Spaces:
Running
Running
File size: 180,149 Bytes
fae4e5b 9cec855 8dccf7d fae4e5b 284086c fae4e5b 7f90c34 fae4e5b 9cec855 fae4e5b 9cec855 10186e7 5a775ac 942ce50 3138502 5c51b47 908be6c abb32f1 dab7275 8c679b3 315aa68 659d404 fae4e5b 942ce50 57ce3bd 942ce50 315aa68 942ce50 fedc47d 942ce50 fedc47d 942ce50 fedc47d 942ce50 fedc47d 942ce50 315aa68 942ce50 fedc47d 942ce50 5828eb5 f0d23ea 942ce50 0fca968 942ce50 fedc47d 942ce50 fb44126 942ce50 fb44126 942ce50 fb44126 942ce50 fb44126 942ce50 fb44126 942ce50 fb44126 942ce50 9cec855 fae4e5b 659d404 fae4e5b 659d404 3138502 659d404 3138502 659d404 fae4e5b 9cec855 659d404 1fc3adb 659d404 9cec855 920ea09 9cec855 920ea09 9cec855 659d404 920ea09 9cec855 920ea09 9cec855 920ea09 9cec855 920ea09 9cec855 920ea09 26a1db5 920ea09 60b7b04 920ea09 26a1db5 920ea09 cb9eb3c 659d404 184f198 cb9eb3c 184f198 659d404 184f198 cb9eb3c 184f198 284086c 659d404 184f198 284086c 184f198 284086c 184f198 cb9eb3c 659d404 184f198 cb9eb3c c040b82 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 813e1f3 5a775ac 813e1f3 5a775ac 813e1f3 fd7daa9 315aa68 184f198 315aa68 184f198 fd7daa9 315aa68 fd7daa9 57ce3bd 184f198 315aa68 fd7daa9 315aa68 fd7daa9 315aa68 fd7daa9 315aa68 57ce3bd 315aa68 184f198 57ce3bd 315aa68 184f198 315aa68 57ce3bd 315aa68 184f198 315aa68 fd7daa9 659d404 315aa68 659d404 5a775ac 659d404 5a775ac 659d404 5a775ac 659d404 315aa68 659d404 942ce50 659d404 5a775ac 659d404 0fca968 659d404 5a775ac 0fca968 659d404 5a775ac 0fca968 659d404 315aa68 659d404 315aa68 659d404 942ce50 659d404 5a775ac 659d404 315aa68 659d404 5a775ac 659d404 315aa68 659d404 942ce50 659d404 6fa9d57 5a775ac 659d404 0fca968 659d404 6fa9d57 5a775ac 0fca968 659d404 5a775ac 0fca968 659d404 7f90c34 315aa68 7f90c34 dafc8f1 7f90c34 d87972c 7f90c34 d87972c 7f90c34 d87972c 7f90c34 315aa68 7f90c34 659d404 9cec855 659d404 9cec855 4a44e51 3138502 4a44e51 659d404 3138502 659d404 3138502 7addd50 659d404 908be6c 8c679b3 49ead1e 659d404 dab7275 49ead1e 659d404 920ea09 659d404 920ea09 659d404 920ea09 659d404 920ea09 659d404 3138502 659d404 3138502 659d404 3138502 659d404 920ea09 daacf12 e7b14e6 daacf12 e7b14e6 daacf12 e7b14e6 daacf12 920ea09 659d404 920ea09 4dc8a59 920ea09 7f90c34 920ea09 26a1db5 daacf12 659d404 daacf12 659d404 bf61933 cb9eb3c bf61933 d9a086c bf61933 659d404 daacf12 bf61933 659d404 daacf12 b316f4f daacf12 bf61933 659d404 942ce50 659d404 5a775ac 942ce50 a3b9254 942ce50 0fca968 315aa68 79e0ac2 315aa68 942ce50 4dc8a59 942ce50 5c51b47 908be6c 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e a82ec55 49ead1e 7addd50 055c400 0b0eb36 055c400 7addd50 0b0eb36 7addd50 83ebb04 7addd50 83ebb04 7addd50 0b870a2 7addd50 0b870a2 7addd50 a82ec55 7addd50 a82ec55 7addd50 4db4e9d 7addd50 9704693 7addd50 abb32f1 dab7275 fe72fcb dab7275 8c679b3 7addd50 83ebb04 7addd50 83ebb04 7addd50 83ebb04 7addd50 83ebb04 7addd50 83ebb04 7addd50 5c7c72c 0b78b24 5c7c72c 7addd50 0b78b24 5c7c72c 0b78b24 83ebb04 0b78b24 83ebb04 0b78b24 83ebb04 5c7c72c 0b78b24 5c7c72c 83ebb04 5c7c72c 0b78b24 5c7c72c 83ebb04 5c7c72c 83ebb04 7addd50 5c7c72c 7addd50 83ebb04 7addd50 83ebb04 7addd50 9704693 7addd50 5c7c72c 9704693 5c7c72c 7addd50 9704693 0b78b24 83ebb04 9704693 83ebb04 9704693 0b78b24 9704693 0b78b24 83ebb04 9704693 57ce3bd 9704693 83ebb04 9704693 7addd50 ccceff6 7addd50 ccceff6 7addd50 4db4e9d 7addd50 4db4e9d 7addd50 4db4e9d 8c679b3 83ebb04 4db4e9d 7addd50 83ebb04 7addd50 4db4e9d 7addd50 4db4e9d 7addd50 8c679b3 83ebb04 8c679b3 83ebb04 7addd50 4db4e9d 7addd50 4db4e9d 7addd50 4db4e9d 7addd50 4db4e9d 7addd50 4db4e9d 7addd50 0b0eb36 0b870a2 6b05c3d 0b870a2 6b05c3d 0b870a2 3138502 5c51b47 908be6c 49ead1e 14c0bae abb32f1 dab7275 8c679b3 3138502 14c0bae 3138502 908be6c 8c679b3 49ead1e 3138502 dab7275 3138502 5c51b47 908be6c 49ead1e 14c0bae abb32f1 dab7275 8c679b3 3138502 14c0bae 8c679b3 14c0bae dab7275 14c0bae abb32f1 dab7275 8c679b3 14c0bae 3138502 908be6c 8c679b3 49ead1e 3138502 dab7275 3138502 5c51b47 60b7b04 5c51b47 60b7b04 5c51b47 908be6c 49ead1e 14c0bae abb32f1 dab7275 8c679b3 5c51b47 14c0bae 5c51b47 908be6c 8c679b3 49ead1e 5c51b47 6559dd0 5c51b47 908be6c 49ead1e 14c0bae abb32f1 6559dd0 8c679b3 5c51b47 14c0bae 5c51b47 908be6c 8c679b3 49ead1e 5c51b47 dab7275 5c51b47 908be6c 49ead1e 14c0bae abb32f1 dab7275 8c679b3 908be6c 14c0bae 908be6c 8c679b3 49ead1e 908be6c dab7275 908be6c 49ead1e 14c0bae abb32f1 dab7275 8c679b3 49ead1e 14c0bae 49ead1e 8c679b3 49ead1e dab7275 49ead1e abb32f1 dab7275 8c679b3 abb32f1 8c679b3 abb32f1 dab7275 8c679b3 dab7275 8c679b3 dab7275 abb32f1 8c679b3 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 97b162d 49ead1e 659d404 3138502 49ead1e 8c679b3 3138502 659d404 9cec855 920ea09 659d404 9cec855 659d404 c040b82 659d404 c040b82 3dcbfe7 f65e58b 659d404 920ea09 659d404 920ea09 659d404 920ea09 9cec855 659d404 fae4e5b 7f90c34 26a1db5 cb9eb3c 26a1db5 920ea09 26a1db5 659d404 c4cc2c2 659d404 920ea09 26a1db5 659d404 c4cc2c2 920ea09 659d404 10186e7 d9a086c 659d404 10186e7 659d404 10186e7 d9a086c 659d404 10186e7 659d404 813e1f3 5a775ac 659d404 813e1f3 659d404 fd7daa9 659d404 fd7daa9 659d404 fd7daa9 659d404 3138502 49ead1e 8c679b3 3138502 8c679b3 14c0bae 8c679b3 5c51b47 49ead1e 8c679b3 5c51b47 908be6c 49ead1e 8c679b3 49ead1e 8c679b3 abb32f1 8c679b3 dab7275 8c679b3 908be6c 49ead1e 97b162d 49ead1e 97b162d 49ead1e 14c0bae 8c679b3 14c0bae f63df28 14c0bae 0b0eb36 0b870a2 14c0bae ccceff6 14c0bae ccceff6 14c0bae 4db4e9d 14c0bae b316f4f 908be6c b316f4f 908be6c b316f4f 908be6c b316f4f 908be6c ffe25f1 5c51b47 315aa68 5c51b47 a50320a 5c51b47 315aa68 5c51b47 8c679b3 3138502 659d404 a50320a 26a1db5 659d404 942ce50 0fca968 942ce50 315aa68 942ce50 659d404 0fca968 5a775ac 659d404 fd7daa9 fae4e5b 3138502 fae4e5b 9cec855 fae4e5b 79e0ac2 fae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 |
"""
TraceMind-AI - Agent Evaluation Platform
Enterprise-grade AI agent evaluation with MCP integration
Built on Open Source Foundation:
π TraceVerde (genai_otel_instrument) - Automatic OpenTelemetry instrumentation
for LLM frameworks (LiteLLM, Transformers, LangChain, etc.)
GitHub: https://github.com/Mandark-droid/genai_otel_instrument
PyPI: https://pypi.org/project/genai-otel-instrument
π SMOLTRACE - Agent evaluation engine with OTEL tracing built-in
Generates structured datasets (leaderboard, results, traces, metrics)
GitHub: https://github.com/Mandark-droid/SMOLTRACE
PyPI: https://pypi.org/project/smoltrace/
The Flow: TraceVerde instruments β SMOLTRACE evaluates β TraceMind-AI visualizes
with MCP-powered intelligence
Track 2 Submission: MCP in Action - Enterprise Category
https://huggingface.co/MCP-1st-Birthday
"""
import os
import pandas as pd
import gradio as gr
from gradio_htmlplus import HTMLPlus
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Import data loader and components
from data_loader import create_data_loader_from_env
from components.leaderboard_table import generate_leaderboard_html
from components.analytics_charts import (
create_trends_plot,
create_performance_heatmap,
create_speed_accuracy_scatter,
create_cost_efficiency_scatter
)
from components.report_cards import generate_leaderboard_summary_card, generate_run_report_card, download_card_as_png_js
from screens.trace_detail import (
create_span_visualization,
create_span_table,
create_gpu_metrics_dashboard,
create_gpu_summary_cards
)
from screens.dashboard import (
create_dashboard_ui,
update_dashboard_data
)
from screens.compare import (
create_compare_ui,
on_compare_runs
)
from screens.chat import (
create_chat_ui,
on_send_message,
on_clear_chat,
on_quick_action
)
from screens.documentation import create_documentation_screen
from screens.settings import create_settings_screen
from screens.job_monitoring import create_job_monitoring_screen
from screens.mcp_helpers import (
call_analyze_leaderboard_sync,
call_debug_trace_sync,
call_compare_runs_sync,
call_analyze_results_sync
)
from utils.navigation import Navigator, Screen
# Helper function for AI insights header
def get_gemini_header() -> str:
"""
Returns HTML header showing Gemini attribution for AI-generated insights
"""
return """<div style="font-family: sans-serif; font-size: 0.8rem; color: #6B7280; border-bottom: 1px solid #E5E7EB; padding-bottom: 8px; margin-bottom: 8px;">
Analyzed by <strong style="color: #111827;">Gemini-2.5-flash</strong>
<br><span style="font-size: 0.7rem;">Provider: Gemini <img src='https://upload.wikimedia.org/wikipedia/commons/d/d9/Google_Gemini_logo_2025.svg' alt='logo' width='220' style='vertical-align: middle;'></span>
</div>
"""
# Trace Detail handlers and helpers
def create_span_details_table(spans):
"""
Create table view of span details
Args:
spans: List of span dictionaries
Returns:
DataFrame with span details
"""
try:
if not spans:
return pd.DataFrame(columns=["Span Name", "Kind", "Duration (ms)", "Tokens", "Cost (USD)", "Status"])
rows = []
for span in spans:
name = span.get('name', 'Unknown')
kind = span.get('kind', 'INTERNAL')
# Get attributes
attributes = span.get('attributes', {})
if isinstance(attributes, dict) and 'openinference.span.kind' in attributes:
kind = attributes.get('openinference.span.kind', kind)
# Calculate duration
start = span.get('startTime') or span.get('startTimeUnixNano', 0)
end = span.get('endTime') or span.get('endTimeUnixNano', 0)
duration = (end - start) / 1000000 if start and end else 0 # Convert to ms
status = span.get('status', {}).get('code', 'OK') if isinstance(span.get('status'), dict) else 'OK'
# Extract tokens and cost information
tokens_str = "-"
cost_str = "-"
if isinstance(attributes, dict):
# Check for token usage
prompt_tokens = attributes.get('gen_ai.usage.prompt_tokens') or attributes.get('llm.token_count.prompt')
completion_tokens = attributes.get('gen_ai.usage.completion_tokens') or attributes.get('llm.token_count.completion')
total_tokens = attributes.get('llm.usage.total_tokens')
# Build tokens string
if prompt_tokens is not None and completion_tokens is not None:
total = int(prompt_tokens) + int(completion_tokens)
tokens_str = f"{total} ({int(prompt_tokens)}+{int(completion_tokens)})"
elif total_tokens is not None:
tokens_str = str(int(total_tokens))
# Check for cost
cost = attributes.get('gen_ai.usage.cost.total') or attributes.get('llm.usage.cost')
if cost is not None:
cost_str = f"${float(cost):.6f}"
rows.append({
"Span Name": name,
"Kind": kind,
"Duration (ms)": round(duration, 2),
"Tokens": tokens_str,
"Cost (USD)": cost_str,
"Status": status
})
return pd.DataFrame(rows)
except Exception as e:
print(f"[ERROR] create_span_details_table: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame(columns=["Span Name", "Kind", "Duration (ms)", "Tokens", "Cost (USD)", "Status"])
def create_trace_metadata_html(trace_data: dict) -> str:
"""Create HTML for trace metadata display"""
trace_id = trace_data.get('trace_id', 'Unknown')
spans = trace_data.get('spans', [])
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h3 style="margin: 0 0 10px 0;">Trace Information</h3>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px;">
<div>
<strong>Trace ID:</strong> {trace_id}<br>
<strong>Total Spans:</strong> {len(spans)}
</div>
</div>
</div>
"""
return metadata_html
def on_test_case_select(evt: gr.SelectData, df):
"""Handle test case selection in run detail - navigate to trace detail"""
global current_selected_run, current_selected_trace, _current_trace_info
print(f"[DEBUG] on_test_case_select called with index: {evt.index}")
# Helper function to return empty updates for all 8 outputs
def return_error():
return (
gr.update(), # run_detail_screen
gr.update(), # trace_detail_screen
gr.update(), # trace_title
gr.update(), # trace_metadata_html
gr.update(), # trace_thought_graph
gr.update(), # span_visualization
gr.update(), # span_details_table
gr.update() # span_details_json
)
# Check if we have a selected run
if current_selected_run is None:
print("[ERROR] No run selected - current_selected_run is None")
gr.Warning("Please select a run from the leaderboard first")
return return_error()
try:
# Get selected test case
selected_idx = evt.index[0]
if df is None or df.empty or selected_idx >= len(df):
gr.Warning("Invalid test case selection")
return return_error()
test_case = df.iloc[selected_idx].to_dict()
trace_id = test_case.get('trace_id')
print(f"[DEBUG] Selected test case: {test_case.get('task_id', 'Unknown')} (trace_id: {trace_id})")
# Load trace data
traces_dataset = current_selected_run.get('traces_dataset')
if not traces_dataset:
gr.Warning("No traces dataset found in current run")
return return_error()
# Update global trace info for MCP debug_trace tool
_current_trace_info["trace_id"] = trace_id
_current_trace_info["traces_repo"] = traces_dataset
print(f"[MCP] Updated trace info for debug_trace: trace_id={trace_id}, traces_repo={traces_dataset}")
trace_data = data_loader.get_trace_by_id(traces_dataset, trace_id)
if not trace_data:
gr.Warning(f"Trace not found: {trace_id}")
return return_error()
current_selected_trace = trace_data
# Get spans and ensure it's a list
spans = trace_data.get('spans', [])
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
print(f"[DEBUG] Loaded trace with {len(spans)} spans")
# Create visualizations
span_viz_plot = create_span_visualization(spans, trace_id)
# Process spans for JSON display (create_span_table returns gr.JSON component, we need the data)
simplified_spans = []
for span in spans:
# Helper to get timestamp
def get_timestamp(s, field_name):
variations = [field_name, field_name.lower(), field_name.replace('Time', 'TimeUnixNano')]
for var in variations:
if var in s:
value = s[var]
return int(value) if isinstance(value, str) else value
return 0
start_time = get_timestamp(span, 'startTime')
end_time = get_timestamp(span, 'endTime')
duration_ms = (end_time - start_time) / 1000000 if (end_time and start_time) else 0
span_id = span.get('spanId') or span.get('span_id') or 'N/A'
parent_id = span.get('parentSpanId') or span.get('parent_span_id') or 'root'
simplified_spans.append({
"Span ID": span_id,
"Parent": parent_id,
"Name": span.get('name', 'N/A'),
"Kind": span.get('kind', 'N/A'),
"Duration (ms)": round(duration_ms, 2),
"Attributes": span.get('attributes', {}),
"Status": span.get('status', {}).get('code', 'UNKNOWN')
})
span_details_data = simplified_spans
# Create thought graph
from components.thought_graph import create_thought_graph as create_network_graph
thought_graph_plot = create_network_graph(spans, trace_id)
# Create span details table
span_table_df = create_span_details_table(spans)
# Return dictionary with visibility updates and data
return {
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=True),
trace_title: gr.update(value=f"# π Trace Detail: {trace_id}"),
trace_metadata_html: gr.update(value=create_trace_metadata_html(trace_data)),
trace_thought_graph: gr.update(value=thought_graph_plot),
span_visualization: gr.update(value=span_viz_plot),
span_details_table: gr.update(value=span_table_df),
span_details_json: gr.update(value=span_details_data)
}
except Exception as e:
print(f"[ERROR] on_test_case_select failed: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading trace: {e}")
return return_error()
def create_performance_charts(results_df):
"""
Create performance analysis charts for the Performance tab
Args:
results_df: DataFrame with test results
Returns:
Plotly figure with performance metrics
"""
import plotly.graph_objects as go
from plotly.subplots import make_subplots
try:
if results_df.empty:
fig = go.Figure()
fig.add_annotation(text="No performance data available", showarrow=False)
return fig
# Create 2x2 subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
"Response Time per Test",
"Token Usage per Test",
"Cost per Test",
"Success vs Failure"
),
specs=[[{"type": "bar"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "pie"}]]
)
# 1. Response Time per Test (Bar)
if 'execution_time_ms' in results_df.columns:
test_indices = list(range(len(results_df)))
fig.add_trace(
go.Bar(
x=test_indices,
y=results_df['execution_time_ms'],
marker_color='#3498DB',
name='Response Time',
showlegend=False
),
row=1, col=1
)
fig.update_xaxes(title_text="Test Index", row=1, col=1)
fig.update_yaxes(title_text="Time (ms)", row=1, col=1)
# 2. Token Usage per Test (Bar)
if 'total_tokens' in results_df.columns:
test_indices = list(range(len(results_df)))
fig.add_trace(
go.Bar(
x=test_indices,
y=results_df['total_tokens'],
marker_color='#9B59B6',
name='Tokens',
showlegend=False
),
row=1, col=2
)
fig.update_xaxes(title_text="Test Index", row=1, col=2)
fig.update_yaxes(title_text="Tokens", row=1, col=2)
# 3. Cost per Test (Bar)
if 'cost_usd' in results_df.columns:
test_indices = list(range(len(results_df)))
fig.add_trace(
go.Bar(
x=test_indices,
y=results_df['cost_usd'],
marker_color='#E67E22',
name='Cost',
showlegend=False
),
row=2, col=1
)
fig.update_xaxes(title_text="Test Index", row=2, col=1)
fig.update_yaxes(title_text="Cost (USD)", row=2, col=1)
# 4. Success vs Failure (Pie)
if 'success' in results_df.columns:
# Convert to boolean if needed
success_series = results_df['success']
if success_series.dtype == object:
success_series = success_series == "β
"
success_count = int(success_series.sum())
failure_count = len(results_df) - success_count
fig.add_trace(
go.Pie(
labels=['Success', 'Failure'],
values=[success_count, failure_count],
marker_colors=['#2ECC71', '#E74C3C'],
showlegend=True
),
row=2, col=2
)
# Update layout
fig.update_layout(
height=700,
showlegend=False,
title_text="Performance Analysis Dashboard",
title_x=0.5
)
return fig
except Exception as e:
print(f"[ERROR] create_performance_charts: {e}")
import traceback
traceback.print_exc()
fig = go.Figure()
fig.add_annotation(text=f"Error creating charts: {str(e)}", showarrow=False)
return fig
def go_back_to_run_detail():
"""Navigate from trace detail back to run detail"""
return {
run_detail_screen: gr.update(visible=True),
trace_detail_screen: gr.update(visible=False)
}
# Initialize data loader
data_loader = create_data_loader_from_env()
navigator = Navigator()
# Pre-load and cache the leaderboard data before building UI
print("Pre-loading leaderboard data from HuggingFace...")
leaderboard_df_cache = data_loader.load_leaderboard()
print(f"Loaded {len(leaderboard_df_cache)} evaluation runs")
# Global state (already populated)
# leaderboard_df_cache is now set
# Additional global state for navigation
current_selected_run = None
current_selected_trace = None
current_drilldown_df = None # Store currently displayed drilldown data
def load_leaderboard():
"""Load initial leaderboard data from cache"""
global leaderboard_df_cache
# Use pre-cached data (already loaded before UI build)
df = leaderboard_df_cache.copy()
html = generate_leaderboard_html(df)
# Get filter choices
models = ["All Models"] + sorted(df['model'].unique().tolist())
providers = ["All"] + sorted(df['provider'].unique().tolist())
return html, gr.update(choices=models), gr.update(choices=models), gr.update(choices=providers)
def refresh_leaderboard():
"""Refresh leaderboard data from source (for reload button)"""
global leaderboard_df_cache
print("π Refreshing leaderboard data...")
df = data_loader.refresh_leaderboard() # Clears cache and reloads
leaderboard_df_cache = df.copy()
print(f"β
Refreshed {len(df)} evaluation runs")
html = generate_leaderboard_html(df)
models = ["All Models"] + sorted(df['model'].unique().tolist())
return html, gr.update(choices=models), gr.update(choices=models)
def apply_leaderboard_filters(agent_type, provider, sort_by_col, sort_order):
"""Apply filters and sorting to styled HTML leaderboard"""
global leaderboard_df_cache, model_filter
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
# Apply model filter from sidebar
selected_model = model_filter.value if hasattr(model_filter, 'value') else "All Models"
if selected_model != "All Models":
df = df[df['model'] == selected_model]
# Apply agent type filter
if agent_type != "All":
df = df[df['agent_type'] == agent_type]
# Apply provider filter
if provider != "All":
df = df[df['provider'] == provider]
# Sort
ascending = (sort_order == "Ascending")
df = df.sort_values(by=sort_by_col, ascending=ascending)
html = generate_leaderboard_html(df, sort_by_col, ascending)
return html
def apply_drilldown_filters(agent_type, provider, sort_by_col, sort_order):
"""Apply filters and sorting to drilldown table"""
global leaderboard_df_cache
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
# Apply model filter from sidebar
selected_model = model_filter.value if hasattr(model_filter, 'value') else "All Models"
if selected_model != "All Models":
df = df[df['model'] == selected_model]
# Apply agent type filter
if agent_type != "All":
df = df[df['agent_type'] == agent_type]
# Apply provider filter
if provider != "All":
df = df[df['provider'] == provider]
# Sort
ascending = (sort_order == "Ascending")
df = df.sort_values(by=sort_by_col, ascending=ascending).reset_index(drop=True)
# Prepare simplified dataframe for display
display_df = df[[
'run_id', 'model', 'agent_type', 'provider', 'success_rate',
'total_tests', 'avg_duration_ms', 'total_cost_usd', 'submitted_by'
]].copy()
display_df.columns = ['Run ID', 'Model', 'Agent Type', 'Provider', 'Success Rate', 'Tests', 'Duration (ms)', 'Cost (USD)', 'Submitted By']
return gr.update(value=display_df)
def apply_sidebar_filters(selected_model, selected_agent_type):
"""Apply sidebar filters to leaderboard (DrillDown tab removed)"""
global leaderboard_df_cache
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
# Apply model filter
if selected_model != "All Models":
df = df[df['model'] == selected_model]
# Apply agent type filter
if selected_agent_type != "All":
df = df[df['agent_type'] == selected_agent_type]
# For HTML leaderboard
sorted_df = df.sort_values(by='success_rate', ascending=False).reset_index(drop=True)
html = generate_leaderboard_html(sorted_df, 'success_rate', False)
# Update trends
trends_fig = create_trends_plot(df)
# Update compare dropdowns
compare_choices = []
for _, row in df.iterrows():
label = f"{row.get('model', 'Unknown')} - {row.get('timestamp', 'N/A')}"
# Use composite key: run_id|timestamp to ensure uniqueness
value = f"{row.get('run_id', '')}|{row.get('timestamp', '')}"
if value:
compare_choices.append((label, value))
return {
leaderboard_by_model: gr.update(value=html),
# leaderboard_table removed (DrillDown tab is commented out)
trends_plot: gr.update(value=trends_fig),
compare_components['compare_run_a_dropdown']: gr.update(choices=compare_choices),
compare_components['compare_run_b_dropdown']: gr.update(choices=compare_choices)
}
def load_drilldown(agent_type, provider):
"""Load drilldown data with filters"""
global current_drilldown_df
try:
df = data_loader.load_leaderboard()
if df.empty:
current_drilldown_df = pd.DataFrame()
return pd.DataFrame()
if agent_type != "All" and 'agent_type' in df.columns:
df = df[df['agent_type'] == agent_type]
if provider != "All" and 'provider' in df.columns:
df = df[df['provider'] == provider]
# IMPORTANT: Store the FULL dataframe in global state (with ALL columns)
# This ensures the event handler has access to results_dataset, traces_dataset, etc.
current_drilldown_df = df.copy()
# Select only columns for DISPLAY
desired_columns = [
'run_id', 'model', 'agent_type', 'provider',
'success_rate', 'total_tests', 'avg_duration_ms', 'total_cost_usd'
]
# Filter to only existing columns
available_columns = [col for col in desired_columns if col in df.columns]
if not available_columns:
# If no desired columns exist, return empty dataframe
return pd.DataFrame()
display_df = df[available_columns].copy()
# Return ONLY display columns for the UI table
return display_df
except Exception as e:
print(f"[ERROR] load_drilldown: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame()
def load_trends():
"""Load trends visualization"""
df = data_loader.load_leaderboard()
fig = create_trends_plot(df)
return fig
def get_chart_explanation(viz_type):
"""Get explanation text for the selected chart type"""
explanations = {
"π₯ Performance Heatmap": """
#### π₯ Performance Heatmap
**What it shows:** All models compared across all metrics in one view
**How to read it:**
- π’ **Green cells** = Better performance (higher is better)
- π‘ **Yellow cells** = Average performance
- π΄ **Red cells** = Worse performance (needs improvement)
**Metrics displayed:**
- Success Rate (%), Avg Duration (ms), Total Cost ($)
- CO2 Emissions (g), GPU Utilization (%), Total Tokens
**Use it to:** Quickly identify which models excel in which areas
""",
"β‘ Speed vs Accuracy": """
#### β‘ Speed vs Accuracy Trade-off
**What it shows:** The relationship between model speed and accuracy
**How to read it:**
- **X-axis** = Average Duration (log scale) - left is faster
- **Y-axis** = Success Rate (%) - higher is better
- **Bubble size** = Total Cost - larger bubbles are more expensive
- **Color** = Agent Type (tool/code/both)
**Sweet spot:** Top-left quadrant = β **Fast & Accurate** models
**Quadrant lines:**
- Median lines split the chart into 4 zones
- Models above/left of medians are better than average
**Use it to:** Find models that balance speed and accuracy for your needs
""",
"π° Cost Efficiency": """
#### π° Cost-Performance Efficiency
**What it shows:** Best value-for-money models
**How to read it:**
- **X-axis** = Total Cost (log scale) - left is cheaper
- **Y-axis** = Success Rate (%) - higher is better
- **Bubble size** = Duration - smaller bubbles are faster
- **Color** = Provider (blue=API, green=GPU/local)
- **β Stars** = Top 3 most efficient models
**Cost bands:**
- π’ **Budget** = < $0.01 per run
- π‘ **Mid-Range** = $0.01 - $0.10 per run
- π **Premium** = > $0.10 per run
**Efficiency metric:** Success Rate Γ· Cost (higher is better)
**Use it to:** Maximize ROI by finding models with best success-to-cost ratio
"""
}
return explanations.get(viz_type, explanations["π₯ Performance Heatmap"])
def update_analytics(viz_type):
"""Update analytics chart and explanation based on visualization type"""
df = data_loader.load_leaderboard()
# Get chart
if "Heatmap" in viz_type:
chart = create_performance_heatmap(df)
elif "Speed" in viz_type:
chart = create_speed_accuracy_scatter(df)
else:
chart = create_cost_efficiency_scatter(df)
# Get explanation
explanation = get_chart_explanation(viz_type)
return chart, explanation
def generate_card(top_n):
"""Generate summary card HTML"""
df = data_loader.load_leaderboard()
if df is None or df.empty:
return "<p>No data available</p>", gr.update(visible=False)
html = generate_leaderboard_summary_card(df, top_n)
return html, gr.update(visible=True)
def generate_insights():
"""Generate AI insights summary using MCP server"""
try:
# Load leaderboard to check if data exists
df = data_loader.load_leaderboard()
if df is None or df.empty:
return "## π AI Insights\n\nNo leaderboard data available. Please refresh the data."
# Call MCP server's analyze_leaderboard tool
print("[MCP] Calling analyze_leaderboard MCP tool...")
insights = call_analyze_leaderboard_sync(
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
metric_focus="overall",
time_range="last_week",
top_n=5
)
return get_gemini_header() + insights
except Exception as e:
print(f"[ERROR] generate_insights: {e}")
import traceback
traceback.print_exc()
return f"## π AI Insights\n\nβ **Error generating insights**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Leaderboard dataset is accessible"
# Global variable to store current trace info for debug_trace MCP tool
_current_trace_info = {"trace_id": None, "traces_repo": None}
def ask_about_trace(question: str) -> str:
"""
Call debug_trace MCP tool to answer questions about current trace
Args:
question: User's question about the trace
Returns:
AI-powered answer from MCP server
"""
global _current_trace_info
try:
if not _current_trace_info["trace_id"] or not _current_trace_info["traces_repo"]:
return "β **No trace selected**\n\nPlease navigate to a trace first by clicking on a test case from the Run Detail screen."
if not question or question.strip() == "":
return "β **Please enter a question**\n\nFor example:\n- Why was the tool called twice?\n- Which step took the most time?\n- Why did this test fail?"
print(f"[MCP] Calling debug_trace MCP tool for trace_id: {_current_trace_info['trace_id']}")
# Call MCP server's debug_trace tool
answer = call_debug_trace_sync(
trace_id=_current_trace_info["trace_id"],
traces_repo=_current_trace_info["traces_repo"],
question=question
)
return get_gemini_header() + answer
except Exception as e:
print(f"[ERROR] ask_about_trace: {e}")
import traceback
traceback.print_exc()
return f"β **Error asking about trace**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Trace data is accessible"
# Global variable to store current comparison for compare_runs MCP tool
_current_comparison = {"run_id_1": None, "run_id_2": None}
def handle_compare_runs(run_a_id: str, run_b_id: str, leaderboard_df, components):
"""
Wrapper function to handle run comparison and update global state
Args:
run_a_id: ID of first run (composite key: run_id|timestamp)
run_b_id: ID of second run (composite key: run_id|timestamp)
leaderboard_df: Full leaderboard dataframe
components: Dictionary of Gradio components
Returns:
Dictionary of component updates from on_compare_runs
"""
global _current_comparison
# Parse composite keys (run_id|timestamp) to extract just the run_id
run_a_parts = run_a_id.split('|') if run_a_id else []
run_b_parts = run_b_id.split('|') if run_b_id else []
# Extract just the run_id portion for MCP server
run_a_id_parsed = run_a_parts[0] if len(run_a_parts) >= 1 else run_a_id
run_b_id_parsed = run_b_parts[0] if len(run_b_parts) >= 1 else run_b_id
# Update global state for MCP compare_runs tool
_current_comparison["run_id_1"] = run_a_id_parsed
_current_comparison["run_id_2"] = run_b_id_parsed
print(f"[MCP] Updated comparison state: {run_a_id_parsed} vs {run_b_id_parsed}")
# Call the original compare function (with original composite keys)
from screens.compare import on_compare_runs
return on_compare_runs(run_a_id, run_b_id, leaderboard_df, components)
def generate_ai_comparison(comparison_focus: str) -> str:
"""
Call compare_runs MCP tool to generate AI insights about run comparison
Args:
comparison_focus: Focus area - "comprehensive", "cost", "performance", or "eco_friendly"
Returns:
AI-powered comparison analysis from MCP server
"""
global _current_comparison
try:
if not _current_comparison["run_id_1"] or not _current_comparison["run_id_2"]:
return "β **No runs selected for comparison**\n\nPlease select two runs and click 'Compare Selected Runs' first."
print(f"[MCP] Calling compare_runs MCP tool: {_current_comparison['run_id_1']} vs {_current_comparison['run_id_2']}")
# Call MCP server's compare_runs tool
insights = call_compare_runs_sync(
run_id_1=_current_comparison["run_id_1"],
run_id_2=_current_comparison["run_id_2"],
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
comparison_focus=comparison_focus
)
return get_gemini_header() + insights
except Exception as e:
print(f"[ERROR] generate_ai_comparison: {e}")
import traceback
traceback.print_exc()
return f"β **Error generating AI comparison**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Leaderboard dataset is accessible"
# Global variable to store current run's results dataset for analyze_results MCP tool
_current_run_results_repo = None
def generate_run_ai_insights(focus_area: str, max_rows: int) -> str:
"""
Call analyze_results MCP tool to generate AI insights about run results
Args:
focus_area: Focus area - "overall", "failures", "performance", or "tools"
max_rows: Maximum number of test cases to analyze
Returns:
AI-powered results analysis from MCP server
"""
global _current_run_results_repo
try:
if not _current_run_results_repo:
return "β **No run selected**\n\nPlease navigate to a run detail first by clicking on a run from the Leaderboard screen."
print(f"[MCP] Calling analyze_results MCP tool for: {_current_run_results_repo}")
# Call MCP server's analyze_results tool
insights = call_analyze_results_sync(
results_repo=_current_run_results_repo,
focus_area=focus_area,
max_rows=max_rows
)
return get_gemini_header() + insights
except Exception as e:
print(f"[ERROR] generate_run_ai_insights: {e}")
import traceback
traceback.print_exc()
return f"β **Error generating run insights**: {str(e)}\n\nPlease check:\n- MCP server is running\n- Network connectivity\n- Results dataset is accessible"
def on_html_table_row_click(row_index_str):
"""Handle row click from HTML table via JavaScript (hidden textbox bridge)"""
global current_selected_run, leaderboard_df_cache, _current_run_results_repo
print(f"[DEBUG] on_html_table_row_click called with: '{row_index_str}'")
try:
# Parse row index from string
if not row_index_str or row_index_str == "" or row_index_str.strip() == "":
print("[DEBUG] Empty row index, ignoring")
return {
leaderboard_screen: gr.update(),
run_detail_screen: gr.update(),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
selected_idx = int(row_index_str)
print(f"[DEBUG] Parsed row index: {selected_idx}")
# Get the full run data from cache
if leaderboard_df_cache is None or leaderboard_df_cache.empty:
print("[ERROR] Leaderboard cache is empty")
gr.Warning("Leaderboard data not loaded")
return {
leaderboard_screen: gr.update(),
run_detail_screen: gr.update(),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
if selected_idx < 0 or selected_idx >= len(leaderboard_df_cache):
print(f"[ERROR] Invalid row index: {selected_idx}, cache size: {len(leaderboard_df_cache)}")
gr.Warning(f"Invalid row index: {selected_idx}")
return {
leaderboard_screen: gr.update(),
run_detail_screen: gr.update(),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
run_data = leaderboard_df_cache.iloc[selected_idx].to_dict()
# Set global
current_selected_run = run_data
print(f"[DEBUG] Selected run from HTML table: {run_data.get('model', 'Unknown')} (row {selected_idx})")
# Load results for this run
results_dataset = run_data.get('results_dataset')
if not results_dataset:
gr.Warning("No results dataset found for this run")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
selected_row_index: gr.update(value="")
}
# Update global state for MCP analyze_results tool
_current_run_results_repo = results_dataset
print(f"[MCP] Updated results repo for analyze_results: {results_dataset}")
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
# Load GPU metrics (if available)
gpu_summary_html = "<div style='padding: 20px; text-align: center;'>β οΈ No GPU metrics available (expected for API models)</div>"
gpu_plot = None
gpu_json_data = {}
try:
if 'metrics_dataset' in run_data and run_data.get('metrics_dataset'):
metrics_dataset = run_data['metrics_dataset']
gpu_metrics_data = data_loader.load_metrics(metrics_dataset)
if gpu_metrics_data is not None and not gpu_metrics_data.empty:
from screens.trace_detail import create_gpu_metrics_dashboard, create_gpu_summary_cards
gpu_plot = create_gpu_metrics_dashboard(gpu_metrics_data)
gpu_summary_html = create_gpu_summary_cards(gpu_metrics_data)
gpu_json_data = gpu_metrics_data.to_dict('records')
except Exception as e:
print(f"[WARNING] Could not load GPU metrics for run: {e}")
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
return {
# Hide leaderboard, show run detail
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=True),
run_metadata_html: gr.update(value=metadata_html),
test_cases_table: gr.update(value=display_df),
run_card_html: gr.update(value=run_card_html_content),
performance_charts: gr.update(value=perf_chart),
selected_row_index: gr.update(value=""), # Clear textbox
run_gpu_summary_cards_html: gr.update(value=gpu_summary_html),
run_gpu_metrics_plot: gr.update(value=gpu_plot),
run_gpu_metrics_json: gr.update(value=gpu_json_data)
}
except Exception as e:
print(f"[ERROR] Handling HTML table row click: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading run details: {str(e)}")
return {
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
performance_charts: gr.update(),
selected_row_index: gr.update(value=""), # Clear textbox
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
def load_run_detail(run_id):
"""Load run detail data including results dataset"""
global current_selected_run, leaderboard_df_cache, _current_run_results_repo
try:
# Find run in cache
df = leaderboard_df_cache
run_data = df[df['run_id'] == run_id].iloc[0].to_dict()
current_selected_run = run_data
# Load results dataset
results_dataset = run_data.get('results_dataset')
if not results_dataset:
return pd.DataFrame(), f"# Error\n\nNo results dataset found for this run", ""
# Update global state for MCP analyze_results tool
_current_run_results_repo = results_dataset
print(f"[MCP] Updated results repo for analyze_results (load_run_detail): {results_dataset}")
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
return display_df, metadata_html, run_data.get('run_id', '')
except Exception as e:
print(f"[ERROR] load_run_detail: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame(), f"# Error\n\nError loading run detail: {str(e)}", ""
# Screen 3 (Run Detail) event handlers
def on_drilldown_select(evt: gr.SelectData, df):
"""Handle row selection from DrillDown table - EXACT COPY from MockTraceMind"""
global current_selected_run, current_drilldown_df, _current_run_results_repo
try:
# Get selected run - use currently displayed dataframe (filtered/sorted)
selected_idx = evt.index[0]
# Get the full run data from the displayed dataframe
# This ensures we get the correct row even after filtering/sorting
if current_drilldown_df is not None and not current_drilldown_df.empty:
if selected_idx < len(current_drilldown_df):
run_data = current_drilldown_df.iloc[selected_idx].to_dict()
else:
gr.Warning(f"Invalid row selection: index {selected_idx} out of bounds")
return {}
else:
gr.Warning("Leaderboard data not available")
return {}
# IMPORTANT: Set global FIRST before any operations that might fail
current_selected_run = run_data
print(f"[DEBUG] Selected run: {run_data.get('model', 'Unknown')} (run_id: {run_data.get('run_id', 'N/A')[:8]}...)")
# Load results for this run
results_dataset = run_data.get('results_dataset')
if not results_dataset:
gr.Warning("No results dataset found for this run")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update()
}
# Update global state for MCP analyze_results tool
_current_run_results_repo = results_dataset
print(f"[MCP] Updated results repo for analyze_results (on_drilldown_select): {results_dataset}")
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
# Load GPU metrics (if available)
gpu_summary_html = "<div style='padding: 20px; text-align: center;'>β οΈ No GPU metrics available (expected for API models)</div>"
gpu_plot = None
gpu_json_data = {}
try:
if 'metrics_dataset' in run_data and run_data.get('metrics_dataset'):
metrics_dataset = run_data['metrics_dataset']
gpu_metrics_data = data_loader.load_metrics(metrics_dataset)
if gpu_metrics_data is not None and not gpu_metrics_data.empty:
from screens.trace_detail import create_gpu_metrics_dashboard, create_gpu_summary_cards
gpu_plot = create_gpu_metrics_dashboard(gpu_metrics_data)
gpu_summary_html = create_gpu_summary_cards(gpu_metrics_data)
gpu_json_data = gpu_metrics_data.to_dict('records')
except Exception as e:
print(f"[WARNING] Could not load GPU metrics for run: {e}")
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
return {
# Hide leaderboard, show run detail
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=True),
run_metadata_html: gr.update(value=metadata_html),
test_cases_table: gr.update(value=display_df),
performance_charts: gr.update(value=perf_chart),
run_card_html: gr.update(value=run_card_html_content),
run_gpu_summary_cards_html: gr.update(value=gpu_summary_html),
run_gpu_metrics_plot: gr.update(value=gpu_plot),
run_gpu_metrics_json: gr.update(value=gpu_json_data)
}
except Exception as e:
print(f"[ERROR] Loading run details: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading run details: {e}")
# Return updates for all output components to avoid Gradio error
return {
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>Error loading run detail</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
def on_html_leaderboard_select(evt: gr.SelectData):
"""Handle row selection from HTMLPlus leaderboard (By Model tab)"""
global current_selected_run, leaderboard_df_cache, _current_run_results_repo
try:
# HTMLPlus returns data attributes from the selected row
# evt.index = CSS selector that was matched (e.g., "tr")
# evt.value = dictionary of data-* attributes from the HTML element
print(f"[DEBUG] HTMLPlus event triggered")
print(f"[DEBUG] evt.index: {evt.index}")
print(f"[DEBUG] evt.value type: {type(evt.value)}")
print(f"[DEBUG] evt.value keys: {list(evt.value.keys()) if isinstance(evt.value, dict) else 'Not a dict'}")
print(f"[DEBUG] evt.value: {evt.value}")
if evt.index != "tr":
gr.Warning("Invalid selection")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>Invalid selection</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
# Get the run_id from the data attributes
# Note: HTML data-run-id becomes runId in JavaScript (camelCase conversion)
row_data = evt.value
run_id = row_data.get('runId') # JavaScript converts data-run-id to runId
if not run_id:
gr.Warning("No run ID found in selection")
print(f"[ERROR] No run_id found. Available keys: {list(row_data.keys())}")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>No run ID found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
print(f"[DEBUG] HTMLPlus selected row with run_id: {run_id[:8]}...")
# Find the full run data from the cached leaderboard dataframe using run_id
if leaderboard_df_cache is not None and not leaderboard_df_cache.empty:
matching_rows = leaderboard_df_cache[leaderboard_df_cache['run_id'] == run_id]
if not matching_rows.empty:
run_data = matching_rows.iloc[0].to_dict()
else:
gr.Warning(f"Run ID {run_id[:8]}... not found in leaderboard data")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>Run not found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
else:
gr.Warning("Leaderboard data not available")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>Leaderboard data not available</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
# IMPORTANT: Set global FIRST before any operations that might fail
current_selected_run = run_data
print(f"[DEBUG] Selected run: {run_data.get('model', 'Unknown')} (run_id: {run_data.get('run_id', 'N/A')[:8]}...)")
# Load results for this run
results_dataset = run_data.get('results_dataset')
if not results_dataset:
gr.Warning("No results dataset found for this run")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
# Update global state for MCP analyze_results tool
_current_run_results_repo = results_dataset
print(f"[MCP] Updated results repo for analyze_results (on_html_leaderboard_select): {results_dataset}")
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
# Load GPU metrics (if available)
gpu_summary_html = "<div style='padding: 20px; text-align: center;'>β οΈ No GPU metrics available (expected for API models)</div>"
gpu_plot = None
gpu_json_data = {}
try:
if 'metrics_dataset' in run_data and run_data.get('metrics_dataset'):
metrics_dataset = run_data['metrics_dataset']
gpu_metrics_data = data_loader.load_metrics(metrics_dataset)
if gpu_metrics_data is not None and not gpu_metrics_data.empty:
from screens.trace_detail import create_gpu_metrics_dashboard, create_gpu_summary_cards
gpu_plot = create_gpu_metrics_dashboard(gpu_metrics_data)
gpu_summary_html = create_gpu_summary_cards(gpu_metrics_data)
gpu_json_data = gpu_metrics_data.to_dict('records')
except Exception as e:
print(f"[WARNING] Could not load GPU metrics for run: {e}")
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
return {
# Hide leaderboard, show run detail
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=True),
run_metadata_html: gr.update(value=metadata_html),
test_cases_table: gr.update(value=display_df),
performance_charts: gr.update(value=perf_chart),
run_card_html: gr.update(value=run_card_html_content),
run_gpu_summary_cards_html: gr.update(value=gpu_summary_html),
run_gpu_metrics_plot: gr.update(value=gpu_plot),
run_gpu_metrics_json: gr.update(value=gpu_json_data)
}
except Exception as e:
print(f"[ERROR] Loading run details from HTMLPlus: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading run details: {e}")
# Return updates for all output components to avoid Gradio error
return {
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>Error loading run detail</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update(),
run_gpu_summary_cards_html: gr.update(),
run_gpu_metrics_plot: gr.update(),
run_gpu_metrics_json: gr.update()
}
def go_back_to_leaderboard():
"""Navigate back to leaderboard screen"""
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False)
}
# Build Gradio app
# Theme configuration (like MockTraceMind)
theme = gr.themes.Base(
primary_hue="indigo",
secondary_hue="purple",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
).set(
body_background_fill="*neutral_50",
body_background_fill_dark="*neutral_900",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
)
with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
# Top Banner
gr.HTML("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 25px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white !important; margin: 0; font-size: 2.5em; font-weight: bold;">
π§ TraceMind
</h1>
<p style="color: rgba(255,255,255,0.9); margin: 10px 0 0 0; font-size: 1.2em;">
Agent Evaluation Platform
</p>
<p style="color: rgba(255,255,255,0.8); margin: 10px 0 0 0; font-size: 0.9em;">
Powered by Gradio π | HuggingFace Jobs | TraceVerde | SmolTrace | MCP | Gemini | Modal
</p>
</div>
""")
# Main app container (wraps Sidebar + all screens like MockTraceMind)
with gr.Column() as main_app_container:
# Sidebar Navigation
with gr.Sidebar():
gr.Markdown("## π§ TraceMind")
gr.Markdown("*Navigation & Controls*")
gr.Markdown("---")
# Navigation section
gr.Markdown("### π§ Navigation")
# Navigation buttons
dashboard_nav_btn = gr.Button("π Dashboard", variant="primary", size="lg")
leaderboard_nav_btn = gr.Button("π Leaderboard", variant="secondary", size="lg")
new_eval_nav_btn = gr.Button("βΆοΈ New Evaluation", variant="secondary", size="lg")
compare_nav_btn = gr.Button("βοΈ Compare", variant="secondary", size="lg")
chat_nav_btn = gr.Button("π€ Agent Chat", variant="secondary", size="lg")
job_monitoring_nav_btn = gr.Button("π Job Monitoring", variant="secondary", size="lg")
synthetic_data_nav_btn = gr.Button("π¬ Synthetic Data", variant="secondary", size="lg")
docs_nav_btn = gr.Button("π Documentation", variant="secondary", size="lg")
settings_nav_btn = gr.Button("βοΈ Settings", variant="secondary", size="lg")
gr.Markdown("---")
# Data Controls
gr.Markdown("### π Data Controls")
refresh_leaderboard_btn = gr.Button("π Refresh Data", variant="secondary", size="sm")
gr.Markdown("*Reload leaderboard from HuggingFace*")
gr.Markdown("---")
# Filters section
gr.Markdown("### π Filters")
model_filter = gr.Dropdown(
choices=["All Models"],
value="All Models",
label="Model",
info="Filter evaluations by AI model. Select 'All Models' to see all runs."
)
sidebar_agent_type_filter = gr.Radio(
choices=["All", "tool", "code", "both"],
value="All",
label="Agent Type",
info="Tool: Function calling agents | Code: Code execution | Both: Hybrid agents"
)
# Main content area
# Screen 0: Dashboard
dashboard_screen, dashboard_components = create_dashboard_ui()
# Screen 1: Main Leaderboard
with gr.Column(visible=False) as leaderboard_screen:
gr.Markdown("## π Agent Evaluation Leaderboard")
with gr.Tabs():
with gr.TabItem("π Leaderboard"):
gr.Markdown("*Styled leaderboard with inline filters*")
# User Guide Accordion
with gr.Accordion("π How to Use the Leaderboard", open=False):
gr.Markdown("""
### π Interactive Leaderboard View
**What is this tab?**
The main leaderboard displays all evaluation runs in a styled HTML table with color-coded performance indicators.
**How to use it:**
- π¨ **Visual Design**: Gradient cards with model logos and performance metrics
- π **Filters**: Use agent type, provider, and sorting controls above
- π **Sort Options**: Click "Sort By" to order by success rate, cost, duration, or tokens
- π **Clickable Rows**: Click on any row to navigate to the detailed run view
**Performance Indicators:**
- π’ Green metrics = Excellent performance
- π‘ Yellow metrics = Average performance
- π΄ Red metrics = Needs improvement
**Navigation:**
- π±οΈ Click any leaderboard row to view detailed run results
- See test-by-test breakdown, cost analysis, and execution traces
- Use the sidebar filters to narrow down by model before drilling down
**Tips:**
- Use sidebar filters to narrow down by model
- Apply inline filters for more granular control
- Click any row to explore detailed results and traces
""")
# Inline filters for styled leaderboard
with gr.Row():
with gr.Column(scale=1):
agent_type_filter = gr.Radio(
choices=["All", "tool", "code", "both"],
value="All",
label="Agent Type",
info="Filter by agent type"
)
with gr.Column(scale=1):
provider_filter = gr.Dropdown(
choices=["All"],
value="All",
label="Provider",
info="Filter by provider"
)
with gr.Column(scale=1):
sort_by_dropdown = gr.Dropdown(
choices=["success_rate", "total_cost_usd", "avg_duration_ms", "total_tokens"],
value="success_rate",
label="Sort By",
info="Choose metric to sort the leaderboard by"
)
with gr.Column(scale=1):
sort_order = gr.Radio(
choices=["Descending", "Ascending"],
value="Descending",
label="Sort Order"
)
with gr.Row():
apply_filters_btn = gr.Button("π Apply Filters", variant="primary", size="sm")
# Styled HTML leaderboard with clickable rows
leaderboard_by_model = HTMLPlus(
label="Styled Leaderboard",
value="<p>Loading leaderboard...</p>",
selectable_elements=["tr"] # Make table rows clickable
)
# COMMENTED OUT: DrillDown tab (replaced by clickable HTML table in By Model tab)
# with gr.TabItem("π DrillDown"):
# gr.Markdown("*Click any row to view detailed run information*")
# # User Guide Accordion
# with gr.Accordion("π How to Use DrillDown", open=False):
# gr.Markdown("""
# ### π Data Table View
# **What is this tab?**
# The DrillDown tab provides a raw, sortable table view of all evaluation runs with full details.
# **How to use it:**
# - π **Table Format**: Clean, spreadsheet-like view of all runs
# - π **Filters**: Apply agent type, provider, and sorting controls
# - π₯ **Export Ready**: Easy to copy/paste data for reports
# - π **Click Rows**: Click any row to navigate to detailed run view
# - π’ **All Metrics**: Shows run ID, model, success rate, cost, duration, and more
# **Columns Explained:**
# - **Run ID**: Unique identifier for each evaluation
# - **Model**: AI model that was evaluated
# - **Agent Type**: tool (function calling), code (code execution), or both
# - **Provider**: litellm (API models) or transformers (local models)
# - **Success Rate**: Percentage of test cases passed
# - **Tests**: Number of test cases executed
# - **Duration**: Average execution time in milliseconds
# - **Cost**: Total cost in USD for this run
# - **Submitted By**: HuggingFace username of evaluator
# **Tips:**
# - Use this for detailed data analysis
# - Combine with sidebar filters for focused views
# - Sort by any column to find best/worst performers
# """)
# # Inline filters for drilldown table
# with gr.Row():
# with gr.Column(scale=1):
# drilldown_agent_type_filter = gr.Radio(
# choices=["All", "tool", "code", "both"],
# value="All",
# label="Agent Type",
# info="Filter by agent type"
# )
# with gr.Column(scale=1):
# drilldown_provider_filter = gr.Dropdown(
# choices=["All"],
# value="All",
# label="Provider",
# info="Filter by provider"
# )
# with gr.Column(scale=1):
# drilldown_sort_by_dropdown = gr.Dropdown(
# choices=["success_rate", "total_cost_usd", "avg_duration_ms", "total_tokens"],
# value="success_rate",
# label="Sort By"
# )
# with gr.Column(scale=1):
# drilldown_sort_order = gr.Radio(
# choices=["Descending", "Ascending"],
# value="Descending",
# label="Sort Order"
# )
# with gr.Row():
# apply_drilldown_filters_btn = gr.Button("π Apply Filters", variant="primary", size="sm")
# # Simple table controlled by inline filters
# leaderboard_table = gr.Dataframe(
# headers=["Run ID", "Model", "Agent Type", "Provider", "Success Rate", "Tests", "Duration (ms)", "Cost (USD)", "Submitted By"],
# interactive=False,
# wrap=True
# )
with gr.TabItem("π Trends"):
# User Guide Accordion
with gr.Accordion("π How to Read Trends", open=False):
gr.Markdown("""
### π Temporal Performance Analysis
**What is this tab?**
The Trends tab visualizes how model performance evolves over time, helping you identify patterns and improvements.
**How to read it:**
- π
**X-axis**: Timeline showing when evaluations were run
- π **Y-axis**: Performance metrics (success rate, cost, duration, etc.)
- π **Line Charts**: Each line represents a different model
- π¨ **Color Coding**: Different colors for different models
- π **Interactive**: Hover over points to see exact values
**What to look for:**
- **Upward trends** = Model improvements over time
- **Downward trends** = Performance degradation (needs investigation)
- **Flat lines** = Consistent performance
- **Spikes** = Anomalies or special test conditions
- **Gaps** = Periods without evaluations
**Use cases:**
- Track model version improvements
- Identify when performance degraded
- Compare model evolution over time
- Spot patterns in cost or latency changes
- Validate optimization efforts
**Tips:**
- Use sidebar filters to focus on specific models
- Look for correlation between cost and accuracy
- Identify best time periods for each model
""")
trends_plot = gr.Plot()
with gr.TabItem("π Analytics"):
viz_type = gr.Radio(
choices=["π₯ Performance Heatmap", "β‘ Speed vs Accuracy", "π° Cost Efficiency"],
value="π₯ Performance Heatmap",
label="Select Visualization",
info="Choose which analytics chart to display"
)
analytics_chart = gr.Plot(label="Interactive Chart", show_label=False)
# Explanation panel in accordion (dynamically updates based on chart selection)
with gr.Accordion("π‘ How to Read This Chart", open=False):
viz_explanation = gr.Markdown("""
#### π₯ Performance Heatmap
**What it shows:** All models compared across all metrics in one view
**How to read it:**
- π’ **Green cells** = Better performance (higher is better)
- π‘ **Yellow cells** = Average performance
- π΄ **Red cells** = Worse performance (needs improvement)
**Metrics displayed:**
- Success Rate (%), Avg Duration (ms), Total Cost ($)
- CO2 Emissions (g), GPU Utilization (%), Total Tokens
**Use it to:** Quickly identify which models excel in which areas
""", elem_id="viz-explanation")
with gr.TabItem("π₯ Summary Card"):
# User Guide Accordion
with gr.Accordion("π How to Create Summary Cards", open=False):
gr.Markdown("""
### π₯ Downloadable Leaderboard Summary Card
**What is this tab?**
Generate professional, shareable summary cards with top performers and key statistics.
Perfect for presentations, reports, and sharing results with your team!
**How to use it:**
1. **Select Top N**: Use the slider to choose how many top models to include (1-5)
2. **Generate Preview**: Click "Generate Card Preview" to see the card
3. **Download**: Click "Download as PNG" to save as high-quality image
4. **Share**: Use the downloaded image in presentations, reports, or social media
**Card Features:**
- π **Medal Indicators**: Gold, silver, bronze for top 3 performers
- π **Key Metrics**: Success rate, cost, duration, and tokens per model
- π **Aggregate Stats**: Overall leaderboard statistics at a glance
- π¨ **TraceMind Branding**: Professional design with logo
- π₯ **High Quality**: PNG format suitable for presentations
**Best Practices:**
- Use 3-5 models for balanced card density
- Include metric context in your presentations
- Update cards regularly to reflect latest results
- Combine with detailed reports for stakeholders
**Tips:**
- Cards are automatically sized for readability
- All current sidebar filters are applied
- Cards update dynamically as data changes
""")
with gr.Row():
with gr.Column(scale=1):
top_n_slider = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Number of top models to show",
info="Select how many top performers to include in the card"
)
with gr.Row():
generate_card_btn = gr.Button("π¨ Generate Card Preview", variant="secondary", size="lg")
download_card_btn = gr.Button("π₯ Download as PNG", variant="primary", size="lg", visible=False)
with gr.Column(scale=2):
card_preview = gr.HTML(label="Card Preview", value="<p style='text-align: center; color: #666; padding: 40px;'>Click 'Generate Card Preview' to see your summary card</p>")
with gr.TabItem("π€ AI Insights"):
# User Guide Accordion
with gr.Accordion("π About AI Insights", open=False):
gr.Markdown("""
### π€ LLM-Powered Leaderboard Analysis
**What is this tab?**
AI Insights provides intelligent, natural language analysis of your leaderboard data using advanced language models.
Get instant insights, trends, and recommendations powered by AI.
**How it works:**
- π **Automatic Analysis**: AI analyzes all leaderboard data automatically
- π **Streaming Responses**: Watch insights generate in real-time (Gradio 6)
- π― **Smart Recommendations**: Get actionable advice for model selection
- π **Trend Detection**: AI identifies patterns and anomalies
- π‘ **Context-Aware**: Insights adapt to current filters and data
**What insights you'll get:**
- **Top Performers**: Which models lead in accuracy, speed, cost
- **Trade-offs**: Cost vs accuracy, speed vs quality analysis
- **Recommendations**: Best model for different use cases
- **Trends**: Performance changes over time
- **Anomalies**: Unusual results that need attention
- **Optimization Tips**: How to improve evaluation strategies
**Powered by:**
- π€ **MCP Servers**: Model Context Protocol for intelligent data access
- π§ **Advanced LLMs**: Google Gemini 2.5 Flash for analysis
- π‘ **Real-time Streaming**: Gradio 6 for live response generation
- π **Context Integration**: Understands your full leaderboard context
**Tips:**
- Click "Regenerate" for updated insights after data changes
- Insights respect your sidebar and inline filters
- Use insights to guide model selection decisions
- Share AI insights in team discussions
""")
with gr.Row():
regenerate_btn = gr.Button("π Regenerate Insights (Streaming)", size="sm", variant="secondary")
gr.Markdown("*Real-time AI analysis powered by Gradio 6 streaming*", elem_classes=["text-sm"])
mcp_insights = gr.Markdown("*Loading insights...*")
# Hidden textbox for row selection (JavaScript bridge)
selected_row_index = gr.Textbox(visible=False, elem_id="selected_row_index")
# Screen 3: Run Detail (Enhanced with Tabs)
with gr.Column(visible=False) as run_detail_screen:
# Navigation
with gr.Row():
back_to_leaderboard_btn = gr.Button("β¬
οΈ Back to Leaderboard", variant="secondary", size="sm")
download_run_card_btn = gr.Button("π₯ Download Run Report Card", variant="secondary", size="sm")
run_detail_title = gr.Markdown("# π Run Detail")
with gr.Tabs():
with gr.TabItem("π Overview"):
gr.Markdown("*Run metadata and summary*")
run_metadata_html = gr.HTML("")
gr.Markdown("### π₯ Downloadable Run Report Card")
run_card_html = gr.HTML(label="Run Report Card", elem_id="run-card-html")
with gr.TabItem("β
Test Cases"):
gr.Markdown("*Individual test case results*")
test_cases_table = gr.Dataframe(
headers=["Task ID", "Status", "Tool", "Duration", "Tokens", "Cost", "Trace ID"],
interactive=False,
wrap=True
)
gr.Markdown("*Click a test case to view detailed trace (including Thought Graph)*")
with gr.TabItem("β‘ Performance"):
gr.Markdown("*Performance metrics and charts*")
performance_charts = gr.Plot(label="Performance Analysis", show_label=False)
with gr.TabItem("π₯οΈ GPU Metrics"):
gr.Markdown("*Performance metrics for GPU-based models (not available for API models)*")
run_gpu_summary_cards_html = gr.HTML(label="GPU Summary", show_label=False)
with gr.Tabs():
with gr.TabItem("π Time Series Dashboard"):
run_gpu_metrics_plot = gr.Plot(label="GPU Metrics Over Time", show_label=False)
with gr.TabItem("π Raw Metrics Data"):
run_gpu_metrics_json = gr.JSON(label="GPU Metrics Data")
with gr.TabItem("π€ AI Insights"):
gr.Markdown("### AI-Powered Results Analysis")
gr.Markdown("*Get intelligent insights about test results and optimization recommendations using the MCP server*")
with gr.Row():
with gr.Column(scale=1):
run_analysis_focus = gr.Dropdown(
label="Analysis Focus",
choices=["comprehensive", "failures", "performance", "cost"],
value="comprehensive",
info="Choose what aspect to focus on in the AI analysis"
)
run_max_rows = gr.Slider(
label="Max Test Cases to Analyze",
minimum=10,
maximum=200,
value=100,
step=10,
info="Limit analysis to reduce processing time"
)
with gr.Column(scale=1):
generate_run_ai_insights_btn = gr.Button(
"π€ Generate AI Insights",
variant="primary",
size="lg"
)
run_ai_insights = gr.Markdown(
"*Click 'Generate AI Insights' to get intelligent analysis powered by the MCP server*"
)
# Screen 4: Trace Detail with Sub-tabs
with gr.Column(visible=False) as trace_detail_screen:
with gr.Row():
back_to_run_detail_btn = gr.Button("β¬
οΈ Back to Run Detail", variant="secondary", size="sm")
trace_title = gr.Markdown("# π Trace Detail")
trace_metadata_html = gr.HTML("")
with gr.Tabs():
with gr.TabItem("π§ Thought Graph"):
gr.Markdown("""
### Agent Reasoning Flow
This interactive network graph shows **how your agent thinks** - the logical flow of reasoning steps,
tool calls, and LLM interactions.
**How to read it:**
- π£ **Purple nodes** = LLM reasoning steps
- π **Orange nodes** = Tool calls
- π΅ **Blue nodes** = Chains/Agents
- **Arrows** = Flow from one step to the next
- **Hover** = See tokens, costs, and timing details
""")
trace_thought_graph = gr.Plot(label="Thought Graph", show_label=False)
with gr.TabItem("π Waterfall"):
gr.Markdown("*Interactive waterfall diagram showing span execution timeline*")
gr.Markdown("*Hover over spans for details. Drag to zoom, double-click to reset.*")
span_visualization = gr.Plot(label="Trace Waterfall", show_label=False)
with gr.TabItem("π Span Details"):
gr.Markdown("*Detailed span information with token and cost data*")
span_details_table = gr.Dataframe(
headers=["Span Name", "Kind", "Duration (ms)", "Tokens", "Cost (USD)", "Status"],
interactive=False,
wrap=True,
label="Span Breakdown"
)
with gr.TabItem("π Raw Data"):
gr.Markdown("*Raw OpenTelemetry trace data (JSON)*")
span_details_json = gr.JSON()
with gr.Accordion("π€ Ask About This Trace", open=False):
trace_question = gr.Textbox(
label="Question",
placeholder="e.g., Why was the tool called twice?",
lines=2,
info="Ask questions about agent execution, tool usage, or trace behavior"
)
trace_ask_btn = gr.Button("Ask", variant="primary")
trace_answer = gr.Markdown("*Ask a question to get AI-powered insights*")
# Screen 5: Compare Screen
compare_screen, compare_components = create_compare_ui()
# Screen 6: Agent Chat Screen
chat_screen, chat_components = create_chat_ui()
# Screen 7: Synthetic Data Generator
with gr.Column(visible=False) as synthetic_data_screen:
gr.Markdown("## π¬ Synthetic Data Generator")
# Help/README Accordion
with gr.Accordion("π How to Use This Screen", open=False):
gr.Markdown("""
### Generate Synthetic Evaluation Datasets
This tool allows you to create custom synthetic evaluation datasets for testing AI agents.
**Step-by-Step Process:**
1. **Configure & Generate**:
- Select a **domain** (e.g., travel, finance, healthcare)
- Specify available **tools** (comma-separated)
- Choose **number of tasks** to generate
- Set **difficulty level** (easy/medium/hard/balanced)
- Select **agent type** (tool/code/both)
- Click "Generate" to create the dataset
2. **Review Dataset**:
- Inspect the generated tasks in JSON format
- Check dataset statistics (task count, difficulty distribution, etc.)
- Verify the quality before pushing to Hub
3. **Push to HuggingFace Hub** (Optional):
- Enter a **repository name** for your dataset
- Choose visibility (public/private)
- Provide your **HF token** OR leave empty to use environment token
- Click "Push" to upload the dataset
**Note**: This screen uses the TraceMind MCP Server's synthetic data generation tools.
""")
gr.Markdown("---")
# Store generated dataset and prompt template in component state
generated_dataset_state = gr.State(None)
generated_prompt_template_state = gr.State(None)
# Step 1: Generate Dataset
with gr.Group():
gr.Markdown("### π Step 1: Configure & Generate Dataset")
with gr.Row():
with gr.Column(scale=1):
domain_input = gr.Textbox(
label="Domain",
placeholder="e.g., travel, finance, healthcare",
value="travel",
info="The domain/topic for the synthetic tasks"
)
tools_input = gr.Textbox(
label="Tools (comma-separated)",
placeholder="e.g., get_weather,search_flights,book_hotel",
value="get_weather,search_flights,book_hotel",
info="Available tools the agent can use"
)
num_tasks_input = gr.Slider(
label="Number of Tasks",
minimum=5,
maximum=100,
value=10,
step=5,
info="Total tasks to generate"
)
with gr.Column(scale=1):
difficulty_input = gr.Radio(
label="Difficulty Level",
choices=["easy", "medium", "hard", "balanced"],
value="balanced",
info="Task complexity level"
)
agent_type_input = gr.Radio(
label="Agent Type",
choices=["tool", "code", "both"],
value="both",
info="Type of agent to evaluate"
)
generate_btn = gr.Button("π² Generate Synthetic Dataset", variant="primary", size="lg")
generation_status = gr.Markdown("")
# Step 2: Review Dataset
with gr.Group():
gr.Markdown("### π Step 2: Review Generated Dataset & Prompt Template")
with gr.Tab("π Dataset Preview"):
dataset_preview = gr.JSON(
label="Generated Dataset",
visible=False
)
dataset_stats = gr.Markdown("", visible=False)
with gr.Tab("π Prompt Template"):
gr.Markdown("""
**AI-Generated Prompt Template**
This customized prompt template is based on smolagents templates and adapted for your domain and tools.
It will be automatically included in your dataset card when you push to HuggingFace Hub.
""")
prompt_template_preview = gr.Code(
label="Customized Prompt Template (YAML)",
language="yaml",
visible=False
)
# Step 3: Push to Hub
with gr.Group():
gr.Markdown("### π€ Step 3: Push to HuggingFace Hub (Optional)")
gr.Markdown("*Leave HF Token empty to use the environment token (if configured in your Space/deployment)*")
with gr.Row():
repo_name_input = gr.Textbox(
label="Repository Name",
placeholder="e.g., username/smoltrace-travel-tasks",
info="Include username prefix (auto-filled after generation)",
scale=2
)
private_checkbox = gr.Checkbox(
label="Private Repository",
value=False,
info="Make dataset private",
scale=1
)
hf_token_input = gr.Textbox(
label="HuggingFace Token (Optional)",
placeholder="Leave empty to use environment token (HF_TOKEN)",
type="password",
info="Get your token from https://huggingface.co/settings/tokens"
)
push_btn = gr.Button("π€ Push to HuggingFace Hub", variant="primary", size="lg", visible=False)
push_status = gr.Markdown("")
# ============================================================================
# Screen 8: New Evaluation (Comprehensive Form)
# ============================================================================
with gr.Column(visible=False) as new_evaluation_screen:
gr.Markdown("## βΆοΈ New Evaluation")
gr.Markdown("*Configure and submit a new agent evaluation job*")
with gr.Row():
back_to_leaderboard_from_eval_btn = gr.Button("β¬
οΈ Back to Leaderboard", variant="secondary", size="sm")
gr.Markdown("---")
# Section 1: Infrastructure Configuration
with gr.Accordion("ποΈ Infrastructure Configuration", open=True):
gr.Markdown("*Choose where and how to run the evaluation*")
with gr.Row():
eval_infra_provider = gr.Dropdown(
choices=["HuggingFace Jobs", "Modal"],
value="HuggingFace Jobs",
label="Infrastructure Provider",
info="Select the platform to run the evaluation"
)
eval_hardware = gr.Dropdown(
choices=[
"auto",
"cpu-basic",
"cpu-upgrade",
"t4-small",
"t4-medium",
"l4x1",
"l4x4",
"a10g-small",
"a10g-large",
"a10g-largex2",
"a10g-largex4",
"a100-large",
"v5e-1x1",
"v5e-2x2",
"v5e-2x4"
],
value="auto",
label="Hardware",
info="Auto: cpu-basic for API models, a10g-small for local models. HF Jobs pricing."
)
# Section 2: Model Configuration
with gr.Accordion("π€ Model Configuration", open=True):
gr.Markdown("*Configure the model and provider settings*")
with gr.Row():
eval_model = gr.Textbox(
value="openai/gpt-4.1-nano",
label="Model",
info="Model ID (e.g., openai/gpt-4.1-nano, meta-llama/Llama-3.1-8B-Instruct)",
placeholder="openai/gpt-4.1-nano"
)
eval_provider = gr.Dropdown(
choices=["litellm", "inference", "transformers"],
value="litellm",
label="Provider",
info="Model inference provider (litellm/inference=API, transformers=local)"
)
with gr.Row():
eval_hf_inference_provider = gr.Textbox(
label="HF Inference Provider",
info="For HuggingFace Inference API (optional)",
placeholder="Leave empty for default"
)
# Check if HF token is already configured in Settings
hf_token_configured = bool(os.environ.get("HF_TOKEN"))
hf_token_info = "β
Already configured in Settings - leave empty to use saved token" if hf_token_configured else "Your HF token for private models (optional)"
eval_hf_token = gr.Textbox(
label="HuggingFace Token",
type="password",
info=hf_token_info,
placeholder="hf_... (leave empty if already set in Settings)"
)
# Section 3: Agent Configuration
with gr.Accordion("π€ Agent Configuration", open=True):
gr.Markdown("*Configure agent type and capabilities*")
with gr.Row():
eval_agent_type = gr.Radio(
choices=["tool", "code", "both"],
value="both",
label="Agent Type",
info="Tool: Function calling | Code: Code execution | Both: Hybrid"
)
eval_search_provider = gr.Dropdown(
choices=["duckduckgo", "serper", "brave"],
value="duckduckgo",
label="Search Provider",
info="Web search provider for agents"
)
with gr.Row():
eval_enable_tools = gr.CheckboxGroup(
choices=[
"google_search",
"duckduckgo_search",
"visit_webpage",
"python_interpreter",
"wikipedia_search",
"user_input"
],
label="Enable Optional Tools",
info="Select additional tools to enable for the agent"
)
# Section 4: Test Configuration
with gr.Accordion("π§ͺ Test Configuration", open=True):
gr.Markdown("*Configure test dataset and execution parameters*")
with gr.Row():
eval_dataset_name = gr.Textbox(
value="kshitijthakkar/smoltrace-tasks",
label="Dataset Name",
info="HuggingFace dataset for evaluation tasks"
)
eval_split = gr.Textbox(
value="train",
label="Dataset Split",
info="Which split to use from the dataset"
)
with gr.Row():
eval_difficulty = gr.Dropdown(
choices=["all", "easy", "medium", "hard"],
value="all",
label="Difficulty Filter",
info="Filter tests by difficulty level"
)
eval_parallel_workers = gr.Number(
value=1,
label="Parallel Workers",
info="Number of parallel workers for execution",
minimum=1,
maximum=10
)
# Section 5: Output & Monitoring Configuration
with gr.Accordion("π Output & Monitoring", open=True):
gr.Markdown("*Configure output format and monitoring options*")
with gr.Row():
eval_output_format = gr.Radio(
choices=["hub", "json"],
value="hub",
label="Output Format",
info="Hub: Push to HuggingFace | JSON: Save locally"
)
eval_output_dir = gr.Textbox(
label="Output Directory",
info="Directory for JSON output (if format=json)",
placeholder="./evaluation_results"
)
with gr.Row():
eval_enable_otel = gr.Checkbox(
value=True,
label="Enable OpenTelemetry Tracing",
info="Collect detailed execution traces"
)
eval_enable_gpu_metrics = gr.Checkbox(
value=True,
label="Enable GPU Metrics",
info="Collect GPU utilization, memory, and CO2 emissions (GPU jobs only)"
)
with gr.Row():
eval_private = gr.Checkbox(
value=False,
label="Private Datasets",
info="Make result datasets private on HuggingFace"
)
eval_debug = gr.Checkbox(
value=False,
label="Debug Mode",
info="Enable debug output for troubleshooting"
)
eval_quiet = gr.Checkbox(
value=False,
label="Quiet Mode",
info="Reduce verbosity of output"
)
eval_run_id = gr.Textbox(
label="Run ID (Optional)",
info="Unique identifier for this run (auto-generated if empty)",
placeholder="UUID will be auto-generated"
)
with gr.Row():
eval_timeout = gr.Textbox(
value="1h",
label="Job Timeout",
info="Maximum job duration (e.g., '30m', '1h', '2h')",
placeholder="1h"
)
gr.Markdown("---")
# Cost Estimate Section
with gr.Row():
eval_estimate_btn = gr.Button("π° Estimate Cost", variant="secondary", size="lg")
eval_cost_estimate = gr.Markdown("*Click 'Estimate Cost' to get AI-powered cost analysis*")
gr.Markdown("---")
# Submit Section
with gr.Row():
eval_submit_btn = gr.Button("π Submit Evaluation", variant="primary", size="lg")
eval_success_message = gr.HTML(visible=False)
# ============================================================================
# Screen 9: Documentation
# ============================================================================
documentation_screen = create_documentation_screen()
# ============================================================================
# Screen 10: Settings
# ============================================================================
settings_screen = create_settings_screen()
# ============================================================================
# Screen 11: Job Monitoring
# ============================================================================
job_monitoring_screen = create_job_monitoring_screen()
# ============================================================================
# Evaluation Helper Functions
# ============================================================================
def estimate_job_cost_with_mcp_fallback(model, hardware, provider="litellm", infrastructure="HuggingFace Jobs"):
"""
Estimate cost using historical leaderboard data first,
then fall back to MCP server if model not found
Args:
model: Model name
hardware: Hardware selection from UI
provider: Provider type (litellm, transformers, etc.)
infrastructure: Infrastructure provider (Modal, HuggingFace Jobs)
"""
# Handle auto-selection for both infrastructure providers
selected_hardware_display = None
if hardware == "auto":
if infrastructure == "Modal":
# Modal auto-selection
from utils.modal_job_submission import _auto_select_modal_hardware
modal_gpu = _auto_select_modal_hardware(provider, model)
selected_hardware_display = f"auto β **{modal_gpu or 'CPU'}** (Modal)"
# Map Modal GPU names to HF Jobs equivalent for cost estimation
modal_to_hf_map = {
None: "cpu-basic", # CPU
"T4": "t4-small",
"L4": "l4x1",
"A10G": "a10g-small",
"L40S": "a10g-large",
"A100": "a100-large",
"A100-80GB": "a100-large", # Use a100-large as proxy for cost
"H100": "a100-large", # Use a100 as proxy
"H200": "a100-large", # Use a100 as proxy
}
hardware = modal_to_hf_map.get(modal_gpu, "a10g-small")
else:
# HuggingFace Jobs auto-selection
from utils.hf_jobs_submission import _auto_select_hf_hardware
hf_hardware = _auto_select_hf_hardware(provider, model)
selected_hardware_display = f"auto β **{hf_hardware}** (HF Jobs)"
hardware = hf_hardware
try:
# Try to get historical data from leaderboard
df = data_loader.load_leaderboard()
# Filter for this model
model_runs = df[df['model'] == model]
if len(model_runs) > 0:
# We have historical data - use it!
avg_cost = model_runs['total_cost_usd'].mean()
avg_duration = model_runs['avg_duration_ms'].mean()
has_cost_data = model_runs['total_cost_usd'].sum() > 0
result = {
'source': 'historical',
'total_cost_usd': f"{avg_cost:.4f}",
'estimated_duration_minutes': f"{(avg_duration / 1000 / 60):.1f}",
'historical_runs': len(model_runs),
'has_cost_data': has_cost_data
}
if selected_hardware_display:
result['hardware_display'] = selected_hardware_display
return result
else:
# No historical data - use MCP tool
print(f"[INFO] No historical data for {model}, using MCP cost estimator")
try:
from gradio_client import Client
import re
mcp_client = Client("https://mcp-1st-birthday-tracemind-mcp-server.hf.space/")
result = mcp_client.predict(
model=model,
agent_type="both",
num_tests=100,
hardware=hardware,
api_name="/run_estimate_cost"
)
print(f"[INFO] MCP result type: {type(result)}")
print(f"[INFO] MCP result: {result[:200] if isinstance(result, str) else result}")
# MCP returns markdown text, not a dict
# Parse the markdown to extract cost and duration
if isinstance(result, str):
# Try to extract cost values from markdown
cost_match = re.search(r'\$(\d+\.?\d*)', result)
duration_match = re.search(r'(\d+\.?\d+)\s*(minutes?|hours?)', result, re.IGNORECASE)
extracted_cost = cost_match.group(1) if cost_match else 'See details below'
extracted_duration = duration_match.group(0) if duration_match else 'See details below'
# Return with markdown content
result_dict = {
'source': 'mcp',
'total_cost_usd': extracted_cost,
'estimated_duration_minutes': extracted_duration,
'historical_runs': 0,
'has_cost_data': True,
'markdown_details': result # Include full markdown response
}
if selected_hardware_display:
result_dict['hardware_display'] = selected_hardware_display
return result_dict
else:
# Unexpected response type
result_dict = {
'source': 'mcp',
'total_cost_usd': 'N/A',
'estimated_duration_minutes': 'N/A',
'historical_runs': 0,
'has_cost_data': False,
'error': f'MCP returned unexpected type: {type(result)}'
}
if selected_hardware_display:
result_dict['hardware_display'] = selected_hardware_display
return result_dict
except Exception as mcp_error:
print(f"[ERROR] MCP cost estimation failed: {mcp_error}")
import traceback
traceback.print_exc()
# Return a result indicating MCP is unavailable
result_dict = {
'source': 'mcp',
'total_cost_usd': 'N/A',
'estimated_duration_minutes': 'N/A',
'historical_runs': 0,
'has_cost_data': False,
'error': str(mcp_error)
}
if selected_hardware_display:
result_dict['hardware_display'] = selected_hardware_display
return result_dict
except Exception as e:
print(f"[ERROR] Cost estimation failed (leaderboard load): {e}")
return None
def on_hardware_change(model, hardware, provider, infrastructure):
"""Update cost estimate when hardware selection changes"""
cost_est = estimate_job_cost_with_mcp_fallback(model, hardware, provider, infrastructure)
if cost_est is None:
# Error occurred
return f"""## β οΈ Cost Estimation Failed
Unable to estimate cost for **{model}**.
Please check your model ID and try again, or proceed without cost estimation.
"""
# Check if MCP returned an error
if cost_est.get('error'):
return f"""## β οΈ MCP Cost Estimator Unavailable
No historical data available for **{model}**.
**Error**: {cost_est.get('error', 'Unknown error')}
π‘ You can still proceed with the evaluation. Actual costs will be tracked and displayed after completion.
"""
# Format based on source
if cost_est['source'] == 'historical':
source_label = f"π Historical Data ({cost_est['historical_runs']} past runs)"
cost_display = f"${cost_est['total_cost_usd']}" if cost_est['has_cost_data'] else "N/A (cost tracking not enabled)"
duration = cost_est['estimated_duration_minutes']
# Use custom hardware display if available, otherwise show hardware as-is
hardware_display = cost_est.get('hardware_display', hardware.upper())
return f"""## π° Cost Estimate
**{source_label}**
| Metric | Value |
|--------|-------|
| **Model** | {model} |
| **Hardware** | {hardware_display} |
| **Estimated Cost** | {cost_display} |
| **Duration** | {duration} minutes |
---
*Based on {cost_est['historical_runs']} previous evaluation runs in the leaderboard.*
"""
else:
# MCP Cost Estimator - return the full markdown from MCP
markdown_details = cost_est.get('markdown_details', '')
# Add hardware selection note if applicable
hardware_note = ""
if cost_est.get('hardware_display'):
hardware_note = f"\n\n**Hardware**: {cost_est['hardware_display']}\n\n"
# Add header to identify the source
header = f"""## π° Cost Estimate - AI Analysis
**π€ Powered by MCP Server + Gemini 2.5 Pro**
{get_gemini_header()}
*This estimate was generated by AI analysis since no historical data is available for this model.*
{hardware_note}
---
"""
return header + markdown_details
def on_submit_evaluation_comprehensive(
# Infrastructure
infra_provider, hardware,
# Model Configuration
model, provider, hf_inference_provider, hf_token,
# Agent Configuration
agent_type, search_provider, enable_tools,
# Test Configuration
dataset_name, split, difficulty, parallel_workers,
# Output & Monitoring
output_format, output_dir, enable_otel, enable_gpu_metrics, private, debug, quiet, run_id, timeout
):
"""Submit a new evaluation job with comprehensive configuration"""
from utils.modal_job_submission import submit_modal_job
from utils.hf_jobs_submission import submit_hf_job
# Submit job based on infrastructure provider
if infra_provider == "Modal":
result = submit_modal_job(
model=model,
provider=provider,
agent_type=agent_type,
hardware=hardware,
dataset_name=dataset_name,
split=split,
difficulty=difficulty,
parallel_workers=parallel_workers,
hf_token=hf_token,
hf_inference_provider=hf_inference_provider,
search_provider=search_provider,
enable_tools=enable_tools,
output_format=output_format,
output_dir=output_dir,
enable_otel=enable_otel,
enable_gpu_metrics=enable_gpu_metrics,
private=private,
debug=debug,
quiet=quiet,
run_id=run_id
)
else: # HuggingFace Jobs
result = submit_hf_job(
model=model,
provider=provider,
agent_type=agent_type,
hardware=hardware,
dataset_name=dataset_name,
split=split,
difficulty=difficulty,
parallel_workers=parallel_workers,
hf_token=hf_token,
hf_inference_provider=hf_inference_provider,
search_provider=search_provider,
enable_tools=enable_tools,
output_format=output_format,
output_dir=output_dir,
enable_otel=enable_otel,
enable_gpu_metrics=enable_gpu_metrics,
private=private,
debug=debug,
quiet=quiet,
run_id=run_id,
timeout=timeout or "1h"
)
# Handle submission result
if not result.get("success"):
# Error occurred
error_html = f"""
<div style="background: linear-gradient(135deg, #eb3349 0%, #f45c43 100%);
padding: 25px; border-radius: 10px; color: white; margin: 15px 0;">
<h2 style="margin-top: 0;">β Job Submission Failed</h2>
<div style="background: rgba(255,255,255,0.15); padding: 15px; border-radius: 5px; margin: 15px 0;">
<div style="font-size: 0.9em; opacity: 0.9; margin-bottom: 5px;">Error</div>
<div style="font-size: 1.0em;">{result.get('error', 'Unknown error')}</div>
</div>
</div>
"""
return gr.update(value=error_html, visible=True)
# Success - build success message
job_id = result.get('job_id', 'unknown')
hf_job_id = result.get('hf_job_id', job_id) # Get actual HF job ID
modal_call_id = result.get('modal_call_id', None) # Get Modal call ID if available
job_platform = result.get('platform', infra_provider)
job_hardware = result.get('hardware', hardware)
job_status = result.get('status', 'submitted')
job_message = result.get('message', '')
# Estimate cost
cost_est = estimate_job_cost_with_mcp_fallback(model, hardware, provider, infra_provider)
has_cost_estimate = cost_est is not None
cost_info_html = ""
if has_cost_estimate:
source_label = "π Historical" if cost_est['source'] == 'historical' else "π€ MCP Estimate"
if cost_est.get('has_cost_data', False):
cost_info_html = f"""
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Estimated Cost ({source_label})</div>
<div style="font-weight: bold;">${cost_est['total_cost_usd']}</div>
</div>
"""
else:
cost_info_html = """
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Estimated Cost</div>
<div style="font-weight: bold;">N/A</div>
</div>
"""
duration_info = f"Estimated completion: {cost_est['estimated_duration_minutes']} minutes"
else:
cost_info_html = """
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Estimated Cost</div>
<div style="font-weight: bold;">N/A</div>
</div>
"""
duration_info = "Estimated completion: Will be tracked in leaderboard once job completes"
# Add job-specific details
job_details_html = ""
if result.get('job_yaml'):
job_details_html += f"""
<div style="margin-top: 20px; padding: 15px; background: rgba(255,255,255,0.15); border-radius: 5px;">
<div style="font-size: 0.9em; opacity: 0.9; margin-bottom: 10px;">π Job Configuration (job.yaml)</div>
<div style="font-family: monospace; font-size: 0.7em; background: rgba(0,0,0,0.2); padding: 10px; border-radius: 3px; overflow-x: auto; max-height: 300px; overflow-y: auto;">
{result['job_yaml']}
</div>
</div>
"""
if result.get('command'):
job_details_html += f"""
<div style="margin-top: 15px; padding: 15px; background: rgba(255,255,255,0.15); border-radius: 5px;">
<div style="font-size: 0.9em; opacity: 0.9; margin-bottom: 10px;">π SMOLTRACE Command</div>
<div style="font-family: monospace; font-size: 0.75em; background: rgba(0,0,0,0.2); padding: 10px; border-radius: 3px; overflow-x: auto;">
{result['command']}
</div>
</div>
"""
if result.get('instructions'):
job_details_html += f"""
<div style="margin-top: 15px; padding: 15px; background: rgba(255,200,100,0.2); border-radius: 5px; border-left: 4px solid rgba(255,255,255,0.5);">
<div style="font-size: 0.85em; white-space: pre-wrap;">{result['instructions']}</div>
</div>
"""
success_html = f"""
<div style="background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
padding: 25px; border-radius: 10px; color: white; margin: 15px 0;">
<h2 style="margin-top: 0;">β
Evaluation Job Configured!</h2>
<div style="background: rgba(255,255,255,0.15); padding: 15px; border-radius: 5px; margin: 15px 0;">
<div style="font-size: 0.9em; opacity: 0.9; margin-bottom: 5px;">Run ID (SMOLTRACE)</div>
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{job_id}</div>
{f'''
<div style="font-size: 0.9em; opacity: 0.9; margin-top: 10px; margin-bottom: 5px;">Modal Call ID</div>
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{modal_call_id}</div>
<div style="font-size: 0.8em; opacity: 0.8; margin-top: 8px;">View on Modal Dashboard: <a href="https://modal.com/apps" target="_blank" style="color: rgba(255,255,255,0.9);">https://modal.com/apps</a></div>
''' if modal_call_id else f'''
<div style="font-size: 0.9em; opacity: 0.9; margin-top: 10px; margin-bottom: 5px;">HF Job ID</div>
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{hf_job_id}</div>
<div style="font-size: 0.8em; opacity: 0.8; margin-top: 8px;">Use this ID to monitor: <code style="background: rgba(0,0,0,0.2); padding: 2px 6px; border-radius: 3px;">hf jobs inspect {hf_job_id}</code></div>
'''}
</div>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 10px; margin-top: 15px;">
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Platform</div>
<div style="font-weight: bold;">{job_platform}</div>
</div>
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Model</div>
<div style="font-weight: bold;">{model}</div>
</div>
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Hardware</div>
<div style="font-weight: bold;">{job_hardware}</div>
</div>
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Agent Type</div>
<div style="font-weight: bold;">{agent_type}</div>
</div>
<div>
<div style="font-size: 0.9em; opacity: 0.9;">Status</div>
<div style="font-weight: bold;">{job_status.upper()}</div>
</div>
{cost_info_html}
</div>
<div style="margin-top: 15px; padding: 10px; background: rgba(255,255,255,0.15); border-radius: 5px;">
<div style="font-size: 0.9em;">
βΉοΈ {job_message}
</div>
</div>
{job_details_html}
<div style="margin-top: 15px; padding: 10px; background: rgba(255,255,255,0.15); border-radius: 5px;">
<div style="font-size: 0.9em;">
β±οΈ {duration_info}
</div>
</div>
</div>
"""
return gr.update(value=success_html, visible=True)
def on_infra_provider_change(infra_provider):
"""Update hardware options based on infrastructure provider"""
if infra_provider == "Modal":
# Modal hardware options (per-second pricing)
return gr.update(
choices=[
"auto",
"cpu",
"gpu_t4",
"gpu_l4",
"gpu_a10",
"gpu_l40s",
"gpu_a100",
"gpu_a100_80gb",
"gpu_h100",
"gpu_h200",
"gpu_b200"
],
value="auto",
info="Auto: CPU for API models, A10 for local models. Modal per-second pricing."
)
else: # HuggingFace Jobs
# HuggingFace Jobs hardware options
return gr.update(
choices=[
"auto",
"cpu-basic",
"cpu-upgrade",
"t4-small",
"t4-medium",
"l4x1",
"l4x4",
"a10g-small",
"a10g-large",
"a10g-largex2",
"a10g-largex4",
"a100-large",
"v5e-1x1",
"v5e-2x2",
"v5e-2x4"
],
value="auto",
info="Auto: cpu-basic for API models, a10g-small for local models. HF Jobs pricing."
)
def on_provider_change(provider):
"""Auto-select hardware based on provider type"""
# litellm and inference are for API models β CPU
# transformers is for local models β GPU
if provider in ["litellm", "inference"]:
return gr.update(value="cpu-basic")
elif provider == "transformers":
return gr.update(value="a10g-small")
else:
return gr.update(value="auto")
# Navigation handlers (define before use)
def navigate_to_dashboard():
"""Navigate to dashboard screen and load dashboard data"""
try:
leaderboard_df = data_loader.load_leaderboard()
dashboard_updates = update_dashboard_data(leaderboard_df, dashboard_components)
except Exception as e:
print(f"[ERROR] Loading dashboard data: {e}")
dashboard_updates = {}
# Combine navigation updates with dashboard data updates
result = {
dashboard_screen: gr.update(visible=True),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="primary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
result.update(dashboard_updates)
return result
def navigate_to_leaderboard():
"""Navigate to leaderboard screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="primary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_new_evaluation():
"""Navigate to new evaluation screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=True),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="primary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_compare():
"""Navigate to compare screen and populate dropdown choices"""
try:
leaderboard_df = data_loader.load_leaderboard()
# Create run choices for dropdowns (model name with composite unique identifier)
run_choices = []
for _, row in leaderboard_df.iterrows():
label = f"{row.get('model', 'Unknown')} - {row.get('timestamp', 'N/A')}"
# Use composite key: run_id|timestamp to ensure uniqueness
value = f"{row.get('run_id', '')}|{row.get('timestamp', '')}"
if value:
run_choices.append((label, value))
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=True),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="primary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
compare_components['compare_run_a_dropdown']: gr.update(choices=run_choices),
compare_components['compare_run_b_dropdown']: gr.update(choices=run_choices),
}
except Exception as e:
print(f"[ERROR] Navigating to compare: {e}")
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=True),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="primary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_chat():
"""Navigate to chat screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=True),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="primary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_synthetic_data():
"""Navigate to synthetic data generator screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=True),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="primary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_documentation():
"""Navigate to documentation screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=True),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="primary"),
settings_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_settings():
"""Navigate to settings screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=True),
job_monitoring_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="secondary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="primary"),
}
def navigate_to_job_monitoring():
"""Navigate to job monitoring screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
chat_screen: gr.update(visible=False),
synthetic_data_screen: gr.update(visible=False),
new_evaluation_screen: gr.update(visible=False),
documentation_screen: gr.update(visible=False),
settings_screen: gr.update(visible=False),
job_monitoring_screen: gr.update(visible=True),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
new_eval_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
chat_nav_btn: gr.update(variant="secondary"),
job_monitoring_nav_btn: gr.update(variant="primary"),
synthetic_data_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
settings_nav_btn: gr.update(variant="secondary"),
}
# Synthetic Data Generator Callbacks
def on_generate_synthetic_data(domain, tools, num_tasks, difficulty, agent_type):
"""Generate synthetic dataset AND prompt template using MCP server"""
try:
from gradio_client import Client
import json
# Connect to MCP server
client = Client("https://mcp-1st-birthday-tracemind-mcp-server.hf.space/")
# ===== STEP 1: Generate Dataset =====
print(f"[INFO] Generating synthetic dataset for domain: {domain}")
dataset_result = client.predict(
domain=domain,
tools=tools,
num_tasks=int(num_tasks),
difficulty=difficulty,
agent_type=agent_type,
api_name="/run_generate_synthetic"
)
# Parse the dataset result
if isinstance(dataset_result, str):
try:
dataset = json.loads(dataset_result)
except:
dataset = {"raw_result": dataset_result}
else:
dataset = dataset_result
# ===== STEP 2: Generate Prompt Template(s) =====
# When agent_type="both", generate templates for both tool and code agents
agent_types_to_generate = ["tool", "code"] if agent_type == "both" else [agent_type]
print(f"[INFO] Generating prompt template(s) for: {agent_types_to_generate}")
prompt_templates = {}
try:
for current_agent_type in agent_types_to_generate:
print(f"[INFO] Generating {current_agent_type} agent template for domain: {domain}")
template_result = client.predict(
domain=domain,
tools=tools,
agent_type=current_agent_type,
api_name="/run_generate_prompt_template"
)
# Parse the template result
if isinstance(template_result, dict):
prompt_template_data = template_result
elif isinstance(template_result, str):
try:
prompt_template_data = json.loads(template_result)
except:
prompt_template_data = {"error": "Failed to parse template response"}
else:
prompt_template_data = {"error": "Unexpected template response format"}
# Extract the YAML template
if "prompt_template" in prompt_template_data:
prompt_templates[current_agent_type] = prompt_template_data["prompt_template"]
print(f"[INFO] {current_agent_type} agent template generated successfully")
elif "error" in prompt_template_data:
prompt_templates[current_agent_type] = f"# Error generating template:\n# {prompt_template_data['error']}"
print(f"[WARNING] {current_agent_type} template generation error: {prompt_template_data['error']}")
else:
prompt_templates[current_agent_type] = "# Template format not recognized"
print(f"[WARNING] Unexpected template format for {current_agent_type}")
# Combine templates for display
if agent_type == "both":
prompt_template = f"""# ========================================
# TOOL AGENT TEMPLATE (ToolCallingAgent)
# ========================================
{prompt_templates.get('tool', '# Failed to generate tool agent template')}
# ========================================
# CODE AGENT TEMPLATE (CodeAgent)
# ========================================
{prompt_templates.get('code', '# Failed to generate code agent template')}
"""
else:
prompt_template = prompt_templates.get(agent_type, "# Template not generated")
# Store all templates in data for push_to_hub
prompt_template_data = {
"agent_type": agent_type,
"templates": prompt_templates,
"combined": prompt_template
}
except Exception as template_error:
print(f"[WARNING] Failed to generate prompt template: {template_error}")
prompt_template = f"# Failed to generate template: {str(template_error)}"
prompt_template_data = {"error": str(template_error)}
# Generate stats
task_count = len(dataset.get('tasks', [])) if isinstance(dataset.get('tasks'), list) else 0
# Generate suggested repository name with default username
domain_clean = domain.lower().replace(' ', '-').replace('_', '-')
default_username = "kshitijthakkar" # Default username for env HF_TOKEN
suggested_repo_name = f"{default_username}/smoltrace-{domain_clean}-tasks"
stats_md = f"""
### β
Dataset & Prompt Template Generated Successfully!
- **Total Tasks**: {task_count}
- **Domain**: {dataset.get('domain', domain)}
- **Difficulty**: {dataset.get('difficulty', difficulty)}
- **Agent Type**: {dataset.get('agent_type', agent_type)}
- **Tools Available**: {len(tools.split(','))}
- **Prompt Template**: β
AI-customized for your domain
Review both the dataset and prompt template in the tabs above, then push to HuggingFace Hub when ready.
**Suggested repo name**: `{suggested_repo_name}`
π‘ **Tip**: The prompt template will be automatically included in your dataset card!
"""
return {
generated_dataset_state: dataset,
generated_prompt_template_state: prompt_template_data,
dataset_preview: gr.update(value=dataset, visible=True),
dataset_stats: gr.update(value=stats_md, visible=True),
prompt_template_preview: gr.update(value=prompt_template, visible=True),
generation_status: "β
Dataset & prompt template generated! Review in tabs above.",
push_btn: gr.update(visible=True),
repo_name_input: gr.update(value=suggested_repo_name)
}
except Exception as e:
error_msg = f"β Error generating dataset: {str(e)}"
print(f"[ERROR] Synthetic data generation failed: {e}")
import traceback
traceback.print_exc()
return {
generated_dataset_state: None,
generated_prompt_template_state: None,
dataset_preview: gr.update(visible=False),
dataset_stats: gr.update(visible=False),
prompt_template_preview: gr.update(visible=False),
generation_status: error_msg,
push_btn: gr.update(visible=False),
repo_name_input: gr.update(value="")
}
def on_push_to_hub(dataset, prompt_template_data, repo_name, hf_token, private):
"""Push dataset AND prompt template to HuggingFace Hub"""
try:
from gradio_client import Client
import os
import json
# Validate inputs
if not dataset:
return "β No dataset to push. Please generate a dataset first."
if not repo_name:
return "β Please provide a repository name."
# Extract prompt template for pushing
prompt_template_to_push = None
if prompt_template_data and isinstance(prompt_template_data, dict):
if "combined" in prompt_template_data:
prompt_template_to_push = prompt_template_data["combined"]
elif "prompt_template" in prompt_template_data:
prompt_template_to_push = prompt_template_data["prompt_template"]
print(f"[INFO] Prompt template will {'be included' if prompt_template_to_push else 'NOT be included'} in dataset card")
# Determine which HF token to use (user-provided or environment)
if hf_token and hf_token.strip():
# User provided a token
token_to_use = hf_token.strip()
token_source = "user-provided"
print(f"[INFO] Using user-provided HF token")
else:
# Fall back to environment token
token_to_use = os.getenv("HF_TOKEN", "")
token_source = "environment (HF_TOKEN)"
print(f"[INFO] No user token provided, using environment HF_TOKEN")
# Validate token exists
if not token_to_use:
return "β No HuggingFace token available. Please either:\n- Provide your HF token in the field above, OR\n- Set HF_TOKEN environment variable"
print(f"[INFO] Token source: {token_source}")
print(f"[INFO] Token length: {len(token_to_use)} characters")
# Connect to MCP server
client = Client("https://mcp-1st-birthday-tracemind-mcp-server.hf.space/")
# Extract tasks array from dataset (MCP server expects just the tasks array)
if isinstance(dataset, dict):
# If dataset has a 'tasks' key, use that array
if 'tasks' in dataset:
tasks_to_push = dataset['tasks']
print(f"[INFO] Extracted {len(tasks_to_push)} tasks from dataset")
else:
# Otherwise, assume the entire dict is the tasks array
tasks_to_push = dataset
print(f"[INFO] Using entire dataset dict (no 'tasks' key found)")
elif isinstance(dataset, list):
# If it's already a list, use it directly
tasks_to_push = dataset
print(f"[INFO] Dataset is already a list with {len(tasks_to_push)} items")
else:
# Fallback: wrap in a list
tasks_to_push = [dataset]
print(f"[INFO] Wrapped dataset in list")
# Validate tasks_to_push is a list
if not isinstance(tasks_to_push, list):
return f"β Error: Expected tasks to be a list, got {type(tasks_to_push).__name__}"
# Convert tasks array to JSON string
dataset_json = json.dumps(tasks_to_push)
print(f"[INFO] Sending {len(tasks_to_push)} tasks to MCP server")
print(f"[INFO] Repo name: {repo_name}")
print(f"[INFO] Private: {private}")
print(f"[INFO] Passing HF token to MCP server (source: {token_source})")
# Call the push dataset endpoint with the token and prompt template
result = client.predict(
dataset_json=dataset_json,
repo_name=repo_name,
hf_token=token_to_use, # Token from user input OR environment
private=private,
prompt_template=prompt_template_to_push if prompt_template_to_push else "", # Include template if available
api_name="/run_push_dataset"
)
# Parse result
print(f"[INFO] MCP server response: {result}")
# Handle dict response with error
if isinstance(result, dict):
if 'error' in result:
error_msg = result['error']
# Check if it's an authentication error
if 'authentication' in error_msg.lower() or 'unauthorized' in error_msg.lower() or 'token' in error_msg.lower():
return f"β Authentication Error: {error_msg}\n\nπ‘ Check that your HF token has write permissions for datasets."
return f"β Error from MCP server: {error_msg}"
elif 'success' in result or 'repo_url' in result:
repo_url = result.get('repo_url', f"https://huggingface.co/datasets/{repo_name}")
return f"""β
Dataset successfully pushed to HuggingFace Hub!
**Repository**: [{repo_name}]({repo_url})
{result.get('message', 'Dataset uploaded successfully!')}
"""
else:
return f"β
Push completed. Result: {result}"
# Handle string response
elif isinstance(result, str):
if "error" in result.lower():
return f"β Error: {result}"
elif "success" in result.lower() or "pushed" in result.lower():
return f"""β
Dataset successfully pushed to HuggingFace Hub!
**Repository**: [{repo_name}](https://huggingface.co/datasets/{repo_name})
Result: {result}
"""
else:
return f"β
Push completed. Result: {result}"
else:
return f"β
Push completed. Result: {result}"
except Exception as e:
error_msg = f"β Error pushing to Hub: {str(e)}"
print(f"[ERROR] Push to Hub failed: {e}")
import traceback
traceback.print_exc()
return error_msg
# Event handlers
# Load dashboard on app start
app.load(
fn=navigate_to_dashboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
] + list(dashboard_components.values())
)
app.load(
fn=load_leaderboard,
outputs=[leaderboard_by_model, model_filter, model_filter, provider_filter]
)
app.load(
fn=load_trends,
outputs=[trends_plot]
)
# COMMENTED OUT: Load drilldown data on page load (DrillDown tab removed)
# app.load(
# fn=load_drilldown,
# inputs=[drilldown_agent_type_filter, drilldown_provider_filter],
# outputs=[leaderboard_table]
# )
# Refresh button handler
refresh_leaderboard_btn.click(
fn=refresh_leaderboard,
outputs=[leaderboard_by_model, model_filter, model_filter]
)
# Leaderboard tab inline filters
apply_filters_btn.click(
fn=apply_leaderboard_filters,
inputs=[agent_type_filter, provider_filter, sort_by_dropdown, sort_order],
outputs=[leaderboard_by_model]
)
# HTML Plus leaderboard row selection
leaderboard_by_model.select(
fn=on_html_leaderboard_select,
inputs=None, # HTMLPlus passes data via evt.value
outputs=[
leaderboard_screen,
run_detail_screen,
run_metadata_html,
test_cases_table,
performance_charts,
run_card_html,
run_gpu_summary_cards_html,
run_gpu_metrics_plot,
run_gpu_metrics_json
]
)
# COMMENTED OUT: DrillDown tab inline filters
# apply_drilldown_filters_btn.click(
# fn=apply_drilldown_filters,
# inputs=[drilldown_agent_type_filter, drilldown_provider_filter, drilldown_sort_by_dropdown, drilldown_sort_order],
# outputs=[leaderboard_table]
# )
# Sidebar filters (apply to remaining tabs - removed leaderboard_table)
model_filter.change(
fn=apply_sidebar_filters,
inputs=[model_filter, sidebar_agent_type_filter],
outputs=[leaderboard_by_model, trends_plot, compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']]
)
sidebar_agent_type_filter.change(
fn=apply_sidebar_filters,
inputs=[model_filter, sidebar_agent_type_filter],
outputs=[leaderboard_by_model, trends_plot, compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']]
)
viz_type.change(
fn=update_analytics,
inputs=[viz_type],
outputs=[analytics_chart, viz_explanation]
)
app.load(
fn=update_analytics,
inputs=[viz_type],
outputs=[analytics_chart, viz_explanation]
)
generate_card_btn.click(
fn=generate_card,
inputs=[top_n_slider],
outputs=[card_preview, download_card_btn]
)
# Download leaderboard summary card as PNG
download_card_btn.click(
fn=None,
js=download_card_as_png_js("summary-card-html")
)
app.load(
fn=generate_insights,
outputs=[mcp_insights]
)
regenerate_btn.click(
fn=generate_insights,
outputs=[mcp_insights]
)
# Wire up navigation buttons
dashboard_nav_btn.click(
fn=navigate_to_dashboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
] + list(dashboard_components.values())
)
leaderboard_nav_btn.click(
fn=navigate_to_leaderboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
new_eval_nav_btn.click(
fn=navigate_to_new_evaluation,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
compare_nav_btn.click(
fn=navigate_to_compare,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn,
compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']
]
)
chat_nav_btn.click(
fn=navigate_to_chat,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
synthetic_data_nav_btn.click(
fn=navigate_to_synthetic_data,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
job_monitoring_nav_btn.click(
fn=navigate_to_job_monitoring,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
docs_nav_btn.click(
fn=navigate_to_documentation,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
settings_nav_btn.click(
fn=navigate_to_settings,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen,
new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
# Synthetic Data Generator event handlers
generate_btn.click(
fn=on_generate_synthetic_data,
inputs=[domain_input, tools_input, num_tasks_input, difficulty_input, agent_type_input],
outputs=[generated_dataset_state, generated_prompt_template_state, dataset_preview, dataset_stats, prompt_template_preview, generation_status, push_btn, repo_name_input]
)
push_btn.click(
fn=on_push_to_hub,
inputs=[generated_dataset_state, generated_prompt_template_state, repo_name_input, hf_token_input, private_checkbox],
outputs=[push_status]
)
# New Evaluation screen event handlers
back_to_leaderboard_from_eval_btn.click(
fn=navigate_to_leaderboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
eval_estimate_btn.click(
fn=on_hardware_change,
inputs=[eval_model, eval_hardware, eval_provider, eval_infra_provider],
outputs=[eval_cost_estimate]
)
# Update hardware options when infrastructure provider changes
eval_infra_provider.change(
fn=on_infra_provider_change,
inputs=[eval_infra_provider],
outputs=[eval_hardware]
)
# Auto-select hardware when provider changes
eval_provider.change(
fn=on_provider_change,
inputs=[eval_provider],
outputs=[eval_hardware]
)
eval_submit_btn.click(
fn=on_submit_evaluation_comprehensive,
inputs=[
# Infrastructure
eval_infra_provider, eval_hardware,
# Model Configuration
eval_model, eval_provider, eval_hf_inference_provider, eval_hf_token,
# Agent Configuration
eval_agent_type, eval_search_provider, eval_enable_tools,
# Test Configuration
eval_dataset_name, eval_split, eval_difficulty, eval_parallel_workers,
# Output & Monitoring
eval_output_format, eval_output_dir, eval_enable_otel, eval_enable_gpu_metrics, eval_private, eval_debug, eval_quiet, eval_run_id, eval_timeout
],
outputs=[eval_success_message]
)
# Chat screen event handlers (with streaming and per-session agent state)
chat_components['send_btn'].click(
fn=on_send_message,
inputs=[chat_components['message'], chat_components['chatbot'], chat_components['agent_state']],
outputs=[chat_components['chatbot'], chat_components['message'], chat_components['agent_state']]
)
chat_components['message'].submit(
fn=on_send_message,
inputs=[chat_components['message'], chat_components['chatbot'], chat_components['agent_state']],
outputs=[chat_components['chatbot'], chat_components['message'], chat_components['agent_state']]
)
chat_components['clear_btn'].click(
fn=on_clear_chat,
inputs=[chat_components['agent_state']],
outputs=[chat_components['chatbot'], chat_components['agent_state']]
)
chat_components['quick_analyze'].click(
fn=lambda: on_quick_action("analyze"),
inputs=[],
outputs=[chat_components['message']]
)
chat_components['quick_costs'].click(
fn=lambda: on_quick_action("costs"),
inputs=[],
outputs=[chat_components['message']]
)
chat_components['quick_recommend'].click(
fn=lambda: on_quick_action("recommend"),
inputs=[],
outputs=[chat_components['message']]
)
chat_components['quick_multi_tool'].click(
fn=lambda: on_quick_action("multi_tool"),
inputs=[],
outputs=[chat_components['message']]
)
chat_components['quick_synthetic'].click(
fn=lambda: on_quick_action("synthetic"),
inputs=[],
outputs=[chat_components['message']]
)
# Compare button handler
compare_components['compare_button'].click(
fn=lambda run_a, run_b: handle_compare_runs(run_a, run_b, leaderboard_df_cache, compare_components),
inputs=[
compare_components['compare_run_a_dropdown'],
compare_components['compare_run_b_dropdown']
],
outputs=[
compare_components['comparison_output'],
compare_components['run_a_card'],
compare_components['run_b_card'],
compare_components['comparison_charts'],
compare_components['winner_summary'],
compare_components['radar_comparison_chart'],
compare_components['comparison_card_html']
]
)
# Wire up AI comparison insights button (MCP compare_runs tool)
compare_components['generate_ai_comparison_btn'].click(
fn=generate_ai_comparison,
inputs=[compare_components['comparison_focus']],
outputs=[compare_components['ai_comparison_insights']]
)
# Wire up run AI insights button (MCP analyze_results tool)
generate_run_ai_insights_btn.click(
fn=generate_run_ai_insights,
inputs=[run_analysis_focus, run_max_rows],
outputs=[run_ai_insights]
)
# Back to leaderboard from compare
compare_components['back_to_leaderboard_btn'].click(
fn=navigate_to_leaderboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen, chat_screen, synthetic_data_screen, new_evaluation_screen, documentation_screen, settings_screen, job_monitoring_screen,
dashboard_nav_btn, leaderboard_nav_btn, new_eval_nav_btn, compare_nav_btn, chat_nav_btn, synthetic_data_nav_btn, job_monitoring_nav_btn, docs_nav_btn, settings_nav_btn
]
)
# Download comparison report card as PNG
compare_components['download_comparison_card_btn'].click(
fn=None,
js=download_card_as_png_js(element_id="comparison-card-html")
)
# COMMENTED OUT: DrillDown table select event handler
# leaderboard_table.select(
# fn=on_drilldown_select,
# inputs=[leaderboard_table], # Pass dataframe to handler (like MockTraceMind)
# outputs=[
# leaderboard_screen,
# run_detail_screen,
# run_metadata_html,
# test_cases_table,
# performance_charts,
# run_card_html,
# run_gpu_summary_cards_html,
# run_gpu_metrics_plot,
# run_gpu_metrics_json
# ]
# )
back_to_leaderboard_btn.click(
fn=go_back_to_leaderboard,
inputs=[],
outputs=[leaderboard_screen, run_detail_screen]
)
# Trace detail navigation
test_cases_table.select(
fn=on_test_case_select,
inputs=[test_cases_table],
outputs=[
run_detail_screen,
trace_detail_screen,
trace_title,
trace_metadata_html,
trace_thought_graph,
span_visualization,
span_details_table,
span_details_json
]
)
back_to_run_detail_btn.click(
fn=go_back_to_run_detail,
outputs=[run_detail_screen, trace_detail_screen]
)
# Wire up trace AI question button (MCP debug_trace tool)
trace_ask_btn.click(
fn=ask_about_trace,
inputs=[trace_question],
outputs=[trace_answer]
)
# HTML table row click handler (JavaScript bridge via hidden textbox)
selected_row_index.change(
fn=on_html_table_row_click,
inputs=[selected_row_index],
outputs=[
leaderboard_screen,
run_detail_screen,
run_metadata_html,
test_cases_table,
run_card_html,
performance_charts,
selected_row_index,
run_gpu_summary_cards_html,
run_gpu_metrics_plot,
run_gpu_metrics_json
]
)
# Download run report card as PNG
download_run_card_btn.click(
fn=None,
js=download_card_as_png_js(element_id="run-card-html")
)
if __name__ == "__main__":
print("Starting TraceMind-AI...")
print(f"Data Source: {os.getenv('DATA_SOURCE', 'both')}")
print(f"JSON Path: {os.getenv('JSON_DATA_PATH', './sample_data')}")
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|