File size: 9,628 Bytes
3138502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Dashboard Screen for TraceMind-AI
Displays aggregate statistics and recent evaluation runs
"""

import gradio as gr
import pandas as pd


def calculate_aggregate_stats(leaderboard_df):
    """Calculate aggregate statistics for dashboard"""
    if leaderboard_df.empty:
        return {
            'total_runs': 0,
            'avg_accuracy': 0.0,
            'avg_latency': 0.0,
            'total_tokens': 0,
            'total_cost': 0.0,
            'avg_cost': 0.0,
            'total_co2': 0.0
        }

    return {
        'total_runs': len(leaderboard_df),
        'avg_accuracy': leaderboard_df['success_rate'].mean() if 'success_rate' in leaderboard_df.columns else 0.0,
        'avg_latency': leaderboard_df['avg_duration_ms'].mean() / 1000 if 'avg_duration_ms' in leaderboard_df.columns else 0.0,
        'total_tokens': int(leaderboard_df['total_tokens'].sum()) if 'total_tokens' in leaderboard_df.columns else 0,
        'total_cost': leaderboard_df['total_cost_usd'].sum() if 'total_cost_usd' in leaderboard_df.columns else 0.0,
        'avg_cost': leaderboard_df['total_cost_usd'].mean() if 'total_cost_usd' in leaderboard_df.columns else 0.0,
        'total_co2': leaderboard_df['co2_emissions_g'].sum() if 'co2_emissions_g' in leaderboard_df.columns else 0.0
    }


def generate_stats_card(title, value, emoji, gradient_colors, description):
    """
    Generate HTML for a single statistics card

    Args:
        title: Card title
        value: Main value to display
        emoji: Emoji icon
        gradient_colors: Tuple of (start_color, end_color) for gradient
        description: Description text
    """
    return f"""
    <div style="background: linear-gradient(135deg, {gradient_colors[0]} 0%, {gradient_colors[1]} 100%);
                padding: 25px;
                border-radius: 12px;
                box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
                color: white;
                min-height: 150px;">
        <div style="display: flex; align-items: center; justify-content: space-between;">
            <div>
                <div style="font-size: 3em; font-weight: bold; margin: 10px 0;">{value}</div>
                <div style="font-size: 1.1em; opacity: 0.9;">{emoji} {title}</div>
            </div>
        </div>
        <div style="margin-top: 15px; font-size: 0.9em; opacity: 0.8;">
            <span style="background: rgba(255,255,255,0.2); padding: 4px 8px; border-radius: 4px;">
                {description}
            </span>
        </div>
    </div>
    """


def create_dashboard_cards(stats):
    """
    Create all dashboard stat cards from stats dictionary

    Args:
        stats: Dictionary with aggregate statistics

    Returns:
        Dictionary of card HTML strings
    """
    cards = {}

    # Card 1: Total Runs
    cards['total_runs'] = generate_stats_card(
        title="Total Runs",
        value=stats['total_runs'],
        emoji="πŸš€",
        gradient_colors=("#667eea", "#764ba2"),
        description="All evaluations"
    )

    # Card 2: Avg Accuracy
    cards['avg_accuracy'] = generate_stats_card(
        title="Avg Accuracy",
        value=f"{stats['avg_accuracy']:.1f}%",
        emoji="🎯",
        gradient_colors=("#f093fb", "#f5576c"),
        description="Success rate"
    )

    # Card 3: Avg Latency
    cards['avg_latency'] = generate_stats_card(
        title="Avg Latency",
        value=f"{stats['avg_latency']:.2f}s",
        emoji="⚑",
        gradient_colors=("#4facfe", "#00f2fe"),
        description="Response time"
    )

    # Card 4: Total Tokens
    cards['total_tokens'] = generate_stats_card(
        title="Total Tokens",
        value=f"{stats['total_tokens']:,}",
        emoji="πŸ’¬",
        gradient_colors=("#43e97b", "#38f9d7"),
        description="Across all runs"
    )

    # Card 5: Total Cost
    cards['total_cost'] = generate_stats_card(
        title="Total Cost",
        value=f"${stats['total_cost']:.4f}",
        emoji="πŸ’°",
        gradient_colors=("#fa709a", "#fee140"),
        description="All evaluations"
    )

    # Card 6: Total CO2
    cards['total_co2'] = generate_stats_card(
        title="Total CO2",
        value=f"{stats['total_co2']:.2f}g",
        emoji="🌱",
        gradient_colors=("#30cfd0", "#330867"),
        description="Carbon emissions"
    )

    return cards


def prepare_recent_runs_data(leaderboard_df, n=5):
    """
    Prepare data for recent runs table

    Args:
        leaderboard_df: Leaderboard dataframe
        n: Number of recent runs to show

    Returns:
        List of lists for Gradio DataFrame
    """
    recent_runs_data = []

    if not leaderboard_df.empty:
        # Convert timestamp to datetime to avoid type errors during sorting
        if 'timestamp' in leaderboard_df.columns:
            leaderboard_df['timestamp'] = pd.to_datetime(leaderboard_df['timestamp'], errors='coerce')
            recent_df = leaderboard_df.sort_values('timestamp', ascending=False).head(n)
        else:
            recent_df = leaderboard_df.head(n)

        for _, row in recent_df.iterrows():
            # Format duration
            duration_ms = row.get('avg_duration_ms', 0)
            if duration_ms >= 1000:
                duration_str = f"{duration_ms/1000:.2f}s"
            else:
                duration_str = f"{duration_ms:.0f}ms"

            recent_runs_data.append([
                row.get('model', 'N/A'),
                f"{row.get('success_rate', 0):.1f}%",
                f"${row.get('total_cost_usd', 0):.4f}",
                duration_str,
                row.get('timestamp', 'N/A')
            ])

    return recent_runs_data


def create_dashboard_ui():
    """
    Create the dashboard screen UI components

    Returns:
        Tuple of (screen_column, component_dict)
    """
    components = {}

    with gr.Column(visible=True) as dashboard_screen:
        gr.Markdown("## πŸ“Š Dashboard")
        gr.Markdown("*Overview of agent evaluation metrics*")

        # Stats cards in draggable grid layout
        with gr.Row():
            # Card 1: Total Runs
            with gr.Draggable():
                components['total_runs_card'] = gr.HTML(
                    generate_stats_card(
                        "Total Runs", "0", "πŸš€",
                        ("#667eea", "#764ba2"),
                        "All evaluations"
                    )
                )

            # Card 2: Avg Accuracy
            with gr.Draggable():
                components['avg_accuracy_card'] = gr.HTML(
                    generate_stats_card(
                        "Avg Accuracy", "0%", "🎯",
                        ("#f093fb", "#f5576c"),
                        "Success rate"
                    )
                )

        with gr.Row():
            # Card 3: Avg Latency
            with gr.Draggable():
                components['avg_latency_card'] = gr.HTML(
                    generate_stats_card(
                        "Avg Latency", "0.0s", "⚑",
                        ("#4facfe", "#00f2fe"),
                        "Response time"
                    )
                )

            # Card 4: Total Tokens
            with gr.Draggable():
                components['total_tokens_card'] = gr.HTML(
                    generate_stats_card(
                        "Total Tokens", "0", "πŸ’¬",
                        ("#43e97b", "#38f9d7"),
                        "Across all runs"
                    )
                )

        with gr.Row():
            # Card 5: Total Cost
            with gr.Draggable():
                components['total_cost_card'] = gr.HTML(
                    generate_stats_card(
                        "Total Cost", "$0.00", "πŸ’°",
                        ("#fa709a", "#fee140"),
                        "All evaluations"
                    )
                )

            # Card 6: Total CO2
            with gr.Draggable():
                components['total_co2_card'] = gr.HTML(
                    generate_stats_card(
                        "Total CO2", "0g", "🌱",
                        ("#30cfd0", "#330867"),
                        "Carbon emissions"
                    )
                )

        gr.Markdown("---")

        # Recent Runs Preview
        gr.Markdown("### πŸ“‹ Recent Evaluations")
        components['recent_runs_table'] = gr.Dataframe(
            headers=["Model", "Success Rate", "Cost", "Duration", "Timestamp"],
            interactive=False,
            wrap=True,
            row_count=5,
            label="Latest 5 runs"
        )

    return dashboard_screen, components


def update_dashboard_data(leaderboard_df, components):
    """
    Update dashboard stats cards and recent runs table

    Args:
        leaderboard_df: Leaderboard dataframe
        components: Dictionary of Gradio components

    Returns:
        Dictionary of component updates
    """
    stats = calculate_aggregate_stats(leaderboard_df)
    cards = create_dashboard_cards(stats)
    recent_runs_data = prepare_recent_runs_data(leaderboard_df)

    return {
        components['total_runs_card']: gr.update(value=cards['total_runs']),
        components['avg_accuracy_card']: gr.update(value=cards['avg_accuracy']),
        components['avg_latency_card']: gr.update(value=cards['avg_latency']),
        components['total_tokens_card']: gr.update(value=cards['total_tokens']),
        components['total_cost_card']: gr.update(value=cards['total_cost']),
        components['total_co2_card']: gr.update(value=cards['total_co2']),
        components['recent_runs_table']: gr.update(value=recent_runs_data)
    }