Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,16 +10,13 @@ import xml.etree.ElementTree as ET
|
|
| 10 |
|
| 11 |
# Constants
|
| 12 |
CHUNK_SIZE = 32000
|
| 13 |
-
|
| 14 |
-
You are a helpful and informative assistant that can answer questions based on the content of documents.
|
| 15 |
-
You will receive the content of a document and a question about it.
|
| 16 |
-
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
|
| 17 |
-
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
|
| 18 |
-
"""
|
| 19 |
|
| 20 |
# Initialize the Mistral chat model
|
| 21 |
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
|
| 22 |
|
|
|
|
|
|
|
| 23 |
def xml2text(xml):
|
| 24 |
"""Extracts text from XML data."""
|
| 25 |
text = u''
|
|
@@ -28,37 +25,54 @@ def xml2text(xml):
|
|
| 28 |
text += child.text + " " if child.text is not None else ''
|
| 29 |
return text
|
| 30 |
|
| 31 |
-
def
|
| 32 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
text = u''
|
| 34 |
zipf = zipfile.ZipFile(io.BytesIO(docx_data))
|
|
|
|
| 35 |
filelist = zipf.namelist()
|
| 36 |
|
|
|
|
| 37 |
for fname in filelist:
|
| 38 |
-
if re.match(
|
| 39 |
-
text += xml2text(zipf.read(fname))
|
| 40 |
-
elif re.match('word/footer[0-9]*.xml', fname):
|
| 41 |
text += xml2text(zipf.read(fname))
|
| 42 |
-
|
| 43 |
-
text += xml2text(zipf.read('word/document.xml'))
|
| 44 |
-
zipf.close()
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
def strip_text(text):
|
| 53 |
-
"""Strips unnecessary characters from text."""
|
| 54 |
-
content = text.replace('\n', ' ')
|
| 55 |
-
content = content.replace('\r', ' ')
|
| 56 |
-
content = content.replace('\t', ' ')
|
| 57 |
-
content = content.replace(' ', '')
|
| 58 |
-
return content.strip()
|
| 59 |
|
| 60 |
-
def read_document(file,
|
| 61 |
-
"""Reads
|
| 62 |
file_path = file.name
|
| 63 |
file_extension = file_path.split('.')[-1].lower()
|
| 64 |
|
|
@@ -71,11 +85,11 @@ def read_document(file, strip_content):
|
|
| 71 |
content = ''
|
| 72 |
for page in range(len(pdf_reader.pages)):
|
| 73 |
content += pdf_reader.pages[page].extract_text()
|
| 74 |
-
if
|
| 75 |
-
content =
|
| 76 |
-
return content
|
| 77 |
except Exception as e:
|
| 78 |
-
return f"Error reading PDF: {e}"
|
| 79 |
|
| 80 |
elif file_extension == 'xlsx':
|
| 81 |
try:
|
|
@@ -84,13 +98,13 @@ def read_document(file, strip_content):
|
|
| 84 |
for sheet in wb.worksheets:
|
| 85 |
for row in sheet.rows:
|
| 86 |
for cell in row:
|
| 87 |
-
if cell.value is not None:
|
| 88 |
content += str(cell.value) + ' '
|
| 89 |
-
if
|
| 90 |
-
content =
|
| 91 |
-
return content
|
| 92 |
except Exception as e:
|
| 93 |
-
return f"Error reading XLSX: {e}"
|
| 94 |
|
| 95 |
elif file_extension == 'pptx':
|
| 96 |
try:
|
|
@@ -100,74 +114,90 @@ def read_document(file, strip_content):
|
|
| 100 |
for shape in slide.shapes:
|
| 101 |
if hasattr(shape, "text"):
|
| 102 |
content += shape.text + ' '
|
| 103 |
-
if
|
| 104 |
-
content =
|
| 105 |
-
return content
|
| 106 |
except Exception as e:
|
| 107 |
-
return f"Error reading PPTX: {e}"
|
| 108 |
|
| 109 |
elif file_extension == 'doc' or file_extension == 'docx':
|
| 110 |
try:
|
| 111 |
-
return extract_text_from_docx(file_content,
|
| 112 |
except Exception as e:
|
| 113 |
-
return f"Error reading DOC/DOCX: {e}"
|
| 114 |
|
| 115 |
else:
|
| 116 |
try:
|
| 117 |
-
content = file_content.decode('utf-8')
|
| 118 |
-
if
|
| 119 |
-
content =
|
| 120 |
-
return content
|
| 121 |
except Exception as e:
|
| 122 |
-
return f"Error reading file: {e}"
|
| 123 |
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
-
def chat_document(file, question,
|
| 134 |
-
"""
|
| 135 |
-
content =
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
message = f"""[INST] [SYSTEM] {
|
| 141 |
Document Content: {content}
|
| 142 |
Question: {question}
|
| 143 |
Answer:"""
|
| 144 |
|
| 145 |
-
|
| 146 |
-
output = ""
|
| 147 |
-
for response in stream:
|
| 148 |
-
if not response.token.text == "</s>":
|
| 149 |
-
output += response.token.text
|
| 150 |
-
yield output
|
| 151 |
|
| 152 |
|
| 153 |
-
def chat_document_v2(file, question,
|
| 154 |
-
"""
|
| 155 |
-
content =
|
| 156 |
chunks = split_content(content)
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
all_answers = []
|
| 159 |
for chunk in chunks:
|
| 160 |
-
message = f"""[INST] [SYSTEM] {
|
| 161 |
-
Document Content: {chunk[:CHUNK_SIZE]}
|
| 162 |
Question: {question}
|
| 163 |
Answer:"""
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
output += response.token.text
|
| 170 |
-
all_answers.append(output)
|
| 171 |
|
| 172 |
# Summarize all answers using Mistral
|
| 173 |
summary_prompt = """
|
|
@@ -177,45 +207,56 @@ def chat_document_v2(file, question, strip_content):
|
|
| 177 |
|
| 178 |
Answers:
|
| 179 |
"""
|
| 180 |
-
|
| 181 |
all_answers_str = "\n".join(all_answers)
|
| 182 |
-
print(all_answers_str)
|
| 183 |
summary_message = f"""[INST] [SYSTEM] {summary_prompt}
|
| 184 |
-
{all_answers_str[:30000]}
|
| 185 |
Summary:"""
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
output += response.token.text
|
| 192 |
-
yield output
|
| 193 |
|
| 194 |
with gr.Blocks() as demo:
|
| 195 |
with gr.Tabs():
|
| 196 |
with gr.TabItem("Document Reader"):
|
| 197 |
iface1 = gr.Interface(
|
| 198 |
fn=read_document,
|
| 199 |
-
inputs=[
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
title="Document Reader",
|
| 202 |
description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
|
| 203 |
)
|
| 204 |
with gr.TabItem("Document Chat"):
|
| 205 |
iface2 = gr.Interface(
|
| 206 |
fn=chat_document,
|
| 207 |
-
inputs=[
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
title="Document Chat",
|
| 210 |
description="Upload a document and ask questions about its content."
|
| 211 |
)
|
| 212 |
with gr.TabItem("Document Chat V2"):
|
| 213 |
iface3 = gr.Interface(
|
| 214 |
fn=chat_document_v2,
|
| 215 |
-
inputs=[
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
title="Document Chat V2",
|
| 218 |
description="Upload a document and ask questions about its content (using chunk-based approach)."
|
| 219 |
)
|
| 220 |
|
| 221 |
-
demo.launch()
|
|
|
|
| 10 |
|
| 11 |
# Constants
|
| 12 |
CHUNK_SIZE = 32000
|
| 13 |
+
MAX_NEW_TOKENS = 4096
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Initialize the Mistral chat model
|
| 16 |
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
|
| 17 |
|
| 18 |
+
# --- Utility Functions ---
|
| 19 |
+
|
| 20 |
def xml2text(xml):
|
| 21 |
"""Extracts text from XML data."""
|
| 22 |
text = u''
|
|
|
|
| 25 |
text += child.text + " " if child.text is not None else ''
|
| 26 |
return text
|
| 27 |
|
| 28 |
+
def clean_text(content):
|
| 29 |
+
"""Cleans text content based on the 'clean' parameter."""
|
| 30 |
+
if clean:
|
| 31 |
+
content = content.replace('\n', ' ')
|
| 32 |
+
content = content.replace('\r', ' ')
|
| 33 |
+
content = content.replace('\t', ' ')
|
| 34 |
+
content = content.replace(' ', ' ') # Replace double spaces with single
|
| 35 |
+
content = content.strip()
|
| 36 |
+
return content
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def split_content(content, chunk_size=CHUNK_SIZE):
|
| 40 |
+
"""Splits content into chunks of a specified size."""
|
| 41 |
+
chunks = []
|
| 42 |
+
for i in range(0, len(content), chunk_size):
|
| 43 |
+
chunks.append(content[i:i + chunk_size])
|
| 44 |
+
return chunks
|
| 45 |
+
|
| 46 |
+
# --- Document Reading Functions ---
|
| 47 |
+
|
| 48 |
+
def extract_text_from_docx(docx_data, clean=True):
|
| 49 |
+
"""Extracts text from DOCX files."""
|
| 50 |
text = u''
|
| 51 |
zipf = zipfile.ZipFile(io.BytesIO(docx_data))
|
| 52 |
+
|
| 53 |
filelist = zipf.namelist()
|
| 54 |
|
| 55 |
+
header_xmls = 'word/header[0-9]*.xml'
|
| 56 |
for fname in filelist:
|
| 57 |
+
if re.match(header_xmls, fname):
|
|
|
|
|
|
|
| 58 |
text += xml2text(zipf.read(fname))
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
doc_xml = 'word/document.xml'
|
| 61 |
+
text += xml2text(zipf.read(doc_xml))
|
| 62 |
+
|
| 63 |
+
footer_xmls = 'word/footer[0-9]*.xml'
|
| 64 |
+
for fname in filelist:
|
| 65 |
+
if re.match(footer_xmls, fname):
|
| 66 |
+
text += xml2text(zipf.read(fname))
|
| 67 |
|
| 68 |
+
zipf.close()
|
| 69 |
+
if clean
|
| 70 |
+
text = clean_text(text)
|
| 71 |
+
return text, len(text)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
def read_document(file, clean=True):
|
| 75 |
+
"""Reads content from various document formats."""
|
| 76 |
file_path = file.name
|
| 77 |
file_extension = file_path.split('.')[-1].lower()
|
| 78 |
|
|
|
|
| 85 |
content = ''
|
| 86 |
for page in range(len(pdf_reader.pages)):
|
| 87 |
content += pdf_reader.pages[page].extract_text()
|
| 88 |
+
if clean:
|
| 89 |
+
content = clean_text(content)
|
| 90 |
+
return content, len(content)
|
| 91 |
except Exception as e:
|
| 92 |
+
return f"Error reading PDF: {e}", 0
|
| 93 |
|
| 94 |
elif file_extension == 'xlsx':
|
| 95 |
try:
|
|
|
|
| 98 |
for sheet in wb.worksheets:
|
| 99 |
for row in sheet.rows:
|
| 100 |
for cell in row:
|
| 101 |
+
if cell.value is not None:
|
| 102 |
content += str(cell.value) + ' '
|
| 103 |
+
if clean
|
| 104 |
+
content = clean_text(content)
|
| 105 |
+
return content, len(content)
|
| 106 |
except Exception as e:
|
| 107 |
+
return f"Error reading XLSX: {e}", 0
|
| 108 |
|
| 109 |
elif file_extension == 'pptx':
|
| 110 |
try:
|
|
|
|
| 114 |
for shape in slide.shapes:
|
| 115 |
if hasattr(shape, "text"):
|
| 116 |
content += shape.text + ' '
|
| 117 |
+
if clean:
|
| 118 |
+
content = clean_text(content)
|
| 119 |
+
return content, len(content)
|
| 120 |
except Exception as e:
|
| 121 |
+
return f"Error reading PPTX: {e}", 0
|
| 122 |
|
| 123 |
elif file_extension == 'doc' or file_extension == 'docx':
|
| 124 |
try:
|
| 125 |
+
return extract_text_from_docx(file_content, clean)
|
| 126 |
except Exception as e:
|
| 127 |
+
return f"Error reading DOC/DOCX: {e}", 0
|
| 128 |
|
| 129 |
else:
|
| 130 |
try:
|
| 131 |
+
content = file_content.decode('utf-8')
|
| 132 |
+
if clean:
|
| 133 |
+
content = clean_text(content)
|
| 134 |
+
return content, len(content)
|
| 135 |
except Exception as e:
|
| 136 |
+
return f"Error reading file: {e}", 0
|
| 137 |
|
| 138 |
|
| 139 |
+
# --- Chat Functions ---
|
| 140 |
+
|
| 141 |
+
def generate_mistral_response(message):
|
| 142 |
+
"""Generates a response from the Mistral API."""
|
| 143 |
+
stream = client.text_generation(
|
| 144 |
+
message,
|
| 145 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 146 |
+
stream=True,
|
| 147 |
+
details=True,
|
| 148 |
+
return_full_text=False
|
| 149 |
+
)
|
| 150 |
+
output = ""
|
| 151 |
+
for response in stream:
|
| 152 |
+
if not response.token.text == "</s>":
|
| 153 |
+
output += response.token.text
|
| 154 |
+
yield output
|
| 155 |
|
| 156 |
|
| 157 |
+
def chat_document(file, question, clean=True):
|
| 158 |
+
"""Chats with a document using a single Mistral API call."""
|
| 159 |
+
content, length = read_document(file, clean)
|
| 160 |
+
if length > CHUNK_SIZE:
|
| 161 |
+
content = content[:CHUNK_SIZE] # Limit to max chunk size
|
| 162 |
|
| 163 |
+
system_prompt = """
|
| 164 |
+
You are a helpful and informative assistant that can answer questions based on the content of documents.
|
| 165 |
+
You will receive the content of a document and a question about it.
|
| 166 |
+
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
|
| 167 |
+
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
|
| 168 |
+
"""
|
| 169 |
|
| 170 |
+
message = f"""[INST] [SYSTEM] {system_prompt}
|
| 171 |
Document Content: {content}
|
| 172 |
Question: {question}
|
| 173 |
Answer:"""
|
| 174 |
|
| 175 |
+
yield from generate_mistral_response(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
+
def chat_document_v2(file, question, clean=True):
|
| 179 |
+
"""Chats with a document using chunk-based Mistral API calls and summarizes the answers."""
|
| 180 |
+
content, length = read_document(file, clean)
|
| 181 |
chunks = split_content(content)
|
| 182 |
+
|
| 183 |
+
system_prompt = """
|
| 184 |
+
You are a helpful and informative assistant that can answer questions based on the content of documents.
|
| 185 |
+
You will receive the content of a document and a question about it.
|
| 186 |
+
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
|
| 187 |
+
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
|
| 188 |
+
"""
|
| 189 |
+
|
| 190 |
all_answers = []
|
| 191 |
for chunk in chunks:
|
| 192 |
+
message = f"""[INST] [SYSTEM] {system_prompt}
|
| 193 |
+
Document Content: {chunk[:CHUNK_SIZE]}
|
| 194 |
Question: {question}
|
| 195 |
Answer:"""
|
| 196 |
|
| 197 |
+
response = ""
|
| 198 |
+
for stream_response in generate_mistral_response(message):
|
| 199 |
+
response = stream_response # Update with latest response
|
| 200 |
+
all_answers.append(response)
|
|
|
|
|
|
|
| 201 |
|
| 202 |
# Summarize all answers using Mistral
|
| 203 |
summary_prompt = """
|
|
|
|
| 207 |
|
| 208 |
Answers:
|
| 209 |
"""
|
| 210 |
+
|
| 211 |
all_answers_str = "\n".join(all_answers)
|
|
|
|
| 212 |
summary_message = f"""[INST] [SYSTEM] {summary_prompt}
|
| 213 |
+
{all_answers_str[:30000]}
|
| 214 |
Summary:"""
|
| 215 |
+
|
| 216 |
+
yield from generate_mistral_response(summary_message)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
# --- Gradio Interface ---
|
|
|
|
|
|
|
| 220 |
|
| 221 |
with gr.Blocks() as demo:
|
| 222 |
with gr.Tabs():
|
| 223 |
with gr.TabItem("Document Reader"):
|
| 224 |
iface1 = gr.Interface(
|
| 225 |
fn=read_document,
|
| 226 |
+
inputs=[
|
| 227 |
+
gr.File(label="Upload a Document"),
|
| 228 |
+
gr.Checkbox(label="Clean Text", value=True),
|
| 229 |
+
],
|
| 230 |
+
outputs=[
|
| 231 |
+
gr.Textbox(label="Document Content"),
|
| 232 |
+
gr.Number(label="Document Length (characters)"),
|
| 233 |
+
],
|
| 234 |
title="Document Reader",
|
| 235 |
description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
|
| 236 |
)
|
| 237 |
with gr.TabItem("Document Chat"):
|
| 238 |
iface2 = gr.Interface(
|
| 239 |
fn=chat_document,
|
| 240 |
+
inputs=[
|
| 241 |
+
gr.File(label="Upload a Document"),
|
| 242 |
+
gr.Textbox(label="Question"),
|
| 243 |
+
gr.Checkbox(label="Clean and Compress Text", value=True),
|
| 244 |
+
],
|
| 245 |
+
outputs=gr.Markdown(label="Answer"),
|
| 246 |
title="Document Chat",
|
| 247 |
description="Upload a document and ask questions about its content."
|
| 248 |
)
|
| 249 |
with gr.TabItem("Document Chat V2"):
|
| 250 |
iface3 = gr.Interface(
|
| 251 |
fn=chat_document_v2,
|
| 252 |
+
inputs=[
|
| 253 |
+
gr.File(label="Upload a Document"),
|
| 254 |
+
gr.Textbox(label="Question"),
|
| 255 |
+
gr.Checkbox(label="Clean Text", value=True),
|
| 256 |
+
],
|
| 257 |
+
outputs=gr.Markdown(label="Answer"),
|
| 258 |
title="Document Chat V2",
|
| 259 |
description="Upload a document and ask questions about its content (using chunk-based approach)."
|
| 260 |
)
|
| 261 |
|
| 262 |
+
demo.launch()
|