Javedalam commited on
Commit
6a18893
·
verified ·
1 Parent(s): f2b0bd0

Create index.html

Browse files
Files changed (1) hide show
  1. index.html +274 -0
index.html ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="utf-8" />
5
+ <meta name="viewport" content="width=device-width,initial-scale=1" />
6
+ <title>Interactive Lesson: Damped SDOF under Harmonic Load</title>
7
+
8
+ <!-- Plotly (verified CDN) -->
9
+ <script src="https://cdn.plot.ly/plotly-2.35.2.min.js"></script>
10
+ <!-- MathJax for equations -->
11
+ <script defer src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
12
+
13
+ <style>
14
+ :root { --bg:#0b1020; --card:#121a32; --ink:#e8eefc; --muted:#9fb1ff; --line:#273154; --accent:#8ec7ff;}
15
+ html,body{background:var(--bg); color:var(--ink); font-family:system-ui,Segoe UI,Roboto,Arial,sans-serif; margin:0}
16
+ header{padding:22px 20px 10px}
17
+ h1{margin:0 0 6px; font-size:20px}
18
+ .wrap{padding:0 20px 24px}
19
+ .card{background:var(--card); border:1px solid #293456; border-radius:16px; padding:16px; margin:12px 0; box-shadow:0 6px 22px rgba(0,0,0,.25)}
20
+ .row{display:grid; grid-template-columns:repeat(auto-fit,minmax(180px,1fr)); gap:12px}
21
+ label{display:block; font-size:13px; color:var(--muted); margin:8px 0 4px}
22
+ input,select{width:100%; padding:10px; border-radius:10px; border:1px solid #2c3a60; background:#0f1630; color:var(--ink)}
23
+ button{padding:10px 14px; border-radius:10px; border:1px solid #2c3a60; background:#1b2650; color:var(--ink); cursor:pointer}
24
+ button:hover{filter:brightness(1.12)}
25
+ .tiny{color:var(--muted); font-size:12px}
26
+ .kpi{display:flex; flex-wrap:wrap; gap:16px; margin-top:6px}
27
+ .kpi div{background:#0f1630; border:1px dashed #2c3a60; border-radius:10px; padding:8px 10px; font-variant-numeric:tabular-nums}
28
+ details{background:#0f1630; border:1px solid #2c3a60; border-radius:10px; padding:10px 12px}
29
+ details summary{cursor:pointer; color:var(--accent)}
30
+ a{color:var(--accent)}
31
+ </style>
32
+ </head>
33
+ <body>
34
+ <header>
35
+ <h1>Interactive Lesson: Damped SDOF under Harmonic Load</h1>
36
+ <div class="tiny">Problem → Theory → Interactive Solution → Quick Check — all in your browser.</div>
37
+ </header>
38
+
39
+ <div class="wrap">
40
+
41
+ <!-- Problem Statement -->
42
+ <section class="card">
43
+ <h2 style="margin:0 0 8px;font-size:18px">1) Problem</h2>
44
+ <p>
45
+ A single-degree-of-freedom system with mass \(m\), stiffness \(k\), and damping ratio \(\zeta\) is subjected
46
+ to a sinusoidal force \(F(t)=F_0\sin(\omega t)\).
47
+ Determine and visualize the displacement response \(x(t)\), and study the steady-state
48
+ frequency response.
49
+ </p>
50
+ <p class="tiny">Governing ODE: \(\ddot x + 2\zeta\omega_n \dot x + \omega_n^2 x = \dfrac{F_0}{m}\sin(\omega t)\), where \(\omega_n=\sqrt{k/m}\).</p>
51
+ </section>
52
+
53
+ <!-- Theory -->
54
+ <section class="card">
55
+ <h2 style="margin:0 0 8px;font-size:18px">2) Theory</h2>
56
+ <p>
57
+ The steady-state amplitude under harmonic excitation is
58
+ \[
59
+ |X(\omega)| = \frac{F_0/k}{\sqrt{(1-r^2)^2+(2\zeta r)^2}},\quad r=\frac{\omega}{\omega_n}.
60
+ \]
61
+ The phase lag is
62
+ \[
63
+ \phi(\omega)=\tan^{-1}\!\left(\frac{2\zeta r}{1-r^2}\right).
64
+ \]
65
+ </p>
66
+ <details>
67
+ <summary>Show derivation (outline)</summary>
68
+ <p class="tiny">
69
+ Assume steady state \(x_p=A\sin(\omega t-\phi)\), substitute in ODE, match sine/cosine terms to get
70
+ amplitude and phase. The complete response is \(x(t)=x_h(t)+x_p(t)\); the homogeneous part decays for \(\zeta&gt;0\).
71
+ </p>
72
+ </details>
73
+ </section>
74
+
75
+ <!-- Interactive Controls -->
76
+ <section class="card">
77
+ <h2 style="margin:0 0 8px;font-size:18px">3) Interactive Solution</h2>
78
+ <div class="row">
79
+ <div><label>Preset</label>
80
+ <select id="preset">
81
+ <option value="custom">— custom —</option>
82
+ <option value="light">Light damping (ζ=0.02, resonance scan)</option>
83
+ <option value="moderate">Moderate damping (ζ=0.07)</option>
84
+ <option value="heavy">Heavy damping (ζ=0.2)</option>
85
+ </select>
86
+ </div>
87
+ <div><label>Mass m (kg)</label><input id="m" type="number" step="any" value="1"></div>
88
+ <div><label>Stiffness k (N/m)</label><input id="k" type="number" step="any" value="100"></div>
89
+ <div><label>Damping ratio ζ</label><input id="zeta" type="number" step="any" value="0.05"></div>
90
+ <div><label>Force amplitude F₀ (N)</label><input id="F0" type="number" step="any" value="1"></div>
91
+ <div><label>Excitation ω (rad/s)</label><input id="omegaF" type="number" step="any" value="5"></div>
92
+ <div><label>Sim time T (s)</label><input id="T" type="number" step="any" value="20"></div>
93
+ <div><label>Δt (s)</label><input id="dt" type="number" step="any" value="0.002"></div>
94
+ <div><label>x(0)</label><input id="x0" type="number" step="any" value="0"></div>
95
+ <div><label>ẋ(0)</label><input id="v0" type="number" step="any" value="0"></div>
96
+ </div>
97
+ <div style="display:flex;gap:8px;flex-wrap:wrap;margin-top:10px">
98
+ <button id="runBtn">Run time response</button>
99
+ <button id="frfBtn">Plot frequency response</button>
100
+ <button id="csvBtn">Download time history (CSV)</button>
101
+ <span class="tiny">Everything is computed locally with RK4 + closed-form FRF.</span>
102
+ </div>
103
+ <div class="kpi">
104
+ <div>ωₙ = <span id="wn">—</span> rad/s</div>
105
+ <div>fₙ = <span id="fn">—</span> Hz</div>
106
+ <div>c = <span id="c">—</span> N·s/m</div>
107
+ <div>r = ω/ωₙ = <span id="r">—</span></div>
108
+ </div>
109
+ </section>
110
+
111
+ <!-- Plots -->
112
+ <section class="card">
113
+ <h2 style="margin:0 0 8px;font-size:18px">4) Plots</h2>
114
+ <div id="timePlot" style="height:380px"></div>
115
+ <div id="frfPlot" style="height:380px;margin-top:10px"></div>
116
+ </section>
117
+
118
+ <!-- Quick Check -->
119
+ <section class="card">
120
+ <h2 style="margin:0 0 8px;font-size:18px">5) Quick Check</h2>
121
+ <p class="tiny">Compute the natural frequency and critical damping for the current parameters.</p>
122
+ <div class="row">
123
+ <div><label>Your ωₙ (rad/s)</label><input id="qc_wn" type="number" step="any"></div>
124
+ <div><label>Your c<sub>crit</sub> (N·s/m)</label><input id="qc_ccrit" type="number" step="any"></div>
125
+ </div>
126
+ <div style="margin-top:10px;display:flex;gap:8px;align-items:center;flex-wrap:wrap">
127
+ <button id="checkBtn">Check answers</button>
128
+ <span id="qc_msg" class="tiny"></span>
129
+ </div>
130
+ </section>
131
+
132
+ <footer class="tiny" style="text-align:center;opacity:.9;margin-top:12px">
133
+ Built with HTML + JavaScript + Plotly + MathJax. Share this file and it will run offline.
134
+ </footer>
135
+ </div>
136
+
137
+ <script>
138
+ // ------- Helpers -------
139
+ const g = { ts:[], xs:[], vs:[] }; // for CSV export
140
+ const val = id => parseFloat(document.getElementById(id).value);
141
+ const setText = (id, t) => document.getElementById(id).textContent = t;
142
+
143
+ function updateDerived() {
144
+ const m = val('m'), k = val('k'), z = val('zeta'), w = val('omegaF');
145
+ const wn = Math.sqrt(k/m);
146
+ const fn = wn/(2*Math.PI);
147
+ const c = 2*z*wn*m;
148
+ const r = w/wn;
149
+ setText('wn', isFinite(wn)?wn.toFixed(4):'—');
150
+ setText('fn', isFinite(fn)?fn.toFixed(4):'—');
151
+ setText('c', isFinite(c)?c.toExponential(4):'—');
152
+ setText('r', isFinite(r)?r.toFixed(4):'—');
153
+ }
154
+ ['m','k','zeta','omegaF'].forEach(id => document.getElementById(id).addEventListener('input', updateDerived));
155
+
156
+ // ------- ODE pieces -------
157
+ function rhs(t, y, p) {
158
+ const [x,v] = y;
159
+ const a = (p.F0/p.m)*Math.sin(p.omega*t) - 2*p.zeta*p.wn*v - (p.wn*p.wn)*x;
160
+ return [v, a];
161
+ }
162
+ function rk4_step(f,t,y,h,p){
163
+ const k1=f(t,y,p);
164
+ const y2=[y[0]+0.5*h*k1[0], y[1]+0.5*h*k1[1]];
165
+ const k2=f(t+0.5*h,y2,p);
166
+ const y3=[y[0]+0.5*h*k2[0], y[1]+0.5*h*k2[1]];
167
+ const k3=f(t+0.5*h,y3,p);
168
+ const y4=[y[0]+h*k3[0], y[1]+h*k3[1]];
169
+ const k4=f(t+h,y4,p);
170
+ return [
171
+ y[0]+(h/6)*(k1[0]+2*k2[0]+2*k3[0]+k4[0]),
172
+ y[1]+(h/6)*(k1[1]+2*k2[1]+2*k3[1]+k4[1])
173
+ ];
174
+ }
175
+
176
+ function simulate(){
177
+ const p = {
178
+ m:val('m'), k:val('k'), zeta:val('zeta'), F0:val('F0'),
179
+ omega:val('omegaF'), T:val('T'), dt:val('dt'),
180
+ wn: Math.sqrt(val('k')/val('m'))
181
+ };
182
+ let t=0, y=[val('x0'), val('v0')];
183
+ const N=Math.max(1,Math.floor(p.T/p.dt));
184
+ const ts=[], xs=[], vs=[];
185
+ for(let i=0;i<=N;i++){
186
+ ts.push(t); xs.push(y[0]); vs.push(y[1]);
187
+ y=rk4_step(rhs,t,y,p.dt,p); t+=p.dt;
188
+ }
189
+ g.ts=ts; g.xs=xs; g.vs=vs;
190
+
191
+ Plotly.newPlot('timePlot',[
192
+ {x:ts,y:xs,mode:'lines',name:'x(t) [m]'},
193
+ {x:ts,y:vs,mode:'lines',name:'v(t) [m/s]',yaxis:'y2'}
194
+ ],{
195
+ paper_bgcolor:'#121a32',plot_bgcolor:'#0f1630',showlegend:true,
196
+ margin:{l:60,r:60,t:10,b:40},
197
+ xaxis:{title:'t [s]',gridcolor:'#273154',zerolinecolor:'#273154'},
198
+ yaxis:{title:'x [m]',gridcolor:'#273154',zerolinecolor:'#273154'},
199
+ yaxis2:{title:'v [m/s]',overlaying:'y',side:'right',gridcolor:'#273154',zerolinecolor:'#273154'}
200
+ },{displayModeBar:true,responsive:true});
201
+
202
+ updateDerived();
203
+ }
204
+
205
+ function frf(){
206
+ const m=val('m'), k=val('k'), z=val('zeta');
207
+ const wn=Math.sqrt(k/m);
208
+ const wMin=0.01*wn, wMax=3*wn, N=600;
209
+ const r=[], A=[], Phi=[];
210
+ for(let i=0;i<N;i++){
211
+ const w=wMin+(wMax-wMin)*i/(N-1);
212
+ const rr=w/wn;
213
+ const den=Math.sqrt((1-rr*rr)**2+(2*z*rr)**2);
214
+ r.push(rr); A.push((1/den)); // normalized by (F0/k)
215
+ Phi.push(-Math.atan2(2*z*rr,(1-rr*rr))*180/Math.PI);
216
+ }
217
+ Plotly.newPlot('frfPlot',[
218
+ {x:r,y:A,mode:'lines',name:'|X| / (F0/k)'},
219
+ {x:r,y:Phi,mode:'lines',name:'Phase [deg]',yaxis:'y2'}
220
+ ],{
221
+ paper_bgcolor:'#121a32',plot_bgcolor:'#0f1630',showlegend:true,
222
+ margin:{l:70,r:70,t:10,b:40},
223
+ xaxis:{title:'r = ω/ωₙ',gridcolor:'#273154',zerolinecolor:'#273154'},
224
+ yaxis:{title:'Amplitude',gridcolor:'#273154',zerolinecolor:'#273154'},
225
+ yaxis2:{title:'Phase [deg]',overlaying:'y',side:'right',gridcolor:'#273154',zerolinecolor:'#273154'}
226
+ },{displayModeBar:true,responsive:true});
227
+ updateDerived();
228
+ }
229
+
230
+ // CSV export
231
+ function downloadCSV(){
232
+ if(!g.ts.length){ simulate(); }
233
+ let csv="t,x,v\n";
234
+ for(let i=0;i<g.ts.length;i++){
235
+ csv+=`${g.ts[i]},${g.xs[i]},${g.vs[i]}\n`;
236
+ }
237
+ const blob=new Blob([csv],{type:'text/csv'});
238
+ const url=URL.createObjectURL(blob);
239
+ const a=document.createElement('a');
240
+ a.href=url; a.download='sdof_time_history.csv';
241
+ document.body.appendChild(a); a.click();
242
+ a.remove(); URL.revokeObjectURL(url);
243
+ }
244
+
245
+ // Presets
246
+ document.getElementById('preset').addEventListener('change', e=>{
247
+ const m = document.getElementById('m'), k=document.getElementById('k'),
248
+ z=document.getElementById('zeta'), w=document.getElementById('omegaF');
249
+ if(e.target.value==='light'){ m.value=1; k.value=100; z.value=0.02; w.value=Math.sqrt(100/1); }
250
+ else if(e.target.value==='moderate'){ m.value=1; k.value=100; z.value=0.07; w.value=0.8*Math.sqrt(100/1); }
251
+ else if(e.target.value==='heavy'){ m.value=1; k.value=100; z.value=0.2; w.value=0.6*Math.sqrt(100/1); }
252
+ updateDerived(); simulate(); frf();
253
+ });
254
+
255
+ // Quick check (ωn and ccrit)
256
+ document.getElementById('checkBtn').addEventListener('click', ()=>{
257
+ const wn_true = Math.sqrt(val('k')/val('m'));
258
+ const ccrit_true = 2*val('m')*wn_true;
259
+ const ok1 = Math.abs(val('qc_wn')-wn_true) <= 0.01*wn_true;
260
+ const ok2 = Math.abs(val('qc_ccrit')-ccrit_true) <= 0.02*ccrit_true;
261
+ const msg = `ωₙ ${(ok1?'✅':'❌')} (true ${wn_true.toFixed(4)}), c_crit ${(ok2?'✅':'❌')} (true ${ccrit_true.toExponential(4)})`;
262
+ document.getElementById('qc_msg').textContent = msg;
263
+ });
264
+
265
+ // Buttons
266
+ document.getElementById('runBtn').addEventListener('click', simulate);
267
+ document.getElementById('frfBtn').addEventListener('click', frf);
268
+ document.getElementById('csvBtn').addEventListener('click', downloadCSV);
269
+
270
+ // Initial render
271
+ updateDerived(); simulate(); frf();
272
+ </script>
273
+ </body>
274
+ </html>