whl.metadata (1.1 kB)\n",
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
" Downloading grpcio_status-1.68.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.67.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.67.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.66.2-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.66.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.66.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.65.5-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.65.4-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.65.2-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.65.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.64.3-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.64.1-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.64.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.63.2-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.63.0-py3-none-any.whl.metadata (1.1 kB)\n",
" Downloading grpcio_status-1.62.3-py3-none-any.whl.metadata (1.3 kB)\n",
"Downloading langchain_google_genai-1.0.1-py3-none-any.whl (28 kB)\n",
"Downloading google_generativeai-0.4.1-py3-none-any.whl (137 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.4/137.4 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading google_ai_generativelanguage-0.4.0-py3-none-any.whl (598 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m598.7/598.7 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hUsing cached protobuf-4.25.8-cp37-abi3-manylinux2014_x86_64.whl (294 kB)\n",
"Downloading grpcio_status-1.62.3-py3-none-any.whl (14 kB)\n",
"Installing collected packages: protobuf, grpcio-status, google-ai-generativelanguage, google-generativeai, langchain_google_genai\n",
" Attempting uninstall: protobuf\n",
" Found existing installation: protobuf 5.29.5\n",
" Uninstalling protobuf-5.29.5:\n",
" Successfully uninstalled protobuf-5.29.5\n",
" Attempting uninstall: grpcio-status\n",
" Found existing installation: grpcio-status 1.71.2\n",
" Uninstalling grpcio-status-1.71.2:\n",
" Successfully uninstalled grpcio-status-1.71.2\n",
" Attempting uninstall: google-ai-generativelanguage\n",
" Found existing installation: google-ai-generativelanguage 0.9.0\n",
" Uninstalling google-ai-generativelanguage-0.9.0:\n",
" Successfully uninstalled google-ai-generativelanguage-0.9.0\n",
" Attempting uninstall: google-generativeai\n",
" Found existing installation: google-generativeai 0.8.5\n",
" Uninstalling google-generativeai-0.8.5:\n",
" Successfully uninstalled google-generativeai-0.8.5\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"opentelemetry-proto 1.38.0 requires protobuf<7.0,>=5.0, but you have protobuf 4.25.8 which is incompatible.\n",
"google-adk 1.16.0 requires opentelemetry-api<=1.37.0,>=1.37.0, but you have opentelemetry-api 1.38.0 which is incompatible.\n",
"google-adk 1.16.0 requires opentelemetry-sdk<=1.37.0,>=1.37.0, but you have opentelemetry-sdk 1.38.0 which is incompatible.\n",
"ydf 0.13.0 requires protobuf<7.0.0,>=5.29.1, but you have protobuf 4.25.8 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-exporter-otlp-proto-common==1.37.0, but you have opentelemetry-exporter-otlp-proto-common 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-proto==1.37.0, but you have opentelemetry-proto 1.38.0 which is incompatible.\n",
"opentelemetry-exporter-otlp-proto-http 1.37.0 requires opentelemetry-sdk~=1.37.0, but you have opentelemetry-sdk 1.38.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0mSuccessfully installed google-ai-generativelanguage-0.4.0 google-generativeai-0.4.1 grpcio-status-1.62.3 langchain_google_genai-1.0.1 protobuf-4.25.8\n"
]
},
{
"data": {
"application/vnd.colab-display-data+json": {
"id": "901a9c7b1abe4dbb929d45ecfe93b5ee",
"pip_warning": {
"packages": [
"google"
]
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"!pip uninstall -y langchain_google_genai\n",
"!pip install langchain_google_genai==1.0.1"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "v1wPtvTv8KGb",
"outputId": "aa9260db-5070-4690-a403-406e9ec45f27"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"🤖 Initializing Gemini 2.5 Flash model...\n",
"✅ Gemini model initialized!\n",
"🧪 Test response: Okay, let's dive into the fascinating world of machine learning!\n",
"\n",
"**What is Machine Learning (ML)?**...\n",
"✅ Gemini model is working!\n"
]
}
],
"source": [
"# Initialize Gemini model\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"from langchain.schema import HumanMessage, SystemMessage\n",
"\n",
"print(\"🤖 Initializing Gemini 2.5 Flash model...\")\n",
"\n",
"# Initialize the Gemini model\n",
"llm = ChatGoogleGenerativeAI(\n",
" model=\"gemini-2.0-flash-exp\", # Using the latest available model\n",
" temperature=0.7,\n",
" max_output_tokens=1024,\n",
" convert_system_message_to_human=True\n",
")\n",
"\n",
"print(\"✅ Gemini model initialized!\")\n",
"\n",
"# Test the model\n",
"try:\n",
" test_response = llm.invoke(\"Hello! Can you tell me about machine learning?\")\n",
" print(\"🧪 Test response:\", test_response.content[:100] + \"...\")\n",
" print(\"✅ Gemini model is working!\")\n",
"except Exception as e:\n",
" print(f\"❌ Error testing Gemini model: {e}\")\n",
" print(\"Please check your API key and try again.\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RPMySqbW8KGb"
},
"source": [
"## 🔍 Step 5: Create RAG Pipeline\n",
"\n",
"Now we'll create the complete RAG pipeline that retrieves relevant context and generates answers.\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pL3kfIAD8KGb",
"outputId": "804d3325-f7a3-4ff0-e20b-bb8885c306b1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"✅ RAG pipeline created!\n"
]
}
],
"source": [
"# Create RAG pipeline\n",
"def retrieve_relevant_docs(query, n_results=5):\n",
" \"\"\"Retrieve relevant documents from Chroma\"\"\"\n",
" try:\n",
" results = collection.query(\n",
" query_texts=[query],\n",
" n_results=n_results\n",
" )\n",
"\n",
" # Extract documents and metadata\n",
" documents = results['documents'][0]\n",
" metadatas = results['metadatas'][0]\n",
" distances = results['distances'][0]\n",
"\n",
" return documents, metadatas, distances\n",
" except Exception as e:\n",
" print(f\"Error retrieving documents: {e}\")\n",
" return [], [], []\n",
"\n",
"def create_context(documents):\n",
" \"\"\"Create context string from retrieved documents\"\"\"\n",
" context = \"\\n\\n\".join(documents)\n",
" return context\n",
"\n",
"def generate_answer(query, context):\n",
" \"\"\"Generate answer using Gemini with retrieved context\"\"\"\n",
" system_prompt = \"\"\"You are an AI assistant specialized in machine learning, deep learning, and artificial intelligence.\n",
" Use the provided context to answer questions accurately and comprehensively. If the context doesn't contain enough\n",
" information, you can supplement with your general knowledge, but always prioritize the provided context.\n",
"\n",
" Provide clear, well-structured answers with examples when appropriate.\"\"\"\n",
"\n",
" user_prompt = f\"\"\"Context:\n",
" {context}\n",
"\n",
" Question: {query}\n",
"\n",
" Please provide a comprehensive answer based on the context above.\"\"\"\n",
"\n",
" try:\n",
" messages = [\n",
" SystemMessage(content=system_prompt),\n",
" HumanMessage(content=user_prompt)\n",
" ]\n",
"\n",
" response = llm.invoke(messages)\n",
" return response.content\n",
" except Exception as e:\n",
" return f\"Error generating answer: {e}\"\n",
"\n",
"def rag_pipeline(query, n_results=5):\n",
" \"\"\"Complete RAG pipeline\"\"\"\n",
" print(f\"🔍 Processing query: '{query}'\")\n",
"\n",
" # Retrieve relevant documents\n",
" documents, metadatas, distances = retrieve_relevant_docs(query, n_results)\n",
"\n",
" if not documents:\n",
" return \"Sorry, I couldn't find relevant information for your query.\"\n",
"\n",
" print(f\"📚 Retrieved {len(documents)} relevant documents\")\n",
"\n",
" # Create context\n",
" context = create_context(documents)\n",
"\n",
" # Generate answer\n",
" answer = generate_answer(query, context)\n",
"\n",
" return answer, documents, metadatas, distances\n",
"\n",
"print(\"✅ RAG pipeline created!\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8b0eHdTG8KGc"
},
"source": [
"## 🧪 Step 6: Test the RAG System\n",
"\n",
"Let's test our RAG chatbot with some sample questions about ML/AI topics.\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Z5CsJNXC8KGc",
"outputId": "dce825e4-2d3b-433b-e4fc-0878b454a1fe"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"🧪 Testing RAG system with sample questions...\n",
"\n",
"❓ Question 1: What is machine learning?\n",
"--------------------------------------------------\n",
"🔍 Processing query: 'What is machine learning?'\n",
"📚 Retrieved 5 relevant documents\n",
"🤖 Answer: Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data. It enables systems to improve their performance on a specific task over time without being explicitly programmed.\n",
"\n",
"📊 Retrieved 5 documents\n",
"🎯 Similarity scores: ['0.528', '0.741', '0.901', '0.926', '0.984']\n",
"\n",
"================================================================================\n",
"\n",
"❓ Question 2: How do neural networks work?\n",
"--------------------------------------------------\n",
"🔍 Processing query: 'How do neural networks work?'\n",
"📚 Retrieved 5 relevant documents\n",
"🤖 Answer: Neural networks are computing systems inspired by biological neural networks, employing a connectionist approach to process information. They consist of interconnected nodes that work together to learn patterns from data. The context describes them as the basis for deep learning, where multiple layers of neural networks are used to process complex patterns.\n",
"\n",
"📊 Retrieved 5 documents\n",
"🎯 Similarity scores: ['0.623', '0.861', '1.019', '1.083', '1.360']\n",
"\n",
"================================================================================\n",
"\n",
"❓ Question 3: What is the difference between supervised and unsupervised learning?\n",
"--------------------------------------------------\n",
"🔍 Processing query: 'What is the difference between supervised and unsupervised learning?'\n",
"📚 Retrieved 5 relevant documents\n",
"🤖 Answer: The key difference between supervised and unsupervised learning lies in the data they use and the type of problem they solve.\n",
"\n",
"* **Supervised learning** uses labeled data, meaning each data point has a corresponding target or outcome associated with it. The algorithm learns a mapping from inputs to outputs based on this labeled training data. Examples of supervised learning algorithms include linear regression, decision trees, and support vector machines. A practical example is predicting house prices based on features like size and location, where the labeled data consists of houses with known prices.\n",
"\n",
"* **Unsupervised learning**, on the other hand, uses unlabeled data. The goal is to discover hidden patterns or structures within the data without any prior knowledge of the desired outcome. Clustering algorithms like K-means are examples of unsupervised learning techniques, where the algorithm groups similar data points together. For instance, customer segmentation based on purchasing behavior, where the algorithm identifies distinct groups of customers without pre-defined labels.\n",
"\n",
"📊 Retrieved 5 documents\n",
"🎯 Similarity scores: ['0.779', '0.958', '1.266', '1.466', '1.476']\n",
"\n",
"================================================================================\n",
"\n",
"❓ Question 4: Explain deep learning\n",
"--------------------------------------------------\n",
"🔍 Processing query: 'Explain deep learning'\n",
"📚 Retrieved 5 relevant documents\n",
"🤖 Answer: Deep learning is a subfield of machine learning that employs neural networks with multiple layers (hence, \"deep\") to analyze and extract intricate patterns from data. This approach is particularly effective for handling complex tasks such as image recognition, natural language processing, and speech recognition.\n",
"\n",
"Here's a breakdown of key aspects:\n",
"\n",
"* **Neural Networks:** Deep learning models are based on artificial neural networks, which are computing systems inspired by biological neural networks found in the brain. These networks consist of interconnected nodes (neurons) organized in layers.\n",
"\n",
"* **Multiple Layers:** The \"deep\" in deep learning refers to the use of many layers in the neural network. These layers enable the model to learn hierarchical representations of data, where each layer extracts increasingly abstract features. For example, in computer vision, the first layers might detect edges and corners, while deeper layers combine these features to recognize objects.\n",
"\n",
"* **Learning from Data:** Like other machine learning techniques, deep learning algorithms learn from data. The network adjusts the connections between neurons (weights) based on the input data to improve its performance on a specific task.\n",
"\n",
"* **Applications:** Deep learning is used in various applications, including:\n",
" * **Computer Vision:** Enabling machines to \"see\" and interpret images and videos. For instance, convolutional neural networks (CNNs) are a popular deep learning architecture for image recognition.\n",
" * **Natural Language Processing:** Allowing machines to understand and generate human language.\n",
" * **Speech Recognition:** Converting spoken language into text.\n",
" * **Reinforcement Learning:** Training agents to make decisions in complex environments.\n",
"📊 Retrieved 5 documents\n",
"🎯 Similarity scores: ['0.613', '0.788', '1.096', '1.145', '1.239']\n",
"\n",
"================================================================================\n",
"\n",
"❓ Question 5: What is overfitting in machine learning?\n",
"--------------------------------------------------\n",
"🔍 Processing query: 'What is overfitting in machine learning?'\n",
"📚 Retrieved 5 relevant documents\n",
"🤖 Answer: Overfitting in machine learning, as explained in the provided context, occurs when a model learns the training data too well. This means the model captures not only the underlying patterns in the data but also the noise or irrelevant details. As a result, while the model may perform exceptionally well on the training data, it fails to generalize to new, unseen data, leading to poor performance. Regularization techniques are employed to mitigate overfitting.\n",
"\n",
"📊 Retrieved 5 documents\n",
"🎯 Similarity scores: ['0.615', '1.125', '1.164', '1.281', '1.348']\n",
"\n",
"================================================================================\n",
"\n"
]
}
],
"source": [
"# Test the RAG system\n",
"test_questions = [\n",
" \"What is machine learning?\",\n",
" \"How do neural networks work?\",\n",
" \"What is the difference between supervised and unsupervised learning?\",\n",
" \"Explain deep learning\",\n",
" \"What is overfitting in machine learning?\"\n",
"]\n",
"\n",
"print(\"🧪 Testing RAG system with sample questions...\\n\")\n",
"\n",
"for i, question in enumerate(test_questions, 1):\n",
" print(f\"❓ Question {i}: {question}\")\n",
" print(\"-\" * 50)\n",
"\n",
" try:\n",
" answer, documents, metadatas, distances = rag_pipeline(question)\n",
" print(f\"🤖 Answer: {answer}\")\n",
" print(f\"📊 Retrieved {len(documents)} documents\")\n",
" print(f\"🎯 Similarity scores: {[f'{d:.3f}' for d in distances]}\")\n",
" print(\"\\n\" + \"=\"*80 + \"\\n\")\n",
" except Exception as e:\n",
" print(f\"❌ Error: {e}\")\n",
" print(\"\\n\" + \"=\"*80 + \"\\n\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ig2vPO8J8KGc"
},
"source": [
"## 💾 Step 7: Save Components for Streamlit App\n",
"\n",
"Save the necessary components so they can be used in the Streamlit app.\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7Ydbi57S8KGc",
"outputId": "cb618051-152f-45ce-ddf9-69bfe4ebc405"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"💾 Saving components for Streamlit app...\n",
"✅ Configuration saved to rag_config.json\n",
"\n",
"🎯 Final verification test...\n",
"🔍 Processing query: 'What is artificial intelligence?'\n",
"📚 Retrieved 5 relevant documents\n",
"✅ Test successful! Answer length: 255 characters\n",
"📊 Retrieved 5 documents\n",
"\n",
"🎉 RAG system is ready!\n",
"📁 Files created:\n",
" - chroma_db/ (vector database)\n",
" - rag_config.json (configuration)\n",
"\n",
"🚀 You can now use this system in the Streamlit app!\n"
]
}
],
"source": [
"# Save components for Streamlit app\n",
"import pickle\n",
"import json\n",
"\n",
"print(\"💾 Saving components for Streamlit app...\")\n",
"\n",
"# Save the RAG pipeline functions and configuration\n",
"rag_config = {\n",
" 'collection_name': collection_name,\n",
" 'embedding_model_name': 'all-MiniLM-L6-v2',\n",
" 'gemini_model': 'gemini-2.0-flash-exp',\n",
" 'temperature': 0.7,\n",
" 'max_output_tokens': 1024,\n",
" 'n_results': 5\n",
"}\n",
"\n",
"# Save configuration\n",
"with open('rag_config.json', 'w') as f:\n",
" json.dump(rag_config, f, indent=2)\n",
"\n",
"print(\"✅ Configuration saved to rag_config.json\")\n",
"\n",
"# Create a simple test to verify everything works\n",
"print(\"\\n🎯 Final verification test...\")\n",
"test_query = \"What is artificial intelligence?\"\n",
"try:\n",
" answer, docs, metas, dists = rag_pipeline(test_query)\n",
" print(f\"✅ Test successful! Answer length: {len(answer)} characters\")\n",
" print(f\"📊 Retrieved {len(docs)} documents\")\n",
"except Exception as e:\n",
" print(f\"❌ Test failed: {e}\")\n",
"\n",
"print(\"\\n🎉 RAG system is ready!\")\n",
"print(\"📁 Files created:\")\n",
"print(\" - chroma_db/ (vector database)\")\n",
"print(\" - rag_config.json (configuration)\")\n",
"print(\"\\n🚀 You can now use this system in the Streamlit app!\")\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "2Ms81G6CL5vA",
"outputId": "d683e31f-84f8-4fe0-abb6-1d5afcf9230e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: streamlit in /usr/local/lib/python3.12/dist-packages (1.28.1)\n",
"Collecting streamlit-chat\n",
" Downloading streamlit_chat-0.1.1-py3-none-any.whl.metadata (4.2 kB)\n",
"Requirement already satisfied: altair<6,>=4.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (5.5.0)\n",
"Requirement already satisfied: blinker<2,>=1.0.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (1.9.0)\n",
"Requirement already satisfied: cachetools<6,>=4.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (5.5.2)\n",
"Requirement already satisfied: click<9,>=7.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (8.3.0)\n",
"Requirement already satisfied: importlib-metadata<7,>=1.4 in /usr/local/lib/python3.12/dist-packages (from streamlit) (6.11.0)\n",
"Requirement already satisfied: numpy<2,>=1.19.3 in /usr/local/lib/python3.12/dist-packages (from streamlit) (1.26.4)\n",
"Requirement already satisfied: packaging<24,>=16.8 in /usr/local/lib/python3.12/dist-packages (from streamlit) (23.2)\n",
"Requirement already satisfied: pandas<3,>=1.3.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (2.2.2)\n",
"Requirement already satisfied: pillow<11,>=7.1.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (10.4.0)\n",
"Requirement already satisfied: protobuf<5,>=3.20 in /usr/local/lib/python3.12/dist-packages (from streamlit) (4.25.8)\n",
"Requirement already satisfied: pyarrow>=6.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (18.1.0)\n",
"Requirement already satisfied: python-dateutil<3,>=2.7.3 in /usr/local/lib/python3.12/dist-packages (from streamlit) (2.9.0.post0)\n",
"Requirement already satisfied: requests<3,>=2.27 in /usr/local/lib/python3.12/dist-packages (from streamlit) (2.32.4)\n",
"Requirement already satisfied: rich<14,>=10.14.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (13.9.4)\n",
"Requirement already satisfied: tenacity<9,>=8.1.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (8.5.0)\n",
"Requirement already satisfied: toml<2,>=0.10.1 in /usr/local/lib/python3.12/dist-packages (from streamlit) (0.10.2)\n",
"Requirement already satisfied: typing-extensions<5,>=4.3.0 in /usr/local/lib/python3.12/dist-packages (from streamlit) (4.15.0)\n",
"Requirement already satisfied: tzlocal<6,>=1.1 in /usr/local/lib/python3.12/dist-packages (from streamlit) (5.3.1)\n",
"Requirement already satisfied: validators<1,>=0.2 in /usr/local/lib/python3.12/dist-packages (from streamlit) (0.35.0)\n",
"Requirement already satisfied: gitpython!=3.1.19,<4,>=3.0.7 in /usr/local/lib/python3.12/dist-packages (from streamlit) (3.1.45)\n",
"Requirement already satisfied: pydeck<1,>=0.8.0b4 in /usr/local/lib/python3.12/dist-packages (from streamlit) (0.9.1)\n",
"Requirement already satisfied: tornado<7,>=6.0.3 in /usr/local/lib/python3.12/dist-packages (from streamlit) (6.5.1)\n",
"Requirement already satisfied: watchdog>=2.1.5 in /usr/local/lib/python3.12/dist-packages (from streamlit) (6.0.0)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from altair<6,>=4.0->streamlit) (3.1.6)\n",
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.12/dist-packages (from altair<6,>=4.0->streamlit) (4.25.1)\n",
"Requirement already satisfied: narwhals>=1.14.2 in /usr/local/lib/python3.12/dist-packages (from altair<6,>=4.0->streamlit) (2.9.0)\n",
"Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.12/dist-packages (from gitpython!=3.1.19,<4,>=3.0.7->streamlit) (4.0.12)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.12/dist-packages (from importlib-metadata<7,>=1.4->streamlit) (3.23.0)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas<3,>=1.3.0->streamlit) (2025.2)\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas<3,>=1.3.0->streamlit) (2025.2)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil<3,>=2.7.3->streamlit) (1.17.0)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit) (3.4.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit) (3.11)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit) (2025.10.5)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.12/dist-packages (from rich<14,>=10.14.0->streamlit) (4.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.12/dist-packages (from rich<14,>=10.14.0->streamlit) (2.19.2)\n",
"Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.12/dist-packages (from gitdb<5,>=4.0.1->gitpython!=3.1.19,<4,>=3.0.7->streamlit) (5.0.2)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->altair<6,>=4.0->streamlit) (3.0.3)\n",
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (25.4.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (2025.9.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (0.37.0)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.12/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (0.27.1)\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.12/dist-packages (from markdown-it-py>=2.2.0->rich<14,>=10.14.0->streamlit) (0.1.2)\n",
"Downloading streamlit_chat-0.1.1-py3-none-any.whl (1.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: streamlit-chat\n",
"Successfully installed streamlit-chat-0.1.1\n"
]
}
],
"source": [
"!pip install streamlit streamlit-chat"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 650
},
"id": "6E6Q04tDIinz",
"outputId": "e8e0da16-c9db-45bd-e807-ddcc5462ef35"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"It looks like you are running Gradio on a hosted Jupyter notebook, which requires `share=True`. Automatically setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
"\n",
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
"* Running on public URL: https://97ee63e42da153d3f5.gradio.live\n",
"\n",
"This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://97ee63e42da153d3f5.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"# Chat history\n",
"chat_history = []\n",
"\n",
"# Chat logic\n",
"def chat_with_rag(user_input):\n",
" global chat_history\n",
" if not user_input.strip():\n",
" return chat_history\n",
"\n",
" # Call your RAG pipeline\n",
" answer, _, _, _ = rag_pipeline(user_input)\n",
"\n",
" chat_history.append({\"role\": \"user\", \"message\": user_input})\n",
" chat_history.append({\"role\": \"assistant\", \"message\": answer})\n",
" return chat_history\n",
"\n",
"def clear_chat():\n",
" global chat_history\n",
" chat_history = []\n",
" return chat_history\n",
"\n",
"# HTML message template with modern styling\n",
"def format_message(message):\n",
" role = message[\"role\"]\n",
" text = message[\"message\"]\n",
"\n",
" if role == \"user\":\n",
" bubble_color = \"#4CAF50\" # Green\n",
" text_color = \"#FFFFFF\"\n",
" justify = \"flex-end\"\n",
" avatar = \"https://cdn-icons-png.flaticon.com/512/194/194938.png\"\n",
" name = \"You\"\n",
" else:\n",
" bubble_color = \"#1E1E1E\" # Dark grey\n",
" text_color = \"#F5F5F5\"\n",
" justify = \"flex-start\"\n",
" avatar = \"https://cdn-icons-png.flaticon.com/512/1995/1995574.png\"\n",
" name = \"AI Assistant\"\n",
"\n",
" return f\"\"\"\n",
" <div style=\"display:flex; justify-content:{justify}; margin:8px 0; align-items:flex-start;\">\n",
" <img src=\"{avatar}\" style=\"width:38px;height:38px;border-radius:50%; margin-right:10px;\" />\n",
" <div style=\"max-width:70%; background-color:{bubble_color};\n",
" color:{text_color}; padding:14px 18px;\n",
" border-radius:20px; font-size:15px; line-height:1.5;\n",
" box-shadow: 0 4px 12px rgba(0,0,0,0.2); font-family: 'Inter', sans-serif;\n",
" transition: transform 0.2s;\">\n",
" <div style=\"font-weight:600; margin-bottom:4px; opacity:0.85;\">{name}</div>\n",
" <div>{text}</div>\n",
" </div>\n",
" </div>\n",
" \"\"\"\n",
"\n",
"custom_theme = gr.themes.Soft(\n",
" primary_hue=\"green\"\n",
")\n",
"\n",
"with gr.Blocks(theme=custom_theme, css=\"\"\"\n",
" #chatbox {\n",
" height: 450px;\n",
" overflow-y: auto;\n",
" padding: 12px;\n",
" background-color: #F7F7F7;\n",
" border-radius: 15px;\n",
" border: 1px solid #DDD;\n",
" }\n",
" #user_input textarea {\n",
" font-size: 16px;\n",
" }\n",
" .gr-button {\n",
" font-weight: 600;\n",
" }\n",
"\"\"\") as demo:\n",
"\n",
"\n",
"\n",
" gr.Markdown(\n",
" \"\"\"\n",
" <div style=\"display:flex; align-items:center; gap:12px;\">\n",
" <img src=\"https://cdn-icons-png.flaticon.com/512/1995/1995574.png\"\n",
" style=\"width:40px; height:40px; border-radius:50%;\" />\n",
" <div>\n",
" <h1 style=\"margin:0;\">AI Chat Assistant</h1>\n",
" <span style=\"color:#FFFFFF; text-shadow: 1px 1px 2px #000;\">\n",
" Your AI assistant for Machine Learning, Deep Learning, and AI — Explore insights, learn concepts, and get expert guidance.\n",
" </span>\n",
" </div>\n",
" </div>\n",
" \"\"\",\n",
" elem_id=\"title\"\n",
" )\n",
"\n",
"\n",
"\n",
" chat_box = gr.HTML(elem_id=\"chatbox\")\n",
" user_input = gr.Textbox(\n",
" placeholder=\"Type your question...\",\n",
" label=\"Your message\",\n",
" lines=2\n",
" )\n",
" send_btn = gr.Button(\"Send\", variant=\"primary\")\n",
" clear_btn = gr.Button(\"Clear Chat\", variant=\"secondary\")\n",
"\n",
" def update_display(user_message):\n",
" chat_with_rag(user_message)\n",
" html = \"\".join([format_message(m) for m in chat_history])\n",
" return html, \"\"\n",
"\n",
" send_btn.click(update_display, inputs=user_input, outputs=[chat_box, user_input])\n",
" clear_btn.click(lambda: (\"\", clear_chat()), None, outputs=chat_box)\n",
"\n",
"demo.launch()\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|