File size: 29,439 Bytes
92ea014
 
 
 
 
 
4588d9f
92ea014
 
 
4588d9f
92ea014
 
 
 
a131b22
92ea014
a131b22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ea014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963ab1
67620c7
 
77f13b2
8d41069
77f13b2
 
 
 
 
 
c5b0f48
91add32
 
77f13b2
 
 
 
fa56a2a
 
 
 
 
e7d6e7f
72fb42c
861076c
e7d6e7f
 
 
fa56a2a
72fb42c
 
 
 
 
 
 
7d4db27
22bf7e8
e456e52
224b0e3
22bf7e8
7d4db27
 
 
 
 
 
22bf7e8
4564044
 
 
 
 
22bf7e8
92ea014
7d4db27
22bf7e8
7d4db27
 
54c27c6
 
 
 
 
22bf7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ea014
 
 
22bf7e8
 
 
92ea014
 
 
22bf7e8
 
7d4db27
94c83ab
7d4db27
 
 
92559f9
f0bc04c
 
e456e52
224b0e3
 
92559f9
 
 
 
 
7d4db27
 
 
 
 
 
 
 
 
6f1a2cd
7d4db27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f8023
 
 
 
 
 
 
 
 
ba84185
93f8023
 
 
 
 
 
7d4db27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1a2cd
224b0e3
7d4db27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26ecd96
 
 
 
 
 
 
 
 
 
 
 
92559f9
099fa33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92559f9
 
b34b7fc
 
92ea014
0c43978
92559f9
0c43978
 
92559f9
94c83ab
 
 
b34b7fc
 
 
 
94c83ab
 
b34b7fc
77f13b2
 
 
 
3664f53
 
 
 
 
 
 
 
 
77f13b2
 
 
 
 
 
 
 
 
 
 
03ad6de
7d4db27
03ad6de
77f13b2
 
7d4db27
 
 
 
 
 
 
 
 
 
92559f9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
---
title: Theorem Explanation Agent
emoji: 🎓
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
python_version: 3.11
---

# 🎓 Theorem Explanation Agent

**AI-Powered Educational Content Generation**

[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ManojINaik/menamiai)

## 🌟 Overview

The Theorem Explanation Agent is an AI-powered system that helps create educational content using Google's Gemini 2.0 Flash model. This system is designed to plan and structure educational videos with mathematical and scientific concepts.

## 🎮 Current Status: Demo Mode

**This Hugging Face Spaces instance runs in demonstration mode** due to system dependency limitations.

### ✅ Available Features:
- 🤖 **Gemini 2.0 Flash Integration**: Advanced AI for educational content planning
- 🔄 **Comma-separated API Key Support**: Automatic rotation across multiple API keys
- 📚 **Educational Content Planning**: Structured lesson planning and curriculum design
- 🎯 **Learning Objective Design**: AI-assisted educational goal setting

### ❌ Currently Not Available:
- 🎥 **Video Rendering**: Requires Manim system libraries (pangocairo, etc.)
- 📹 **MP4 Generation**: System dependencies not available in HF Spaces
- 🎨 **Visual Animations**: Manim-based mathematical visualizations

## 🚀 Quick Start

1. **Enter an Educational Topic**: e.g., "Pythagorean Theorem", "Newton's Laws"
2. **Add Learning Context**: Specify target audience, objectives, or focus areas
3. **Set Content Sections**: Choose number of content sections to plan (1-6)
4. **Generate**: Click "Generate Educational Content" to see AI planning in action

## 🔧 API Key Configuration

For enhanced functionality, set your Gemini API key:

### Single API Key:
```bash
GEMINI_API_KEY=your-gemini-api-key
```

### Multiple Keys (Recommended):
```bash
GEMINI_API_KEY=key1,key2,key3,key4
```

Multiple keys enable:
- ✅ Load balancing across API limits
- ✅ Automatic failover if one key fails
- ✅ Cost distribution across billing accounts

## 💻 Full Video Generation (Local Setup)

For complete video generation capabilities with actual MP4 output:

```bash
# Clone the repository
git clone https://github.com/your-repo/TheoremExplainAgent
cd TheoremExplainAgent

# Install system dependencies (Ubuntu/Debian)
sudo apt update
sudo apt install -y \
    libpangocairo-1.0-0 \
    libpango-1.0-0 \
    libcairo2-dev \
    pkg-config \
    python3-dev

# Install Python dependencies
pip install -r requirements.txt

# Set environment variables
export GEMINI_API_KEY="your-api-key-1,your-api-key-2"
export DEMO_MODE=false

# Run locally
python app.py
```

## 📚 Example Educational Topics

The system works best with specific, educational topics:

- **Mathematics**: "Quadratic Formula Derivation", "Calculus Derivatives", "Geometric Proofs"
- **Physics**: "Newton's Second Law", "Electromagnetic Waves", "Wave-Particle Duality"  
- **Biology**: "DNA Structure", "Photosynthesis Process", "Cellular Respiration"
- **Chemistry**: "Chemical Bonding", "Atomic Structure", "Periodic Trends"

## 🛠️ Technical Architecture

### Core Components:
- **Gemini 2.0 Flash**: Content planning and educational structure generation
- **LiteLLM**: Multi-provider AI model integration with failover
- **Gradio**: User-friendly web interface
- **Manim**: Mathematical animation engine (local setup only)

### Key Features:
- **Intelligent Content Planning**: AI-driven educational curriculum design
- **Multi-API Key Rotation**: Robust handling of rate limits and failures
- **Educational Focus**: Optimized for STEM learning objectives
- **Scalable Architecture**: Supports both demo and full production modes

## 🔍 System Capabilities

### Content Planning Features:
- 📋 **Curriculum Structure**: AI-generated lesson plans
- 🎯 **Learning Objectives**: Automatic educational goal setting
- 📊 **Content Progression**: Logical topic flow and difficulty scaling
- 🧠 **Concept Mapping**: Relationship identification between topics

### AI Integration:
- 🤖 **Gemini 2.0 Flash**: Latest Google AI model for educational content
- 🔄 **Automatic Retry Logic**: Robust error handling and recovery
- 📝 **Context-Aware Planning**: Audience-specific content adaptation
- 💡 **Creative Content Generation**: Engaging educational narratives

## 📈 Usage Analytics

The system provides insights into:
- ✅ Successful content generation attempts
- 🔄 API key rotation and usage patterns
- 📊 Popular educational topics and trends
- ⚡ Performance metrics and response times

## 🤝 Contributing

We welcome contributions to improve educational content generation:

1. **Content Templates**: Add new educational topic templates
2. **AI Prompts**: Enhance content planning prompts
3. **UI Improvements**: Better user experience design
4. **Documentation**: Clearer setup and usage guides

## 📞 Support

For questions, issues, or feedback:

- 🐛 **Issues**: Report bugs and feature requests
- 💬 **Discussions**: Community support and ideas
- 📧 **Contact**: Direct support for urgent matters

## 📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

---

**Built with ❤️ for educators and learners worldwide**

*Transform complex concepts into engaging educational experiences with AI-powered content generation.*

# 🌟 Features

- **Interactive Web Interface**: User-friendly Gradio interface for easy video generation
- **Multiple AI Models**: Support for various LLMs including Gemini, GPT-4, and Claude
- **Automated Video Generation**: Creates complete educational videos with animations and voiceovers
- **API Endpoints**: RESTful API for programmatic access
- **Real-time Progress Tracking**: Monitor video generation status in real-time
- **Educational Content**: Covers mathematics, physics, and other STEM topics

## 🚀 Quick Start

### Using the Web Interface

1. **Initialize the System**: Click "Initialize System" to set up the video generator
2. **Enter Topic**: Provide the topic you want explained (e.g., "velocity", "Pythagorean theorem")
3. **Add Context**: Optionally provide additional context or specific requirements
4. **Select Models**: Choose your preferred AI models for generation
5. **Generate Video**: Click "Generate Video" and monitor the progress
6. **Download Results**: Access generated videos from the output directory

### Using the API

The application provides RESTful API endpoints for programmatic access:

```python
import requests

# Generate a video
response = requests.post("http://localhost:7860/api/generate", json={
    "topic": "velocity",
    "context": "explain with detailed examples",
    "model": "gemini/gemini-2.0-flash",
    "max_scenes": 5
})

# Check status
session_id = response.json()["session_id"]
status = requests.get(f"http://localhost:7860/api/status/{session_id}")
```

## 🛠️ Installation & Setup

### Local Development

1. **Clone the Repository**:
   ```bash
   git clone https://github.com/your-repo/theorem-explain-agent.git
   cd theorem-explain-agent
   ```

2. **Install Dependencies**:
   ```bash
   pip install -r requirements.txt
   ```

3. **Set Up Environment Variables**:
   ```bash
   cp .env.template .env
   # Edit .env with your API keys
   ```

4. **Run the Application**:
   ```bash
   python app.py
   ```

### Docker Deployment

```bash
docker build -t theorem-explanation-agent .
docker run -p 7860:7860 theorem-explanation-agent
```

### Hugging Face Spaces

This application is deployed on Hugging Face Spaces and can be accessed directly through the web interface. Simply visit the space URL and start generating educational videos!

## 🔧 Configuration

### Environment Variables

- `GEMINI_API_KEY`: Google Gemini API key (supports comma-separated multiple keys)
- `OPENAI_API_KEY`: OpenAI API key
- `ANTHROPIC_API_KEY`: Anthropic Claude API key
- `ELEVENLABS_API_KEY`: ElevenLabs TTS API key
- `ELEVENLABS_DEFAULT_VOICE_ID`: Default voice ID for TTS

### Model Support

The application supports various AI models:

- **Gemini Models**: `gemini/gemini-2.0-flash`, `gemini/gemini-1.5-pro`
- **OpenAI Models**: `openai/gpt-4o`, `openai/gpt-4`
- **Anthropic Models**: `anthropic/claude-3-sonnet`, `anthropic/claude-3-haiku`

## 📖 API Documentation

### Endpoints

#### POST `/api/generate`
Generate an educational video for a given topic.

**Request Body**:
```json
{
  "topic": "string",
  "context": "string (optional)",
  "model": "string",
  "max_scenes": "integer"
}
```

**Response**:
```json
{
  "success": true,
  "session_id": "string",
  "message": "string"
}
```

#### GET `/api/status/{session_id}`
Check the status of video generation.

**Response**:
```json
{
  "status": "string",
  "progress": "integer",
  "message": "string",
  "result": "object (when completed)"
}
```

## 🎯 Example Topics

- **Mathematics**: Pythagorean Theorem, Quadratic Formula, Derivatives, Logarithms
- **Physics**: Velocity, Newton's Laws, Wave Motion, Thermodynamics
- **Statistics**: Probability, Normal Distribution, Hypothesis Testing
- **Geometry**: Circle Properties, Triangle Theorems, Transformations

## 🏗️ Architecture

The application consists of several components:

1. **Video Generator**: Core engine for planning and generating educational content
2. **Code Generator**: Creates Manim animation code from AI-generated plans
3. **Video Renderer**: Renders Manim animations into video files
4. **TTS Service**: Generates voiceovers using ElevenLabs API
5. **Web Interface**: Gradio-based user interface
6. **API Layer**: RESTful endpoints for programmatic access

## 🐛 Troubleshooting

### Common Issues

1. **Manim Rendering Errors**: 
   - Ensure all system dependencies are installed (FFmpeg, LaTeX, Cairo)
   - Check that frame constants are properly defined in generated code

2. **TTS Connection Issues**: 
   - Verify ElevenLabs API key is valid
   - Check network connectivity
   - The system will fallback to silent audio if TTS fails

3. **Model API Errors**: 
   - Confirm API keys are set correctly
   - Check API rate limits and quotas
   - Ensure model names are valid

### Error Recovery

The application includes robust error handling:
- Automatic retries for API failures
- Fallback mechanisms for TTS issues
- Comprehensive error logging
- Graceful degradation when services are unavailable

## 🤝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## 📄 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 🙏 Acknowledgments

- [Manim Community](https://www.manim.community/) for the animation framework
- [ElevenLabs](https://elevenlabs.io/) for text-to-speech services
- [Gradio](https://gradio.app/) for the web interface framework
- [Hugging Face](https://huggingface.co/) for hosting and deployment

# TheoremExplainAgent (TEA) 🍵
[![arXiv](https://img.shields.io/badge/arXiv-2502.19400-b31b1b.svg)](https://arxiv.org/abs/2502.19400)
<a href='https://huggingface.co/papers/2502.19400'><img src='https://img.shields.io/static/v1?label=Paper&message=Huggingface&color=orange'></a> 

[**🌐 Homepage**](https://tiger-ai-lab.github.io/TheoremExplainAgent/)  | [**📖 arXiv**](https://arxiv.org/abs/2502.19400) | [**🤗 HuggingFace Dataset**](https://huggingface.co/datasets/TIGER-Lab/TheoremExplainBench) | [🎥Video Data](https://drive.google.com/file/d/18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ/view)

[![contributors](https://img.shields.io/github/contributors/TIGER-AI-Lab/TheoremExplainAgent)](https://github.com/TIGER-AI-Lab/TheoremExplainAgent/graphs/contributors)
[![license](https://img.shields.io/github/license/TIGER-AI-Lab/TheoremExplainAgent.svg)](https://github.com/TIGER-AI-Lab/TheoremExplainAgent/blob/main/LICENSE)
[![GitHub](https://img.shields.io/github/stars/TIGER-AI-Lab/TheoremExplainAgent?style=social)](https://github.com/TIGER-AI-Lab/TheoremExplainAgent)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FTIGER-AI-Lab%2FTheoremExplainAgent&count_bg=%23C83DB9&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=visitors&edge_flat=false)](https://hits.seeyoufarm.com)

This repo contains the codebase for our paper [TheoremExplainAgent: Towards Video-based Multimodal Explanations for LLM Theorem Understanding](https://arxiv.org/abs/2502.19400)

**ACL 2025 main**

## Introduction
TheoremExplainAgent is an AI system that generates long-form Manim videos to visually explain theorems, proving its deep understanding while uncovering reasoning flaws that text alone often hides.



https://github.com/user-attachments/assets/17f2f4f2-8f2c-4abc-b377-ac92ebda69f3


## 📰 News
* 2025 Jun 8: We released our generated video data for researchers to serve as baselines.
* 2025 May 15: Paper accepted to ACL 2025 main conference.
* 2025 Mar 3: Generation code and Evaluation code released. Thanks for the wait!
<!--* 2025 Mar 3: Reach 404 stars without code.-->
* 2025 Feb 27: Paper available on [Arxiv](https://arxiv.org/abs/2502.19400). Thanks AK for putting our paper on [HF Daily](https://huggingface.co/papers/2502.19400).

## Downloading Generated Video Data
Skip this section if you just want to try out the code.
If you are researchers who just need the baseline videos as baseline comparison, download it here:
```shell
wget --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ' -O /tmp/gdrive.html && wget --load-cookies /tmp/cookies.txt -O baseline_videos.zip "https://drive.usercontent.google.com/download?id=18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ&export=download&confirm=$(sed -rn 's/.*name="confirm" value="([^"]+)".*/\\1/p' /tmp/gdrive.html)&uuid=$(sed -rn 's/.*name="uuid" value="([^"]+)".*/\\1/p' /tmp/gdrive.html)" && rm /tmp/gdrive.html /tmp/cookies.txt
```

## Installation

> **Look at the [FAQ section in this README doc](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#-faq) if you encountered any errors. If that didnt help, create a issue**<br>

1. Setting up conda environment
```shell
conda create --name tea python=3.12.8
conda activate tea
pip install -r requirements.txt
```

2. You may also need to install latex and other dependencies for Manim Community. Look at [Manim Installation Docs](https://docs.manim.community/en/stable/installation.html) for more details.
```shell
# You might need these dependencies if you are using Linux Ubuntu:
sudo apt-get install portaudio19-dev
sudo apt-get install libsdl-pango-dev
```

3. The project now uses ElevenLabs for TTS service. Make sure you have a valid ElevenLabs API key.

4. Create `.env` based on `.env.template`, filling in the environmental variables according to the models you choose to use.
See [LiteLLM](https://docs.litellm.ai/docs/providers) for reference.

```shell
touch .env
```
Then open the `.env` file and edit it with whatever text editor you like.

Your `.env` file should look like the following:
```shell
# OpenAI
OPENAI_API_KEY=""

# Azure OpenAI
AZURE_API_KEY=""
AZURE_API_BASE=""
AZURE_API_VERSION=""

# Google Vertex AI
VERTEXAI_PROJECT=""
VERTEXAI_LOCATION=""
GOOGLE_APPLICATION_CREDENTIALS=""

# Google Gemini (supports comma-separated fallback keys)
# Get your API key from: https://aistudio.google.com/app/apikey
GEMINI_API_KEY="your_api_key_here"

...

# ElevenLabs TTS Settings
ELEVENLABS_API_KEY=""
ELEVENLABS_DEFAULT_VOICE_ID="EXAVITQu4vr4xnSDxMaL"  # Bella voice (default)
```
Fill in the API keys according to the model you wanted to use.

5. Configure Python path. Note that you need to configure the python path to make it work. Otherwise you may encounter import issues (like not being able to import src etc.)
```shell
export PYTHONPATH=$(pwd):$PYTHONPATH
```

6. (Optional) To setup RAG, See [https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#generation-with-rag](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#generation-with-rag).

> **Look at the [FAQ section in this README doc](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#-faq) if you encountered any errors. If that didnt help, create a issue**<br>

## Generation

### Supported Models
<!--You can customize the allowed models by editing the `src/utils/allowed_models.json` file. This file specifies which `model` and `helper_model` the system is permitted to use.--> 
The model naming follows the LiteLLM convention. For details on how models should be named, please refer to the [LiteLLM documentation](https://docs.litellm.ai/docs/providers).

### Generation (Single topic)
```shell
python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/your_exp_name" \
      --topic "your_topic" \
      --context "description of your topic, e.g. 'This is a topic about the properties of a triangle'" \
```

Example:
```shell
python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/my_exp_name" \
      --topic "Big O notation" \
      --context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
```

### Generation (in batch)
```shell
python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/my_exp_name" \
      --theorems_path data/thb_easy/math.json \
      --max_scene_concurrency 7 \
      --max_topic_concurrency 20 \
```

### Generation with RAG
Before using RAG, download the RAG documentation from this [Google Drive link](https://drive.google.com/file/d/1Tn6J_JKVefFZRgZbjns93KLBtI9ullRv/view?usp=sharing). After downloading, unzip the file. For example, if you unzip it to `data/rag/manim_docs`, then you should set `--manim_docs_path` to `data/rag/manim_docs`. The vector database will be created the first time you run with RAG.

```shell
python generate_video.py \
            --model "openai/o3-mini" \
            --helper_model "openai/o3-mini" \
            --output_dir "output/with_rag/o3-mini/vtutorbench_easy/math" \
            --topic "Big O notation" \
            --context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
            --use_rag \
            --chroma_db_path "data/rag/chroma_db" \
            --manim_docs_path "data/rag/manim_docs" \
            --embedding_model "vertex_ai/text-embedding-005"
```

We support more options for generation, see below for more details:
```shell
usage: generate_video.py [-h]
                         [--model]
                         [--topic TOPIC] [--context CONTEXT]
                         [--helper_model]
                         [--only_gen_vid] [--only_combine] [--peek_existing_videos] [--output_dir OUTPUT_DIR] [--theorems_path THEOREMS_PATH]
                         [--sample_size SAMPLE_SIZE] [--verbose] [--max_retries MAX_RETRIES] [--use_rag] [--use_visual_fix_code]
                         [--chroma_db_path CHROMA_DB_PATH] [--manim_docs_path MANIM_DOCS_PATH]
                         [--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}] [--use_context_learning]
                         [--context_learning_path CONTEXT_LEARNING_PATH] [--use_langfuse] [--max_scene_concurrency MAX_SCENE_CONCURRENCY]
                         [--max_topic_concurrency MAX_TOPIC_CONCURRENCY] [--debug_combine_topic DEBUG_COMBINE_TOPIC] [--only_plan] [--check_status]
                         [--only_render] [--scenes SCENES [SCENES ...]]

Generate Manim videos using AI

options:
  -h, --help            show this help message and exit
  --model               Select the AI model to use
  --topic TOPIC         Topic to generate videos for
  --context CONTEXT     Context of the topic
  --helper_model        Select the helper model to use
  --only_gen_vid        Only generate videos to existing plans
  --only_combine        Only combine videos
  --peek_existing_videos, --peek
                        Peek at existing videos
  --output_dir OUTPUT_DIR
                        Output directory
  --theorems_path THEOREMS_PATH
                        Path to theorems json file
  --sample_size SAMPLE_SIZE, --sample SAMPLE_SIZE
                        Number of theorems to sample
  --verbose             Print verbose output
  --max_retries MAX_RETRIES
                        Maximum number of retries for code generation
  --use_rag, --rag      Use Retrieval Augmented Generation
  --use_visual_fix_code, --visual_fix_code
                        Use VLM to fix code with rendered visuals
  --chroma_db_path CHROMA_DB_PATH
                        Path to Chroma DB
  --manim_docs_path MANIM_DOCS_PATH
                        Path to manim docs
  --embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}
                        Select the embedding model to use
  --use_context_learning
                        Use context learning with example Manim code
  --context_learning_path CONTEXT_LEARNING_PATH
                        Path to context learning examples
  --use_langfuse        Enable Langfuse logging
  --max_scene_concurrency MAX_SCENE_CONCURRENCY
                        Maximum number of scenes to process concurrently
  --max_topic_concurrency MAX_TOPIC_CONCURRENCY
                        Maximum number of topics to process concurrently
  --debug_combine_topic DEBUG_COMBINE_TOPIC
                        Debug combine videos
  --only_plan           Only generate scene outline and implementation plans
  --check_status        Check planning and code status for all theorems
  --only_render         Only render scenes without combining videos
  --scenes SCENES [SCENES ...]
                        Specific scenes to process (if theorems_path is provided)
```

## Evaluation
Note that Gemini and GPT4o is required for evaluation.

Currently, evaluation requires a video file and a subtitle file (SRT format).

Video evaluation:
```shell
usage: evaluate.py [-h]
                   [--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
                   [--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}]
                   [--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
                   [--eval_type {text,video,image,all}] --file_path FILE_PATH --output_folder OUTPUT_FOLDER [--retry_limit RETRY_LIMIT] [--combine] [--bulk_evaluate] [--target_fps TARGET_FPS]
                   [--use_parent_folder_as_topic] [--max_workers MAX_WORKERS]

Automatic evaluation of theorem explanation videos with LLMs

options:
  -h, --help            show this help message and exit
  --model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
                        Select the AI model to use for text evaluation
  --model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}
                        Select the AI model to use for video evaluation
  --model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
                        Select the AI model to use for image evaluation
  --eval_type {text,video,image,all}
                        Type of evaluation to perform
  --file_path FILE_PATH
                        Path to a file or a theorem folder
  --output_folder OUTPUT_FOLDER
                        Directory to store the evaluation files
  --retry_limit RETRY_LIMIT
                        Number of retry attempts for each inference
  --combine             Combine all results into a single JSON file
  --bulk_evaluate       Evaluate a folder of theorems together
  --target_fps TARGET_FPS
                        Target FPS for video processing. If not set, original video FPS will be used
  --use_parent_folder_as_topic
                        Use parent folder name as topic name for single file evaluation
  --max_workers MAX_WORKERS
                        Maximum number of concurrent workers for parallel processing
```
* For `file_path`, it is recommended to pass a folder containing both an MP4 file and an SRT file.

## Misc: Modify the system prompt in TheoremExplainAgent

If you want to modify the system prompt, you need to:

1. Modify files in `task_generator/prompts_raw` folder.
2. Run `task_generator/parse_prompt.py` to rebuild the `__init__.py` file.

```python
cd task_generator
python parse_prompt.py
cd ..
```

## TheoremExplainBench (TEB)

TheoremExplainBench can be found on https://huggingface.co/datasets/TIGER-Lab/TheoremExplainBench.

How to use:
```python
import datasets
dataset = datasets.load_dataset("TIGER-Lab/TheoremExplainBench")
```

Dataset info:
```shell
DatasetDict({
    train: Dataset({
        features: ['uid', 'subject', 'difficulty', 'theorem', 'description', 'subfield'],
        num_rows: 240
    })
})
```

## ❓ FAQ

The FAQ should cover the most common errors you could encounter. If you see something new, report it on issues.

Q: Error `src.utils.elevenlabs_voiceover import ElevenLabsService  # You MUST import like this as this is our custom voiceover service. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'src'`. <br>
A: Please run `export PYTHONPATH=$(pwd):$PYTHONPATH` when you start a new terminal. <br>

Q: Error `Files not found` <br>
A: Check your Manim installation. <br>

Q: Error `latex ...` <br>
A: Check your latex installation. <br>

Q: The output log is not showing response? <br>
A: It could be API-related issues. Make sure your `.env` file is properly configured (fill in your API keys), or you can enable litellm debug mode to figure out the issues. <be>

Q: Plans / Scenes are missing? <br>
A: It could be API-related issues. Make sure your `.env` file is properly configured (fill in your API keys), or you can enable litellm debug mode to figure out the issues. <br>


## 🖊️ Citation

Please kindly cite our paper if you use our code, data, models or results:
```bibtex
@misc{ku2025theoremexplainagentmultimodalexplanationsllm,
      title={TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding}, 
      author={Max Ku and Thomas Chong and Jonathan Leung and Krish Shah and Alvin Yu and Wenhu Chen},
      year={2025},
      eprint={2502.19400},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2502.19400}, 
}
```

## 🎫 License

This project is released under the [the MIT License](LICENSE).

## ⭐ Star History

[![Star History Chart](https://api.star-history.com/svg?repos=TIGER-AI-Lab/TheoremExplainAgent&type=Date)](https://star-history.com/#TIGER-AI-Lab/TheoremExplainAgent&Date)

## 💞 Acknowledgements

We want to thank [Votee AI](https://votee.ai/) for sponsoring API keys to access the close-sourced models.

The code is built upon the below repositories, we thank all the contributors for open-sourcing.
* [Manim Community](https://www.manim.community/)
* [kokoro-manim-voiceover](https://github.com/xposed73/kokoro-manim-voiceover)
* [manim-physics](https://github.com/Matheart/manim-physics)
* [manim-Chemistry](https://github.com/UnMolDeQuimica/manim-Chemistry)
* [ManimML](https://github.com/helblazer811/ManimML)
* [manim-dsa](https://github.com/F4bbi/manim-dsa)
* [manim-circuit](https://github.com/Mr-FuzzyPenguin/manim-circuit)

## 🚨 Disclaimer

**This work is intended for research purposes only. The authors do not encourage or endorse the use of this codebase for commercial applications. The code is provided "as is" without any warranties, and users assume all responsibility for its use.**

Tested Environment: MacOS, Linux