Luke MacLean
commited on
Commit
Β·
17daafb
1
Parent(s):
9691efc
init
Browse files
main.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ensure Apple Metal (MPS) is enabled
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from peft import LoraConfig, TaskType
|
| 7 |
+
from trl import SFTConfig, SFTTrainer
|
| 8 |
+
from enum import Enum
|
| 9 |
+
|
| 10 |
+
# β
Set device to Metal Performance Shaders (MPS) for Mac M3
|
| 11 |
+
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
| 12 |
+
print(f"Using device: {device}")
|
| 13 |
+
|
| 14 |
+
# β
Set seed for reproducibility
|
| 15 |
+
set_seed(42)
|
| 16 |
+
|
| 17 |
+
# β
Model and dataset
|
| 18 |
+
model_name = "google/gemma-2-2b-it"
|
| 19 |
+
dataset_name = "Jofthomas/hermes-function-calling-thinking-V1"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=True)
|
| 21 |
+
|
| 22 |
+
# β
Adjust tokenizer with special tokens
|
| 23 |
+
class ChatmlSpecialTokens(str, Enum):
|
| 24 |
+
tools = "<tools>"
|
| 25 |
+
eotools = "</tools>"
|
| 26 |
+
think = "<think>"
|
| 27 |
+
eothink = "</think>"
|
| 28 |
+
tool_call="<tool_call>"
|
| 29 |
+
eotool_call="</tool_call>"
|
| 30 |
+
tool_response="<tool_response>"
|
| 31 |
+
eotool_response="</tool_response>"
|
| 32 |
+
pad_token = "<pad>"
|
| 33 |
+
eos_token = "<eos>"
|
| 34 |
+
|
| 35 |
+
@classmethod
|
| 36 |
+
def list(cls):
|
| 37 |
+
return [c.value for c in cls]
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 40 |
+
model_name,
|
| 41 |
+
pad_token=ChatmlSpecialTokens.pad_token.value,
|
| 42 |
+
additional_special_tokens=ChatmlSpecialTokens.list()
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# β
Load model and move it to MPS
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=True, attn_implementation="eager")
|
| 47 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 48 |
+
model.to(device)
|
| 49 |
+
|
| 50 |
+
# β
Data preprocessing function
|
| 51 |
+
def preprocess(sample):
|
| 52 |
+
messages = sample["messages"]
|
| 53 |
+
|
| 54 |
+
if not messages or not isinstance(messages, list):
|
| 55 |
+
return {"text": ""} # Return empty text if messages are missing
|
| 56 |
+
|
| 57 |
+
first_message = messages[0]
|
| 58 |
+
|
| 59 |
+
# Ensure system messages are merged with the first user message
|
| 60 |
+
if first_message["role"] == "system":
|
| 61 |
+
system_message_content = first_message.get("content", "")
|
| 62 |
+
if len(messages) > 1 and messages[1]["role"] == "user":
|
| 63 |
+
messages[1]["content"] = (
|
| 64 |
+
system_message_content
|
| 65 |
+
+ "\n\nAlso, before making a call to a function, take the time to plan the function to take. "
|
| 66 |
+
+ "Make that thinking process between <think>{your thoughts}</think>\n\n"
|
| 67 |
+
+ messages[1].get("content", "")
|
| 68 |
+
)
|
| 69 |
+
messages.pop(0) # Remove system message
|
| 70 |
+
|
| 71 |
+
# Ensure the conversation alternates between "user" and "assistant"
|
| 72 |
+
valid_roles = ["user", "assistant"]
|
| 73 |
+
cleaned_messages = [
|
| 74 |
+
msg for msg in messages if msg.get("role") in valid_roles and msg.get("content")
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
# Check if messages are empty after cleanup
|
| 78 |
+
if not cleaned_messages or cleaned_messages[0]["role"] != "user":
|
| 79 |
+
return {"text": ""} # Ensure the first message is always from the user
|
| 80 |
+
|
| 81 |
+
# Apply chat template
|
| 82 |
+
try:
|
| 83 |
+
formatted_text = tokenizer.apply_chat_template(cleaned_messages, tokenize=False)
|
| 84 |
+
return {"text": formatted_text}
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"Error processing message: {e}")
|
| 87 |
+
return {"text": ""}
|
| 88 |
+
|
| 89 |
+
# β
Load dataset
|
| 90 |
+
dataset = load_dataset(dataset_name, cache_dir="/tmp")
|
| 91 |
+
dataset = dataset.rename_column("conversations", "messages")
|
| 92 |
+
dataset = dataset.map(preprocess, remove_columns=["messages"])
|
| 93 |
+
dataset = dataset["train"].train_test_split(0.1)
|
| 94 |
+
|
| 95 |
+
# β
Print dataset size before training
|
| 96 |
+
print(f"Training dataset size: {len(dataset['train'])} samples")
|
| 97 |
+
print(f"Evaluation dataset size: {len(dataset['test'])} samples")
|
| 98 |
+
|
| 99 |
+
# β
LoRA configuration
|
| 100 |
+
peft_config = LoraConfig(
|
| 101 |
+
r=16,
|
| 102 |
+
lora_alpha=64,
|
| 103 |
+
lora_dropout=0.05,
|
| 104 |
+
target_modules=["gate_proj", "q_proj", "lm_head", "o_proj", "k_proj", "embed_tokens", "down_proj", "up_proj", "v_proj"],
|
| 105 |
+
task_type=TaskType.CAUSAL_LM,
|
| 106 |
+
bias="none",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# β
Training configuration (adjusted for performance on Mac M3 Max)
|
| 110 |
+
num_train_epochs = 5 # β
Increase to 5 epochs for better training
|
| 111 |
+
max_steps = 1000 # β
Ensure at least 1000 training steps
|
| 112 |
+
learning_rate = 5e-5 # β
Reduce learning rate to prevent overfitting
|
| 113 |
+
|
| 114 |
+
training_arguments = SFTConfig(
|
| 115 |
+
output_dir="gemma-2-2B-it-macM3",
|
| 116 |
+
per_device_train_batch_size=2, # β
Keep small if training on MPS
|
| 117 |
+
per_device_eval_batch_size=2,
|
| 118 |
+
gradient_accumulation_steps=4, # β
Helps fit larger batch sizes
|
| 119 |
+
save_strategy="epoch",
|
| 120 |
+
save_total_limit=2,
|
| 121 |
+
save_safetensors=False,
|
| 122 |
+
evaluation_strategy="epoch",
|
| 123 |
+
logging_steps=5,
|
| 124 |
+
learning_rate=learning_rate,
|
| 125 |
+
max_grad_norm=1.0,
|
| 126 |
+
weight_decay=0.1,
|
| 127 |
+
warmup_ratio=0.1,
|
| 128 |
+
lr_scheduler_type="cosine",
|
| 129 |
+
report_to="tensorboard",
|
| 130 |
+
bf16=True, # β
Efficient mixed precision training for Mac MPS
|
| 131 |
+
push_to_hub=False,
|
| 132 |
+
num_train_epochs=num_train_epochs,
|
| 133 |
+
max_steps=max_steps, # β
Ensure training runs for at least 1000 steps
|
| 134 |
+
gradient_checkpointing=True,
|
| 135 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
| 136 |
+
packing=True,
|
| 137 |
+
max_seq_length=1500,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# β
Trainer setup
|
| 141 |
+
trainer = SFTTrainer(
|
| 142 |
+
model=model,
|
| 143 |
+
args=training_arguments,
|
| 144 |
+
train_dataset=dataset["train"],
|
| 145 |
+
eval_dataset=dataset["test"],
|
| 146 |
+
processing_class=tokenizer,
|
| 147 |
+
peft_config=peft_config,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# β
Start training (should work efficiently on Mac M3 Max)
|
| 151 |
+
trainer.train()
|
| 152 |
+
trainer.save_model()
|
| 153 |
+
|
| 154 |
+
print("Training complete! π Model saved successfully.")
|
run.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
|
| 3 |
+
repo_id = "MacLeanLuke/gemma-2b-tool-tuned"
|
| 4 |
+
|
| 5 |
+
model = AutoModelForCausalLM.from_pretrained(repo_id)
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 7 |
+
|
| 8 |
+
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
|
| 9 |
+
outputs = model.generate(**inputs)
|
| 10 |
+
print(tokenizer.decode(outputs[0]))
|
save.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi
|
| 2 |
+
|
| 3 |
+
repo_id = "MacLeanLuke/gemma-2b-tool-tuned" # Change to your Hugging Face username & repo name
|
| 4 |
+
|
| 5 |
+
# β
Upload model and tokenizer
|
| 6 |
+
api = HfApi()
|
| 7 |
+
api.create_repo(repo_id, exist_ok=True)
|
| 8 |
+
|
| 9 |
+
# β
Push files
|
| 10 |
+
model_path = "gemma-2-2B-it-macM3"
|
| 11 |
+
api.upload_folder(
|
| 12 |
+
folder_path=model_path,
|
| 13 |
+
repo_id=repo_id,
|
| 14 |
+
repo_type="model",
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
print(f"Model successfully uploaded to: https://huggingface.co/{repo_id}")
|