File size: 9,670 Bytes
fc0ff8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Code adapted from https://github.com/ylaxor/clip-like/blob/main/fine-tune-clip.ipynb

from random import seed, shuffle
from typing import Callable
import torch
from tqdm import tqdm
from transformers import CLIPProcessor, CLIPModel
from timm.scheduler import CosineLRScheduler



class ModelTrainer:

    def __init__(self,
                 model: Callable,
                 processor: Callable,
                 data_name: str,
                 train_data_loader: torch.utils.data.DataLoader,
                 val_data_loader: torch.utils.data.DataLoader,
                 num_epochs: int,
                 learning_rate: float = 5e-5,
                 weight_decay: float = 1e-3,
                 device: str = "cuda:0",
                 save_model: bool = False,
                 save_model_path: str = "./fine_tuned_clip_models",
                 data_seed: int = 42,
                 method="COCO_CF",
    ) -> None:

        self.model = model
        self.processor = processor
        self.data_name = data_name
        self.train_data_loader = train_data_loader
        self.val_data_loader = val_data_loader
        self.num_epochs = num_epochs
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.device = device
        self.save_model = save_model
        self.save_model_path = save_model_path
        self.data_seed = data_seed
        self.method = method

        self.optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=self.learning_rate,
            weight_decay=self.weight_decay
        )


    def train(self):
        self.model.train()
        lr_scheduler = CosineLRScheduler(
            self.optimizer,
            t_initial=self.num_epochs * len(self.train_data_loader),
            lr_min=2e-7,
            warmup_lr_init=1e-7,
            warmup_prefix=True,
            warmup_t=3,
            cycle_limit=1,
            t_in_epochs=False,
        )
        progress_bar = tqdm(range(self.num_epochs))
        for epoch in progress_bar:
            running_loss = 0.0
            for batch_idx, batch in enumerate(self.train_data_loader):
                self.optimizer.zero_grad()
                processed_input = self.processor(text=batch["caption"],
                                                 images=batch["image"],
                                                 return_tensors="pt",
                                                 padding=True,
                                                 max_length=128,
                                                 truncation=True
                )
                outputs = self.model(input_ids=processed_input['input_ids'].squeeze().to(self.device),
                                     pixel_values=processed_input['pixel_values'].squeeze().to(self.device),
                                     attention_mask=processed_input['attention_mask'].squeeze().to(self.device),
                                     return_loss=True
                )
                loss = outputs.loss
                loss.backward()
                running_loss += loss.item() * len(batch["caption"])
                self.optimizer.step()
                lr_scheduler.step_update(batch_idx + epoch * len(self.train_data_loader))

            print(f"Epoch {epoch+1}/{self.num_epochs} Loss: {running_loss/len(self.train_data_loader.dataset):.4f}")
            progress_bar.set_postfix(
                epoch="{}/{}".format(epoch+1,self.num_epochs),
                loss=running_loss/len(self.train_data_loader.dataset),
                lr=self.optimizer.param_groups[0]["lr"]
            )

        if self.save_model:
            if self.data_name not in ['MS_COCO','all']:
                torch.save(self.model.state_dict(), self.save_model_path + f'clip_model_dataset_{self.data_name}_method_{self.method}_num_epochs_{self.num_epochs}_data_seed_{self.data_seed}.pt')
                print(f"Saving fine-tuned model as clip_model_dataset_{self.data_name}_method_{self.method}_num_epochs_{self.num_epochs}_data_seed_{self.data_seed}.pt")
            else:
                torch.save(self.model.state_dict(), self.save_model_path + f'clip_model_dataset_{self.data_name}_method_{self.method}_num_epochs_{self.num_epochs}.pt')
                print(f"Saving fine-tuned model as clip_model_dataset_{self.data_name}_method_{self.method}_num_epochs_{self.num_epochs}.pt")

    def eval(self):
        self.model.eval()
        nb_batches = len(self.val_data_loader)
        tqdm_object = tqdm(self.val_data_loader, total=len(self.val_data_loader))
        epoch_loss = 0.0
        for i, batch in enumerate(tqdm_object):
            processed_input = self.processor(text=batch["caption"],
                                                 images=batch["image"],
                                                 return_tensors="pt",
                                                 padding=True,
                                                 max_length=128,
                                                 truncation=True
                )
            outputs = self.model(
                input_ids=processed_input['input_ids'].squeeze().to(self.device),
                attention_mask=processed_input['attention_mask'].squeeze().to(self.device),
                pixel_values=processed_input['pixel_values'].squeeze().to(self.device),
                return_loss=True)
            loss, logits_per_image = outputs.loss, outputs.logits_per_image
            epoch_loss += loss.item()
            tqdm_object.set_postfix(
                batch="{}/{}".format(i+1,nb_batches),
                dev_loss=loss.item(),
                )
        epoch_loss = epoch_loss / nb_batches
        print(f"Eval loss: {epoch_loss}")

def main():
    import os
    #os.environ['HF_HOME'] = ''    Add path for saved hugging face models

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_epochs', type=int, default=20)
    parser.add_argument('--data_name', type=str, default="MS_COCO", choices=["MS_COCO","base","medium","all"])
    parser.add_argument('--learning_rate', type=float, default=1e-5)
    parser.add_argument('--batch_size', type=int, default=32)
    parser.add_argument('--save_model', action='store_true', default=False)
    parser.add_argument('--method', type=str, choices=['COCO_CF','APGD_1','APGD_4','NONE'])
    parser.add_argument('--save_model_path', type=str, default="./fine_tuned_clip_models")
    parser.add_argument(
        "--data_seeds",
        nargs="+",
        type=int,
        default=[107],
        help="Seeds to use for each trial for picking demonstrations and eval sets",
    )
    args = parser.parse_args()
    if args.data_name == 'MS_COCO':
        assert args.data_name == 'MS_COCO' and args.method == 'NONE', "Only NONE method is allowed with MS_COCO dataset"

    from torch.utils.data import DataLoader
    from coco_cf_loader import MS_COCO_dataset, custom_collate_fn

    torch.manual_seed(42)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")


    for data_seed in args.data_seeds:

        if args.data_name not in ['MS_COCO', 'all']:
            print(f"Data Seed: {data_seed} | Data Name: {args.data_name} | Method: {args.method}")
            dataset = MS_COCO_dataset(base_dir=f'./clip_train_datasets/MS_COCO_{args.method}',
                                      annotation_file=f'/json_files/data_name_{args.data_name}_data_seed_{data_seed}.json')
        elif args.data_name == 'all':
            print(f"Data Name: {args.data_name} | Method: {args.method}")
            dataset = MS_COCO_dataset(base_dir=f'./clip_train_datasets/MS_COCO_{args.method}',
                                      annotation_file=f'/json_files/data_name_{args.data_name}.json')
        else:
            print(f"Data Name: {args.data_name} | Method: {args.method}")
            dataset = MS_COCO_dataset(base_dir=f'./clip_train_datasets/MS_COCO',
                                      annotation_file=f'/ms_coco_captions.json')

        train_size = int(0.8 * len(dataset))  # 80% for training
        val_size = len(dataset) - train_size   # 20% for validation

        # Randomly split into training and validation datasets
        train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])

        # Optional: Create DataLoaders for each subset
        train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=custom_collate_fn)
        val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False, collate_fn=custom_collate_fn,drop_last=True)

        trainer = ModelTrainer(model=model,
                            processor=processor,
                            data_name=args.data_name,
                            train_data_loader=train_loader,
                            val_data_loader=val_loader,
                            num_epochs=args.num_epochs,
                            learning_rate=args.learning_rate,
                            weight_decay=1e-3,
                            device=device,
                            data_seed=data_seed,
                            save_model=args.save_model,
                            save_model_path=args.save_model_path,
                            method=args.method,
        )

        trainer.train()
        trainer.eval()
        if args.data_name in ['MS_COCO','all']:
            break


if __name__ == "__main__":
    main()