Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,124 @@
|
|
| 1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
-
|
| 9 |
-
torch_dtype=
|
| 10 |
-
device_map=
|
| 11 |
)
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
MODEL_ID = "qvac/genesis-i-model" # HF repo id
|
| 6 |
+
|
| 7 |
+
print("Loading tokenizer...")
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 9 |
+
|
| 10 |
+
print("Detecting device & dtype...")
|
| 11 |
+
if torch.cuda.is_available():
|
| 12 |
+
# Prefer BF16 on modern GPUs, else fall back to FP16
|
| 13 |
+
try:
|
| 14 |
+
bf16_ok = torch.cuda.is_bf16_supported()
|
| 15 |
+
except AttributeError:
|
| 16 |
+
bf16_ok = False
|
| 17 |
|
| 18 |
+
torch_dtype = torch.bfloat16 if bf16_ok else torch.float16
|
| 19 |
+
device_map = "auto"
|
| 20 |
+
else:
|
| 21 |
+
# CPU Space or no GPU: use full precision
|
| 22 |
+
torch_dtype = torch.float32
|
| 23 |
+
device_map = "cpu"
|
| 24 |
|
| 25 |
+
print(f"Loading model on {device_map} with dtype={torch_dtype}...")
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
MODEL_ID,
|
| 28 |
+
torch_dtype=torch_dtype,
|
| 29 |
+
device_map=device_map,
|
| 30 |
)
|
| 31 |
+
model.eval()
|
| 32 |
|
| 33 |
+
|
| 34 |
+
def generate(
|
| 35 |
+
prompt: str,
|
| 36 |
+
temperature: float = 0.7,
|
| 37 |
+
top_p: float = 0.9,
|
| 38 |
+
max_new_tokens: int = 256,
|
| 39 |
+
):
|
| 40 |
+
if not prompt.strip():
|
| 41 |
+
return "Please enter a prompt."
|
| 42 |
+
|
| 43 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 44 |
+
# Move inputs to the same device as the model
|
| 45 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 46 |
+
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
output_ids = model.generate(
|
| 49 |
+
**inputs,
|
| 50 |
+
max_new_tokens=max_new_tokens,
|
| 51 |
+
do_sample=True,
|
| 52 |
+
temperature=temperature,
|
| 53 |
+
top_p=top_p,
|
| 54 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 58 |
+
# Return ONLY the completion after the original prompt, for cleanliness
|
| 59 |
+
if text.startswith(prompt):
|
| 60 |
+
text = text[len(prompt):].lstrip()
|
| 61 |
+
|
| 62 |
+
return text
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
with gr.Blocks() as demo:
|
| 66 |
+
gr.Markdown(
|
| 67 |
+
"""
|
| 68 |
+
# QVAC Genesis I – Educational LLM Demo
|
| 69 |
+
|
| 70 |
+
Model: **qvac/genesis-i-model**
|
| 71 |
+
Trained on the QVAC Genesis I synthetic educational dataset (STEM-heavy).
|
| 72 |
+
"""
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
with gr.Row():
|
| 76 |
+
with gr.Column(scale=3):
|
| 77 |
+
prompt = gr.Textbox(
|
| 78 |
+
label="Prompt",
|
| 79 |
+
placeholder="Ask a STEM question, e.g. 'Explain Gibbs free energy to a high school student.'",
|
| 80 |
+
lines=6,
|
| 81 |
+
)
|
| 82 |
+
temperature = gr.Slider(
|
| 83 |
+
minimum=0.1,
|
| 84 |
+
maximum=1.2,
|
| 85 |
+
value=0.7,
|
| 86 |
+
step=0.05,
|
| 87 |
+
label="Temperature (creativity)",
|
| 88 |
+
)
|
| 89 |
+
top_p = gr.Slider(
|
| 90 |
+
minimum=0.1,
|
| 91 |
+
maximum=1.0,
|
| 92 |
+
value=0.9,
|
| 93 |
+
step=0.05,
|
| 94 |
+
label="Top-p (nucleus sampling)",
|
| 95 |
+
)
|
| 96 |
+
max_new_tokens = gr.Slider(
|
| 97 |
+
minimum=16,
|
| 98 |
+
maximum=512,
|
| 99 |
+
value=256,
|
| 100 |
+
step=16,
|
| 101 |
+
label="Max new tokens",
|
| 102 |
+
)
|
| 103 |
+
submit = gr.Button("Generate")
|
| 104 |
+
|
| 105 |
+
with gr.Column(scale=4):
|
| 106 |
+
output = gr.Textbox(
|
| 107 |
+
label="Model output",
|
| 108 |
+
lines=18,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
submit.click(
|
| 112 |
+
fn=generate,
|
| 113 |
+
inputs=[prompt, temperature, top_p, max_new_tokens],
|
| 114 |
+
outputs=output,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Press Enter in the prompt box to generate
|
| 118 |
+
prompt.submit(
|
| 119 |
+
fn=generate,
|
| 120 |
+
inputs=[prompt, temperature, top_p, max_new_tokens],
|
| 121 |
+
outputs=output,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
demo.queue().launch()
|