File size: 13,728 Bytes
8816dfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import logging
from typing import List, Optional, Dict, Any, Union
from pydantic import BaseModel, Field
from typing import Any
from enum import Enum
from constant import Constants
import requests
# Enum for instance status
class InstanceStatus(Enum):
CREATED = 0
DEPLOYED = 1
STARTING = 2
RUNNING = 3
ERRORED = 4
TERMINATING = 5
TERMINATED = 6
STOPPING = 7
STOPPED = 8
class Timestamp(BaseModel):
seconds: int
nanos: int
# GPU model
class GPUInfo(BaseModel):
model: str
# Port info
class PortInfo(BaseModel):
protocol: str
container_port: int
node_port: int
class InstanceSpending(BaseModel):
instance_id: str
hourly_price: float
total_spend: float
# InstanceInfo for GET method
class InstanceInfo(BaseModel): # New fields added
id: Optional[str] = None
deployment_id: Optional[str] = None
name: Optional[str] = None
user_id: Optional[str] = None
container_image: Optional[str] = None
status: Optional[InstanceStatus] = None
status_string: Optional[str] = None
additional_info: Optional[str] = None
type: Optional[int] = None
created_at: Optional[Timestamp] = None
updated_at: Optional[Timestamp] = None
ready_at: Optional[Timestamp] = None
stopped_at: Optional[Timestamp] = None
cpu: Optional[int] = None
memory: Optional[int] = None
gpu: Optional[List[GPUInfo]] = None
disk: Optional[int] = None
bandwidth: Optional[int] = None
ssh_key_id: Optional[str] = None
location: Optional[str] = None
ports: Optional[Dict[str, PortInfo]] = None
hive_environment_variables: Optional[Dict[str, Any]] = None
environment_variables: Optional[Dict[str, Any]] = None
runtime: Optional[int] = None
spending: Optional[InstanceSpending] = None
def __init__(self, **data):
super().__init__(**data)
if self.status_string is None and isinstance(self.status, InstanceStatus):
self.status_string = self.status.name
# Spending info model
class InstanceSpending(BaseModel):
instance_id: str
hourly_price: float
total_spend: float
# Configuration mappings based on the UI tables
GPU_CONFIGS = {
"1x RTX 4090": {
"gpu": ["RTX 4090"],
"cpu": 8,
"memory": 48,
"disk": 250,
"bandwidth": 1000
},
"2x RTX 4090": {
"gpu": ["RTX 4090", "RTX 4090"],
"cpu": 16,
"memory": 96,
"disk": 500,
"bandwidth": 1000
},
"4x RTX 4090": {
"gpu": ["RTX 4090", "RTX 4090", "RTX 4090", "RTX 4090"],
"cpu": 32,
"memory": 192,
"disk": 1000,
"bandwidth": 1000
},
"8x RTX 4090": {
"gpu": ["RTX 4090", "RTX 4090", "RTX 4090", "RTX 4090",
"RTX 4090", "RTX 4090", "RTX 4090", "RTX 4090"],
"cpu": 64,
"memory": 384,
"disk": 2000,
"bandwidth": 1000
},
"1x RTX 5090": {
"gpu": ["RTX 5090"],
"cpu": 8,
"memory": 48,
"disk": 250,
"bandwidth": 1000
},
"2x RTX 5090": {
"gpu": ["RTX 5090", "RTX 5090"],
"cpu": 16,
"memory": 96,
"disk": 500,
"bandwidth": 1000
},
"4x RTX 5090": {
"gpu": ["RTX 5090", "RTX 5090", "RTX 5090", "RTX 5090"],
"cpu": 32,
"memory": 192,
"disk": 1000,
"bandwidth": 1000
},
"8x RTX 5090": {
"gpu": ["RTX 5090", "RTX 5090", "RTX 5090", "RTX 5090",
"RTX 5090", "RTX 5090", "RTX 5090", "RTX 5090"],
"cpu": 64,
"memory": 384,
"disk": 2000,
"bandwidth": 1000
}
}
VCPU_CONFIGS = {
"2vCPU": {
"gpu": [],
"cpu": 2,
"memory": 4,
"disk": 50,
"bandwidth": 250
},
"4vCPU": {
"gpu": [],
"cpu": 4,
"memory": 8,
"disk": 100,
"bandwidth": 250
},
"8vCPU": {
"gpu": [],
"cpu": 8,
"memory": 16,
"disk": 200,
"bandwidth": 500
},
"16vCPU": {
"gpu": [],
"cpu": 16,
"memory": 32,
"disk": 400,
"bandwidth": 1000
},
"32vCPU": {
"gpu": [],
"cpu": 32,
"memory": 64,
"disk": 800,
"bandwidth": 1000
}
}
# Location-GPU validation map (using API format - lowercase)
LOCATION_GPU_MAP = {
"france": ["RTX 4090"],
"uae": ["RTX 4090"],
"texas": ["RTX 5090"],
"uae-2": ["RTX 5090"]
}
class HiveComputeAPI:
"""
A wrapper class that provides methods to interact with the Hive Compute API.
"""
def __init__(self, base_url: str = Constants.HIVE_COMPUTE_BASE_API_URL, token: str = Constants.HIVE_COMPUTE_DEFAULT_API_TOKEN):
"""
Initializes the HiveComputeAPI handler.
Args:
base_url (str): The base URL of the Hive Compute API.
token (str): The authentication token for the Hive Compute API.
Note: The ModelRouter will automatically refresh the map of served models upon initialization.
"""
self.base_url = base_url.strip("/")
self.token = token
self.logger = logging.getLogger(__name__)
def __fetch_instance_structure(self, instance_json) -> InstanceInfo:
"""
Fetches the structure of an instance from the API.
Returns:
InstanceInfo: An InstanceInfo object representing the structure of an instance.
"""
# Ensure instance_json is a dict
if not isinstance(instance_json, dict):
return {}
# Convert only problematic fields
if "status" in instance_json and not isinstance(instance_json["status"], InstanceStatus):
try:
instance_json["status"] = InstanceStatus(instance_json["status"])
except Exception:
instance_json["status"] = InstanceStatus.CREATED
for field in ["created_at", "updated_at", "ready_at", "stopped_at"]:
value = instance_json.get(field)
if isinstance(value, dict):
instance_json[field] = Timestamp(**value)
else:
instance_json[field] = None
if "gpu" in instance_json:
instance_json["gpu"] = [GPUInfo(**gpu) for gpu in instance_json.get("gpu", []) if isinstance(gpu, dict)]
if "ports" in instance_json:
instance_json["ports"] = {k: PortInfo(**v) for k, v in instance_json.get("ports", {}).items() if isinstance(v, dict)}
return InstanceInfo(**instance_json)
def get_all_instances(self) -> List[InstanceInfo]:
"""
Fetches all compute instances for the authenticated user.
Returns:
List[InstanceInfo]: A list of InstanceInfo objects representing the user's compute instances.
"""
try:
response = requests.get(f"{self.base_url}/instances", headers={
"Authorization": f"Bearer {self.token}"
})
response.raise_for_status()
response_json = response.json()
spending_map = response_json.get("spending", {})
instances = []
for inst in response_json.get("instances", []):
inst_struct = self.__fetch_instance_structure(inst)
spend = spending_map.get(inst.get("id"))
if spend:
inst_struct.spending = InstanceSpending(**spend)
instances.append(InstanceInfo.model_validate(inst_struct))
return instances
except requests.RequestException as e:
self.logger.error(f"Failed to fetch instances: {e}")
return []
def create_instance(
self,
name: str = "default",
location: str = "uae", # Changed default to API format
config: str = "1x RTX 4090",
container_image: str = "Dockerfile.vulkan",
tcp_ports: Optional[List[int]] = None,
https_ports: Optional[List[int]] = None,
udp_ports: Optional[List[int]] = None,
launch_jupyter_notebook: bool = False,
instance_type: int = 0,
custom_config: Optional[Dict[str, Any]] = None
) -> Optional[Dict[str, Any]]:
"""
Creates a new compute instance using predefined configurations or custom settings.
Args:
name (str): Name of the instance. Defaults to "default".
location (str): Location where the instance will be deployed. Defaults to "uae".
Valid locations: france, uae, texas, uae-2
config (str): Predefined configuration. Options:
GPU configs: "1x RTX 4090", "2x RTX 4090", "4x RTX 4090", "8x RTX 4090",
"1x RTX 5090", "2x RTX 5090", "4x RTX 5090", "8x RTX 5090"
vCPU configs: "2vCPU", "4vCPU", "8vCPU", "16vCPU", "32vCPU"
Defaults to "1x RTX 4090".
container_image (str): Docker container image to use. Defaults to "Dockerfile.vulkan".
tcp_ports (List[int], optional): List of TCP ports to expose.
https_ports (List[int], optional): List of HTTPS ports to expose.
udp_ports (List[int], optional): List of UDP ports to expose.
launch_jupyter_notebook (bool): Whether to launch Jupyter notebook. Defaults to False.
instance_type (int): Type of instance. Defaults to 0.
custom_config (Dict[str, Any], optional): Custom configuration to override defaults.
Keys: cpu, memory, disk, bandwidth, gpu
Returns:
Optional[Dict[str, Any]]: A dictionary with 'id' and 'status' keys if successful, None otherwise.
Raises:
ValueError: If configuration is invalid or GPU type not available in location.
"""
# Combine all configs
ALL_CONFIGS = {**GPU_CONFIGS, **VCPU_CONFIGS}
# Validate configuration
if config not in ALL_CONFIGS:
available_configs = list(ALL_CONFIGS.keys())
raise ValueError(
f"Invalid config: {config}. Available configs: {available_configs}"
)
# Get base configuration
instance_config = ALL_CONFIGS[config].copy()
# Apply custom config if provided
if custom_config:
instance_config.update(custom_config)
# Validate location
if location not in LOCATION_GPU_MAP:
raise ValueError(
f"Invalid location: {location}. Valid locations: {list(LOCATION_GPU_MAP.keys())}"
)
# Validate GPU type for location (only if GPU instance)
if instance_config["gpu"]: # If not empty (i.e., GPU instance)
gpu_type = instance_config["gpu"][0] # Get the GPU model
if gpu_type not in LOCATION_GPU_MAP[location]:
raise ValueError(
f"GPU type '{gpu_type}' not available in location '{location}'. "
f"Available GPUs: {LOCATION_GPU_MAP[location]}"
)
# Build the payload - exact format matching the API request
payload = {
"bandwidth": instance_config["bandwidth"],
"container_image": container_image,
"cpu": instance_config["cpu"],
"disk": instance_config["disk"],
"gpu": instance_config["gpu"],
"https_ports": https_ports if https_ports is not None else [8888],
"launch_jupyter_notebook": launch_jupyter_notebook,
"location": location,
"memory": instance_config["memory"],
"name": name,
"tcp_ports": tcp_ports if tcp_ports is not None else [],
"type": instance_type,
"udp_ports": udp_ports if udp_ports is not None else []
}
# Log the payload for debugging
self.logger.info(f"Creating instance with payload: {payload}")
try:
response = requests.post(
f"{self.base_url}/instances/instance",
headers={
"Authorization": f"Bearer {self.token}",
"Content-Type": "application/json"
},
json=payload
)
# Log response details for debugging
self.logger.info(f"Response status code: {response.status_code}")
if response.status_code != 200:
self.logger.error(f"Response body: {response.text}")
response.raise_for_status()
response_data = response.json()
instance_data = response_data.get("instance", {})
return {
"id": instance_data.get("id"),
"status": instance_data.get("status")
}
except requests.RequestException as e:
self.logger.error(f"Failed to create instance: {e}")
if hasattr(e, 'response') and e.response is not None:
self.logger.error(f"Response content: {e.response.text}")
return None
def get_available_locations(self, gpu_type: Optional[str] = None) -> List[str]:
"""
Get available locations, optionally filtered by GPU type.
Args:
gpu_type (str, optional): GPU model to filter locations by.
Returns:
List[str]: List of available locations.
"""
if gpu_type:
return [loc for loc, gpus in LOCATION_GPU_MAP.items() if gpu_type in gpus]
return list(LOCATION_GPU_MAP.keys()) |