File size: 16,839 Bytes
fc0ff8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import torch
from einops import rearrange
from torch import nn
from .helpers import PerceiverResampler
from torch.distributed.fsdp.wrap import (
    enable_wrap,
    wrap,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.distributed.fsdp import (
    FullyShardedDataParallel as FSDP,
)

from .utils import apply_with_stopping_condition


class Flamingo(nn.Module):
    def __init__(
        self,
        vision_encoder: nn.Module,
        lang_encoder: nn.Module,
        eoc_token_id: int,
        media_token_id: int,
        vis_dim: int,
        cross_attn_every_n_layers: int = 1,
        gradient_checkpointing: bool = False,
        compute_all_grads: bool = False,
    ):
        """
        Args:
            vision_encoder (nn.Module): HF CLIPModel
            lang_encoder (nn.Module): HF causal language model
            eoc_token_id (int): Token id for <|endofchunk|>
            media_token_id (int): Token id for <image>
            vis_dim (int): Dimension of the visual features.
                Visual features are projected to match this shape along the last dimension.
            cross_attn_every_n_layers (int, optional): How often to apply cross attention after transformer layer. Defaults to 1.
        """
        super().__init__()
        self.eoc_token_id = eoc_token_id
        self.media_token_id = media_token_id
        self.vis_dim = vis_dim
        if hasattr(lang_encoder.config, "d_model"):
            self.lang_dim = lang_encoder.config.d_model  # mpt uses d_model
        else:
            self.lang_dim = lang_encoder.config.hidden_size

        self.vision_encoder = vision_encoder.visual
        self.perceiver = PerceiverResampler(dim=self.vis_dim)
        self.lang_encoder = lang_encoder
        self.lang_encoder.init_flamingo(
            media_token_id=media_token_id,
            lang_hidden_size=self.lang_dim,
            vis_hidden_size=self.vis_dim,
            cross_attn_every_n_layers=cross_attn_every_n_layers,
            gradient_checkpointing=gradient_checkpointing,
        )
        self._use_gradient_checkpointing = gradient_checkpointing
        self.perceiver._use_gradient_checkpointing = gradient_checkpointing
        self.compute_all_grads = compute_all_grads

    def forward(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        labels: torch.Tensor = None,
        clear_conditioned_layers: bool = True,
        past_key_values=None,
        use_cache: bool = False,
    ):
        """
        Forward pass of Flamingo.

        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W) with F=1
            lang_x (torch.Tensor): Language input ids
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            labels (torch.Tensor, optional): Labels. Defaults to None.
            clear_conditioned_layers: if True, clear the conditioned layers
                once the foward pass is completed. Set this to false if the
                same set of images will be reused in another subsequent
                forward pass.
            past_key_values: pre-computed values to pass to language model.
                See past_key_values documentation in Hugging Face
                CausalLM models.
            use_cache: whether to use cached key values. See use_cache
                documentation in Hugging Face CausalLM models.
        """
        assert (
            self.lang_encoder.initialized_flamingo
        ), "Flamingo layers are not initialized. Please call `init_flamingo` first."

        assert (
            self.lang_encoder._use_cached_vision_x or vision_x is not None
        ), "Must provide either vision_x or have precached media using cache_media()."

        if self.lang_encoder._use_cached_vision_x:
            # Case: use cached; vision_x should be cached and other
            # vision-related inputs should not be provided.
            assert (
                vision_x is None
            ), "Expect vision_x to be None when media has been cached using cache_media(). Try uncache_media() first."
            assert self.lang_encoder.is_conditioned()

        else:
            # Case: do not use caching (i.e. this is a standard forward pass);
            self._encode_vision_x(vision_x=vision_x)
            self._condition_media_locations(input_ids=lang_x)

        output = self.lang_encoder(
            input_ids=lang_x,
            attention_mask=attention_mask,
            labels=labels,
            past_key_values=past_key_values,
            use_cache=use_cache,
        )

        if clear_conditioned_layers:
            self.lang_encoder.clear_conditioned_layers()

        return output

    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        num_beams=1,
        min_new_tokens=None,
        max_new_tokens=None,
        temperature=1.0,
        top_k=0,
        top_p=1.0,
        no_repeat_ngram_size=0,
        repetition_penalty=1.0,
        prefix_allowed_tokens_fn=None,
        length_penalty=1.0,
        num_return_sequences=1,
        do_sample=False,
        early_stopping=False,
    ):
        """
        Generate text conditioned on vision and language inputs.

        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                images in the same chunk are collated along T_img, and frames are collated along F
                currently only F=1 is supported (single-frame videos)
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            max_length (int, optional): Maximum length of the output. Defaults to None.
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            num_beams (int, optional): Number of beams. Defaults to 1.
            max_new_tokens (int, optional): Maximum new tokens. Defaults to None.
            temperature (float, optional): Temperature. Defaults to 1.0.
            top_k (int, optional): Top k. Defaults to 0.
            top_p (float, optional): Top p. Defaults to 1.0.
            no_repeat_ngram_size (int, optional): No repeat ngram size. Defaults to 0.
            length_penalty (float, optional): Length penalty. Defaults to 1.0.
            num_return_sequences (int, optional): Number of return sequences. Defaults to 1.
            do_sample (bool, optional): Do sample. Defaults to False.
            early_stopping (bool, optional): Early stopping. Defaults to False.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        if num_beams > 1:
            vision_x = vision_x.repeat_interleave(num_beams, dim=0)

        self.lang_encoder._use_cached_vision_x = True
        self._encode_vision_x(vision_x=vision_x)

        output = self.lang_encoder.generate(
            input_ids=lang_x,
            attention_mask=attention_mask,
            eos_token_id=self.eoc_token_id,
            num_beams=num_beams,
            min_new_tokens=min_new_tokens,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            no_repeat_ngram_size=no_repeat_ngram_size,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            num_return_sequences=num_return_sequences,
            do_sample=do_sample,
            early_stopping=early_stopping,
        )

        self.lang_encoder.clear_conditioned_layers()
        self.lang_encoder._use_cached_vision_x = False
        return output

    def _encode_vision_x(self, vision_x: torch.Tensor):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """

        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]
        assert F == 1, "Only single frame supported"

        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
        with torch.set_grad_enabled(self.compute_all_grads):
            vision_x = self.vision_encoder(vision_x)[1]
        vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
        vision_x = self.perceiver(vision_x)

        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

    def _get_vision_embedding(self, vision_x: torch.Tensor):
        """Without perceiver, not yet checked with new version
            Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
            Args:
                vision_x (torch.Tensor): Vision input
                    shape (B, T_img, F, C, H, W)
                    Images in the same chunk are collated along T_img, and frames are collated along F
                    Currently only F=1 is supported (single-frame videos)

            rearrange code based on https://github.com/dhansmair/flamingo-mini
            """

        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]
        assert F == 1, "Only single frame supported"

        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
        with torch.set_grad_enabled(self.compute_all_grads):
            vision_x = self.vision_encoder(vision_x)[1]
        vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
        return vision_x

    def _encode_vision_embedding(self, vision_x_embedding: torch.Tensor):
        # encode vision embedding, that has not gone through perceiver yet
        vision_x_embedding = self.perceiver(vision_x_embedding)  # reshapes to (b, T, n, d)

        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x_embedding)
    def wrap_fsdp(self, wrapper_kwargs, device_id):
        """
        Manually wraps submodules for FSDP and move other parameters to device_id.

        Why manually wrap?
        - all parameters within the FSDP wrapper must have the same requires_grad.
            We have a mix of frozen and unfrozen parameters.
        - model.vision_encoder.visual needs to be individually wrapped or encode_vision_x errors
            See: https://github.com/pytorch/pytorch/issues/82461#issuecomment-1269136344

        The rough wrapping structure is:
        - FlamingoModel
            - FSDP(FSDP(vision_encoder))
            - FSDP(FSDP(perceiver))
            - lang_encoder
                - FSDP(FSDP(input_embeddings))
                - FlamingoLayers
                    - FSDP(FSDP(gated_cross_attn_layer))
                    - FSDP(FSDP(decoder_layer))
                - FSDP(FSDP(output_embeddings))
                - other parameters

        Known issues:
        - Our FSDP strategy is not compatible with tied embeddings. If the LM embeddings are tied,
            train with DDP or set the --freeze_lm_embeddings flag to true.
        - With FSDP + gradient ckpting, one can increase the batch size with seemingly no upper bound.
            Although the training curves look okay, we found that downstream performance dramatically
            degrades if the batch size is unreasonably large (e.g., 100 MMC4 batch size for OPT-125M).

        FAQs about our FSDP wrapping strategy:
        Why double wrap?
        As of torch==2.0.1, FSDP's _post_forward_hook and _post_backward_hook
        only free gathered parameters if the module is NOT FSDP root.

        Why unfreeze the decoder_layers?
        See https://github.com/pytorch/pytorch/issues/95805
        As of torch==2.0.1, FSDP's _post_backward_hook is only registed if the flat param
        requires_grad=True. We need the postback to fire to avoid OOM.
        To effectively freeze the decoder layers, we exclude them from the optimizer.

        What is assumed to be frozen v. unfrozen?
        We assume that the model is being trained under normal Flamingo settings
        with these lines being called in factory.py:
            ```
            # Freeze all parameters
            model.requires_grad_(False)
            assert sum(p.numel() for p in model.parameters() if p.requires_grad) == 0

            # Unfreeze perceiver, gated_cross_attn_layers, and LM input embeddings
            model.perceiver.requires_grad_(True)
            model.lang_encoder.gated_cross_attn_layers.requires_grad_(True)
            [optional] model.lang_encoder.get_input_embeddings().requires_grad_(True)
            ```
        """
        # unfreeze the decoder layers
        for block in self.lang_encoder.old_decoder_blocks:
            block.requires_grad_(True)

        # wrap in FSDP
        with enable_wrap(wrapper_cls=FSDP, **wrapper_kwargs):
            self.perceiver = wrap(wrap(self.perceiver))
            self.lang_encoder.old_decoder_blocks = nn.ModuleList(
                wrap(wrap(block)) for block in self.lang_encoder.old_decoder_blocks
            )
            self.lang_encoder.gated_cross_attn_layers = nn.ModuleList(
                wrap(wrap(layer)) if layer is not None else None
                for layer in self.lang_encoder.gated_cross_attn_layers
            )
            self.lang_encoder.init_flamingo_layers(self._use_gradient_checkpointing)
            self.lang_encoder.set_input_embeddings(
                wrap(wrap(self.lang_encoder.get_input_embeddings()))
            )
            self.lang_encoder.set_output_embeddings(
                wrap(wrap(self.lang_encoder.get_output_embeddings()))
            )
            self.vision_encoder = wrap(wrap(self.vision_encoder))  # frozen

        # manually move non-FSDP managed parameters to device_id
        # these are all in lang_encoder
        apply_with_stopping_condition(
            module=self.lang_encoder,
            apply_fn=lambda m: m.to(device_id),
            apply_condition=lambda m: len(list(m.children())) == 0,
            stopping_condition=lambda m: isinstance(m, FSDP),
        )

        # exclude the original decoder layers from the optimizer
        for block in self.lang_encoder.old_decoder_blocks:
            for p in block.parameters():
                p.exclude_from_optimizer = True

        # set up clip_grad_norm_ function
        def clip_grad_norm_(max_norm):
            self.perceiver.clip_grad_norm_(max_norm)
            for layer in self.lang_encoder.gated_cross_attn_layers:
                if layer is not None:
                    layer.clip_grad_norm_(max_norm)
            self.lang_encoder.get_input_embeddings().clip_grad_norm_(max_norm)

        self.clip_grad_norm_ = clip_grad_norm_

    def _condition_media_locations(self, input_ids: torch.Tensor):
        """
        Compute the media token locations from lang_x and condition the language model on these.
        Args:
            input_ids (torch.Tensor): Language input
                shape (B, T_txt)
        """
        media_locations = input_ids == self.media_token_id

        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_media_locations(media_locations)

    def cache_media(self, input_ids: torch.Tensor, vision_x: torch.Tensor):
        """
        Pre-cache a prompt/sequence of images / text for log-likelihood evaluations.
        All subsequent calls to forward() will generate attending to the LAST
        image in vision_x.
        This is not meant to be used to cache things for generate().
        Args:
            input_ids (torch.Tensor): Language input
                shape (B, T_txt)
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)
        """
        self._encode_vision_x(vision_x=vision_x)
        self._condition_media_locations(input_ids=input_ids)
        self.lang_encoder._use_cached_vision_x = True

    def uncache_media(self):
        """
        Clear all conditioning.
        """
        self.lang_encoder.clear_conditioned_layers()
        self.lang_encoder._use_cached_vision_x = False