website / app.py
Tim Luka Horstmann
Use gemini TTS
964084b
from datetime import datetime
import json
import time
import numpy as np
from sentence_transformers import SentenceTransformer
from fastapi import FastAPI, HTTPException, BackgroundTasks, Request
from fastapi.responses import StreamingResponse, Response
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, Union, Dict, Any
from llama_cpp import Llama
from huggingface_hub import login, hf_hub_download
import logging
import os
import faiss
import asyncio
import psutil # Added for RAM tracking
from google import genai
from google.genai import types
import httpx
import wave
import io
from elevenlabs import ElevenLabs, VoiceSettings
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Initialize rate limiter
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Custom rate limit exceeded handler with logging
async def custom_rate_limit_handler(request: Request, exc: RateLimitExceeded):
client_ip = get_remote_address(request)
logger.warning(f"Rate limit exceeded for IP {client_ip} on endpoint {request.url.path}")
# Return a proper JSON response for rate limiting
return Response(
content=json.dumps({
"error": "rate_limit_exceeded",
"message": "Too many requests. Please wait a moment before trying again.",
"retry_after": 60 # seconds
}),
status_code=429,
headers={
"Content-Type": "application/json",
"Retry-After": "60"
}
)
app.add_exception_handler(RateLimitExceeded, custom_rate_limit_handler)
# Add CORS middleware to handle cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify your domain
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global lock for model access
model_lock = asyncio.Lock()
# Authenticate with Hugging Face
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
logger.error("HF_TOKEN environment variable not set.")
raise ValueError("HF_TOKEN not set")
login(token=hf_token)
# Models Configuration
USE_GEMINI = os.getenv("USE_GEMINI", "false").lower() == "true"
sentence_transformer_model = "all-MiniLM-L6-v2"
repo_id = "unsloth/Qwen3-1.7B-GGUF" # "bartowski/deepcogito_cogito-v1-preview-llama-3B-GGUF" # "bartowski/deepcogito_cogito-v1-preview-llama-8B-GGUF"
filename = "Qwen3-1.7B-Q4_K_M.gguf" # "deepcogito_cogito-v1-preview-llama-3B-Q4_K_M.gguf"
# Gemini Configuration
if USE_GEMINI:
gemini_api_key = os.getenv("GEMINI_API_KEY")
gemini_model = os.getenv("GEMINI_MODEL")
if not gemini_api_key:
logger.error("GEMINI_API_KEY environment variable not set but USE_GEMINI is true.")
raise ValueError("GEMINI_API_KEY not set")
gemini_client = genai.Client(api_key=gemini_api_key)
logger.info("Gemini API client initialized")
else:
gemini_client = None
logger.info("Using local model (Gemini disabled)")
# ElevenLabs Configuration
elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
if elevenlabs_api_key:
elevenlabs_client = ElevenLabs(api_key=elevenlabs_api_key)
# You can set a specific voice ID here or use the default voice
# Get your voice ID from ElevenLabs dashboard after cloning your voice
tts_voice_id = os.getenv("ELEVENLABS_VOICE_ID", "21m00Tcm4TlvDq8ikWAM") # Default voice, replace with your cloned voice ID
logger.info("ElevenLabs TTS client initialized")
else:
elevenlabs_client = None
logger.info("ElevenLabs TTS disabled (no API key provided)")
# TTS Configuration
tts_provider = os.getenv("TTS_PROVIDER", "elevenlabs").lower()
gemini_tts_model = os.getenv("GEMINI_TTS_MODEL", "gemini-2.5-flash-preview-tts")
gemini_tts_voice = os.getenv("GEMINI_TTS_VOICE", "Kore")
# Define FAQs
faqs = [
{"question": "What is your name?", "answer": "My name is Tim Luka Horstmann."},
{"question": "Where do you live?", "answer": "I live in Paris, France."},
{"question": "What is your education?", "answer": "I am currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris. I have an MPhil in Advanced Computer Science from the University of Cambridge, and a BSc in Business Informatics from RheinMain University of Applied Sciences."},
{"question": "What are your skills?", "answer": "I am proficient in Python, Java, SQL, Cypher, SPARQL, VBA, JavaScript, HTML/CSS, and Ruby. I also use tools like PyTorch, Hugging Face, Scikit-Learn, NumPy, Pandas, Matplotlib, Jupyter, Git, Bash, IoT, Ansible, QuickSight, and Wordpress."},
{"question": "How are you?", "answer": "I’m doing great, thanks for asking! I’m enjoying life in Paris and working on some exciting AI projects."},
{"question": "What do you do?", "answer": "I’m a Computer Scientist and AI enthusiast, currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris and interning as a Machine Learning Research Engineer at Hi! PARIS."},
{"question": "How’s it going?", "answer": "Things are going well, thanks! I’m busy with my studies and research, but I love the challenges and opportunities I get to explore."},
]
try:
# Load CV embeddings and build FAISS index
logger.info("Loading CV embeddings from cv_embeddings.json")
with open("cv_embeddings.json", "r", encoding="utf-8") as f:
cv_data = json.load(f)
cv_chunks = [item["chunk"] for item in cv_data]
cv_embeddings = np.array([item["embedding"] for item in cv_data]).astype('float32')
faiss.normalize_L2(cv_embeddings)
faiss_index = faiss.IndexFlatIP(cv_embeddings.shape[1])
faiss_index.add(cv_embeddings)
logger.info("FAISS index built successfully")
# Load embedding model
logger.info("Loading SentenceTransformer model")
embedder = SentenceTransformer(sentence_transformer_model, device="cpu")
logger.info("SentenceTransformer model loaded")
# Compute FAQ embeddings
faq_questions = [faq["question"] for faq in faqs]
faq_embeddings = embedder.encode(faq_questions, convert_to_numpy=True).astype("float32")
faiss.normalize_L2(faq_embeddings)
# Load the local model only if not using Gemini
if not USE_GEMINI:
logger.info(f"Loading {filename} model")
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir="/app/cache" if os.getenv("HF_HOME") else None,
token=hf_token,
)
generator = Llama(
model_path=model_path,
n_ctx=3072,
n_threads=2,
n_batch=64,
n_gpu_layers=0,
use_mlock=True,
f16_kv=True,
verbose=True,
batch_prefill=True,
prefill_logits=False,
)
logger.info(f"{filename} model loaded")
else:
generator = None
logger.info("Skipping local model loading (using Gemini API)")
except Exception as e:
logger.error(f"Startup error: {str(e)}", exc_info=True)
raise
def retrieve_context(query, top_k=2):
try:
query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32")
query_embedding = query_embedding.reshape(1, -1)
faiss.normalize_L2(query_embedding)
distances, indices = faiss_index.search(query_embedding, top_k)
return "\n".join([cv_chunks[i] for i in indices[0]])
except Exception as e:
logger.error(f"Error in retrieve_context: {str(e)}")
raise
# Load the full CV at startup with explicit UTF-8 handling
try:
with open("cv_text.txt", "r", encoding="utf-8") as f:
full_cv_text = f.read()
if not isinstance(full_cv_text, str):
full_cv_text = str(full_cv_text)
logger.info("CV text loaded successfully")
except Exception as e:
logger.error(f"Error loading cv_text.txt: {str(e)}")
raise
# Optional: Load additional station info (admin-editable) from JSON
STATION_EXTRAS_BY_NAME: Dict[str, str] = {}
STATION_EXTRAS_BY_ID: Dict[str, str] = {}
try:
extra_path = os.path.join(os.path.dirname(__file__), 'stations_extra.json')
if os.path.exists(extra_path):
with open(extra_path, 'r', encoding='utf-8') as f:
extra_data = json.load(f)
# Accept either mapping format or list of entries
if isinstance(extra_data, dict):
# by_name or by_id mapping
by_name = extra_data.get('by_name') or {}
by_id = extra_data.get('by_id') or {}
if isinstance(by_name, dict):
for k, v in by_name.items():
if isinstance(k, str) and isinstance(v, str):
STATION_EXTRAS_BY_NAME[k.strip().lower()] = v.strip()
if isinstance(by_id, dict):
for k, v in by_id.items():
if isinstance(k, str) and isinstance(v, str):
STATION_EXTRAS_BY_ID[k.strip().lower()] = v.strip()
# Also support {"stations": [{"id":..., "name":..., "extra":...}]}
stations = extra_data.get('stations') or []
if isinstance(stations, list):
for item in stations:
if not isinstance(item, dict):
continue
name = (item.get('name') or '').strip().lower()
sid = (item.get('id') or '').strip().lower()
extra = (item.get('extra') or '').strip()
if name and extra:
STATION_EXTRAS_BY_NAME[name] = extra
if sid and extra:
STATION_EXTRAS_BY_ID[sid] = extra
elif isinstance(extra_data, list):
for item in extra_data:
if not isinstance(item, dict):
continue
name = (item.get('name') or '').strip().lower()
sid = (item.get('id') or '').strip().lower()
extra = (item.get('extra') or '').strip()
if name and extra:
STATION_EXTRAS_BY_NAME[name] = extra
if sid and extra:
STATION_EXTRAS_BY_ID[sid] = extra
logger.info(f"Loaded station extras: {len(STATION_EXTRAS_BY_NAME)} by name, {len(STATION_EXTRAS_BY_ID)} by id")
else:
logger.info("No stations_extra.json found; skipping extras")
except Exception as e:
logger.warning(f"Failed to load stations_extra.json: {e}")
async def stream_response(query, history, game_context=None, mode: Optional[str] = None):
"""Main streaming response function that routes to either Gemini or local model"""
if USE_GEMINI:
async for chunk in stream_response_gemini(query, history, game_context, mode):
yield chunk
else:
async for chunk in stream_response_local(query, history, game_context, mode):
yield chunk
def _format_game_context_for_prompt(game_context: Optional[Union[str, Dict[str, Any]]]) -> str:
"""Return a concise text snippet to inject into the system prompt from game context.
Key changes:
- Prefer current station (id/name) and filter transcript strictly to this station to avoid confusion.
- Include admin-provided extras when available.
- Provide a short visited list for flavor only.
"""
if not game_context:
return ""
try:
if isinstance(game_context, str):
return f"\nGAME CONTEXT: The player is currently at a station about {game_context}."
if isinstance(game_context, dict):
current = (game_context.get('current_station') or game_context.get('station') or '').strip()
current_id = (game_context.get('current_station_id') or '').strip()
visited = game_context.get('visited_stations') or []
context = (game_context.get('context') or game_context.get('current_context') or '').strip()
parts = ["\nGAME CONTEXT:"]
if current or current_id:
parts.append(f"Current station: {current} (id: {current_id}).")
if context:
parts.append(f"Station details: {context}.")
# Look up admin-provided extras
extra_text = ''
if current_id:
extra_text = STATION_EXTRAS_BY_ID.get(current_id.lower(), '')
if not extra_text and current:
extra_text = STATION_EXTRAS_BY_NAME.get(current.lower(), '')
if extra_text:
parts.append(f"Additional station notes (must consider): {extra_text}")
# Visited list (names only, de-duplicated)
if visited:
try:
uniq = []
for v in visited:
if v and v not in uniq:
uniq.append(v)
if uniq:
parts.append(f"Visited stations so far: {', '.join(uniq)}.")
except Exception:
pass
# Memory transcript: include only messages tied to this station to reduce confusion
mem = game_context.get('__memory') if isinstance(game_context, dict) else None
if isinstance(mem, dict):
try:
transcript = mem.get('transcript') or []
if transcript and (current or current_id):
def belongs_here(m: Dict[str, Any]) -> bool:
sid = (m.get('stationId') or '').strip()
sname = (m.get('stationName') or '').strip()
if current_id and sid:
if sid.strip().lower() == current_id.lower():
return True
if current and sname:
if sname.strip().lower() == current.lower():
return True
return False
filtered = [m for m in transcript if belongs_here(m)]
# if nothing matches, don't include cross-station chatter
if filtered:
lines = []
for m in filtered[-20:]:
role = (m.get('role') or '').strip()
src = (m.get('source') or '').strip()
sta = (m.get('stationName') or '').strip()
txt = (m.get('content') or '').replace('\n', ' ').strip()
if len(txt) > 2000:
txt = txt[:2000] + '…'
label = role if role else 'msg'
if src or sta:
label += f"[{src}{'/' + sta if sta else ''}]"
lines.append(f"- {label}: {txt}")
if lines:
parts.append("Recent exchanges at this station:\n" + "\n".join(lines))
except Exception:
pass
return " ".join(parts)
except Exception:
return ""
async def stream_response_gemini(query, history, game_context=None, mode: Optional[str] = None):
"""Stream response using Gemini API with a proper system_instruction."""
logger.info(f"Processing query with Gemini: {query}")
start_time = time.time()
first_token_logged = False
# 1) Build your system prompt once
current_date = datetime.now().strftime("%Y-%m-%d")
game_context_text = _format_game_context_for_prompt(game_context)
# Only enable game persona when explicitly requested via mode=='game'.
# Do NOT infer game mode from presence of game_context or memory alone.
is_game_mode = (mode == 'game')
if is_game_mode:
system_prompt = (
"You are Tim Luka Horstmann as a friendly in-game 'Station Guide'. "
"Stay in first person. The current station is the primary focus—treat it as 'now' even when revisiting. "
"Use the CV for personal facts, roles and dates; include 'Additional station notes' if present and relevant. "
"Keep answers concise (2–4 sentences). If off-topic, answer briefly, then gently steer back to the current station. "
"When revisiting a station, optionally acknowledge the revisit in one short clause. "
"End with a tiny hint or nudge (optional) about what to explore here or next. "
f"Today's date is {current_date}. CV: {full_cv_text}" + game_context_text
)
else:
system_prompt = (
"You are Tim Luka Horstmann, a Computer Scientist. "
"Respond as yourself in the first person with a warm, upbeat tone—feel free to be lighthearted, witty, and encouraging. "
"Rely on the CV and FAQs below for personal facts and never invent new personal details, achievements, or opinions that are not documented there. "
"You may comfortably discuss well-established general knowledge, your fields of interest, and everyday small talk, and you can acknowledge known facts about yourself such as living in Paris or working in AI. "
"When a user seeks private or highly specific personal information that is missing from the CV or FAQs, politely explain that you do not have more to share and try to keep the conversation engaging by offering related general insights or friendly banter. "
"Always remain kind, respectful, and helpful, and lean into genuinely helpful answers before declining. "
f"Today's date is {current_date}. CV: {full_cv_text}"
)
# 2) Build only user/model history as `contents`
contents = []
for msg in history:
# Ensure the role is compatible with Gemini API ('user' or 'model')
api_role = ""
if msg["role"] == "user":
api_role = "user"
elif msg["role"] == "assistant": # Map "assistant" from client to "model" for API
api_role = "model"
elif msg["role"] == "model": # Already correct
api_role = "model"
else:
# Log a warning or handle unrecognized roles as needed
logger.warning(f"Unrecognized role '{msg['role']}' in history. Skipping message.")
continue
contents.append(
types.Content(
role=api_role,
parts=[ types.Part.from_text(text=msg["content"]) ]
)
)
# finally append the new user question
contents.append(
types.Content(
role="user",
parts=[ types.Part.from_text(text=query) ]
)
)
# 3) Call Gemini with `system_instruction`
try:
response = gemini_client.models.generate_content_stream(
model=gemini_model,
contents=contents,
config=types.GenerateContentConfig(
system_instruction=system_prompt,
temperature=0.3,
top_p=0.7,
max_output_tokens=1024,
response_mime_type="text/plain",
)
)
for chunk in response:
if chunk.text:
if not first_token_logged:
logger.info(f"First token time (Gemini): {time.time() - start_time:.2f}s")
first_token_logged = True
yield f"data: {chunk.text}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logger.error(f"Gemini API error: {str(e)}")
yield f"data: Sorry, I encountered an error with Gemini API: {str(e)}\n\n"
yield "data: [DONE]\n\n"
async def stream_response_local(query, history, game_context=None, mode: Optional[str] = None):
"""Stream response using local model"""
logger.info(f"Processing query with local model: {query}")
start_time = time.time()
first_token_logged = False
current_date = datetime.now().strftime("%Y-%m-%d")
game_context_text = _format_game_context_for_prompt(game_context)
# Only enable game persona when explicitly requested via mode=='game'.
# Do NOT infer game mode from presence of game_context or memory alone.
is_game_mode = (mode == 'game')
if is_game_mode:
system_prompt = (
"/no_think You are Tim Luka Horstmann as a friendly in-game 'Station Guide'. "
"Stay in first person. The current station is the primary focus—treat it as 'now' even when revisiting. "
"Use the CV for personal facts, roles and dates; include 'Additional station notes' if present (do not ignore them). "
"Keep answers concise (2–4 sentences). If off-topic, answer briefly, then gently steer back to the current station. "
"When revisiting a station, optionally acknowledge the revisit in one short clause. "
"End with a tiny hint or nudge (optional) about what to explore here or next. "
f"Today's date is {current_date}. CV: {full_cv_text}" + game_context_text
)
else:
system_prompt = (
"/no_think You are Tim Luka Horstmann, a Computer Scientist. Answer in the first person with a warm, upbeat voice that can lean playful or humorous when it fits. "
"Use the CV and FAQs below as the authoritative source for personal facts and never fabricate additional personal details, stories, or opinions. "
"Feel free to chat about general knowledge, your interests, or universally known truths, and you may mention well-established facts about yourself such as being based in Paris or working in AI. "
"If someone requests private or highly specific personal information that is not covered by the CV or FAQs, explain politely that you do not have more to share, then keep the conversation inviting by offering related general insights or light banter. "
"Always stay kind, respectful, and genuinely helpful, prioritising helpful engagement before declining. "
f"Today's date is {current_date}. CV: {full_cv_text}"
)
if not isinstance(system_prompt, str):
system_prompt = str(system_prompt)
logger.info(f"System prompt type: {type(system_prompt)}, length: {len(system_prompt)}")
messages = [{"role": "system", "content": system_prompt}] + history + [{"role": "user", "content": "/no_think" + query}]
try:
system_tokens = len(generator.tokenize(system_prompt.encode('utf-8'), add_bos=True, special=True))
query_tokens = len(generator.tokenize(query.encode('utf-8'), add_bos=False, special=True))
history_tokens = [len(generator.tokenize(msg["content"].encode('utf-8'), add_bos=False, special=True)) for msg in history]
except Exception as e:
logger.error(f"Tokenization error: {str(e)}")
yield f"data: Sorry, I encountered a tokenization error: {str(e)}\n\n"
yield "data: [DONE]\n\n"
return
total_tokens = system_tokens + query_tokens + sum(history_tokens) + len(history) * 10 + 10
max_allowed_tokens = generator.n_ctx() - 512 - 100
while total_tokens > max_allowed_tokens and history:
removed_msg = history.pop(0)
removed_tokens = len(generator.tokenize(removed_msg["content"].encode('utf-8'), add_bos=False, special=True))
total_tokens -= (removed_tokens + 10)
messages = [{"role": "system", "content": system_prompt}] + history + [{"role": "user", "content": query}]
async with model_lock:
try:
for chunk in generator.create_chat_completion(
messages=messages,
max_tokens=512,
stream=True,
temperature=0.3,
top_p=0.7,
repeat_penalty=1.2
):
token = chunk['choices'][0]['delta'].get('content', '')
if token:
if not first_token_logged:
logger.info(f"First token time (local): {time.time() - start_time:.2f}s")
first_token_logged = True
yield f"data: {token}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logger.error(f"Generation error: {str(e)}")
yield f"data: Sorry, I encountered an error during generation: {str(e)}\n\n"
yield "data: [DONE]\n\n"
class QueryRequest(BaseModel):
query: str
history: list
game_context: Optional[Union[str, Dict[str, Any]]] = None
mode: Optional[str] = None
game_memory: Optional[Dict[str, Any]] = None
class TTSRequest(BaseModel):
text: str
# RAM Usage Tracking Function
def get_ram_usage():
memory = psutil.virtual_memory()
total_ram = memory.total / (1024 ** 3) # Convert to GB
used_ram = memory.used / (1024 ** 3) # Convert to GB
free_ram = memory.available / (1024 ** 3) # Convert to GB
percent_used = memory.percent
return {
"total_ram_gb": round(total_ram, 2),
"used_ram_gb": round(used_ram, 2),
"free_ram_gb": round(free_ram, 2),
"percent_used": percent_used
}
@app.post("/api/predict")
@limiter.limit("5/minute") # Allow 5 chat requests per minute per IP
async def predict(request: Request, query_request: QueryRequest):
query = query_request.query
history = query_request.history
game_context = query_request.game_context
mode = (query_request.mode or '').lower() or None
# Attach optional game_memory only when in explicit game mode
if (mode == 'game') and (query_request.game_memory is not None):
if isinstance(game_context, dict):
game_context = dict(game_context)
game_context['__memory'] = query_request.game_memory
else:
game_context = { 'context': game_context, '__memory': query_request.game_memory }
return StreamingResponse(stream_response(query, history, game_context, mode), media_type="text/event-stream")
@app.post("/api/tts")
@limiter.limit("5/minute") # Allow 5 TTS requests per minute per IP
async def text_to_speech(request: Request, tts_request: TTSRequest):
"""Convert text to speech using ElevenLabs or Gemini API"""
# Clean the text for TTS (remove markdown and special characters)
clean_text = tts_request.text.replace("**", "").replace("*", "").replace("\n", " ").strip()
if not clean_text:
raise HTTPException(status_code=400, detail="No text provided for TTS")
if len(clean_text) > 1000: # Limit text length to avoid long processing times
clean_text = clean_text[:1000] + "..."
if tts_provider == "gemini":
if not gemini_client:
raise HTTPException(status_code=503, detail="Gemini TTS service not available (API key missing)")
try:
response = gemini_client.models.generate_content(
model=gemini_tts_model,
contents=clean_text,
config=types.GenerateContentConfig(
response_modalities=["AUDIO"],
speech_config=types.SpeechConfig(
voice_config=types.VoiceConfig(
prebuilt_voice_config=types.PrebuiltVoiceConfig(
voice_name=gemini_tts_voice,
)
)
),
)
)
# Get raw PCM data
pcm_data = response.candidates[0].content.parts[0].inline_data.data
# Convert PCM to WAV
wav_buffer = io.BytesIO()
with wave.open(wav_buffer, "wb") as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(24000)
wf.writeframes(pcm_data)
audio_bytes = wav_buffer.getvalue()
return Response(
content=audio_bytes,
media_type="audio/wav",
headers={
"Content-Disposition": "inline; filename=tts_audio.wav",
"Cache-Control": "no-cache"
}
)
except Exception as e:
logger.error(f"Gemini TTS error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Gemini TTS conversion failed: {str(e)}")
else:
if not elevenlabs_client:
raise HTTPException(status_code=503, detail="TTS service not available")
try:
# Generate speech
response = elevenlabs_client.text_to_speech.convert(
voice_id=tts_voice_id,
model_id="eleven_flash_v2_5",
text=clean_text,
voice_settings=VoiceSettings(
stability=0.7, # More stability = less variability; best: 0.7–0.85
similarity_boost=0.9, # Boost similarity to original voice
style=0.2, # Keep subtle emotion; increase for expressive output
use_speaker_boost=True # Helps preserve speaker identity better
)
)
# Convert generator to bytes
audio_bytes = b"".join(response)
return Response(
content=audio_bytes,
media_type="audio/mpeg",
headers={
"Content-Disposition": "inline; filename=tts_audio.mp3",
"Cache-Control": "no-cache"
}
)
except Exception as e:
logger.error(f"TTS error: {str(e)}")
raise HTTPException(status_code=500, detail=f"TTS conversion failed: {str(e)}")
@app.get("/health")
@limiter.limit("30/minute") # Allow frequent health checks
async def health_check(request: Request):
return {"status": "healthy"}
@app.get("/model_info")
@limiter.limit("10/minute") # Limit model info requests
async def model_info(request: Request):
base_info = {
"embedding_model": sentence_transformer_model,
"faiss_index_size": len(cv_chunks),
"faiss_index_dim": cv_embeddings.shape[1],
"tts_available": elevenlabs_client is not None,
}
if USE_GEMINI:
base_info.update({
"model_type": "gemini",
"model_name": gemini_model,
"provider": "Google Gemini API",
})
else:
base_info.update({
"model_type": "local",
"model_name": filename,
"repo_id": repo_id,
"model_size": "1.7B",
"quantization": "Q4_K_M",
})
return base_info
@app.get("/ram_usage")
@limiter.limit("20/minute") # Allow moderate monitoring requests
async def ram_usage(request: Request):
"""Endpoint to get current RAM usage."""
try:
ram_stats = get_ram_usage()
return ram_stats
except Exception as e:
logger.error(f"Error retrieving RAM usage: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error retrieving RAM usage: {str(e)}")
# @app.on_event("startup")
# async def warm_up_model():
# logger.info("Warming up the model...")
# dummy_query = "Hello"
# dummy_history = []
# async for _ in stream_response(dummy_query, dummy_history):
# pass
# logger.info("Model warm-up completed.")
# # Log initial RAM usage
# ram_stats = get_ram_usage()
# logger.info(f"Initial RAM usage after startup: {ram_stats}")
# Add a background task to keep the model warm
@app.on_event("startup")
async def setup_periodic_tasks():
if not USE_GEMINI: # Only warm up local models
asyncio.create_task(keep_model_warm())
logger.info("Periodic model warm-up task scheduled for local model")
else:
logger.info("Gemini API in use - no warm-up needed")
async def keep_model_warm():
"""Background task that keeps the local model warm by sending periodic requests"""
while True:
try:
logger.info("Performing periodic local model warm-up")
dummy_query = "Say only the word 'ok.'"
dummy_history = []
# Process a dummy query through the generator to keep it warm
async for _ in stream_response(dummy_query, dummy_history):
pass
logger.info("Periodic warm-up completed")
except Exception as e:
logger.error(f"Error in periodic warm-up: {str(e)}")
# Wait for 13 minutes before the next warm-up
await asyncio.sleep(13 * 60)