Spaces:
Sleeping
Sleeping
Harald Nilsen
commited on
Commit
·
5a877d0
1
Parent(s):
c18feb7
sentiment
Browse files
app.py
CHANGED
|
@@ -1,7 +1,74 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import math
|
| 4 |
|
| 5 |
+
print("🎭 Loading sentiment analysis pipeline...")
|
| 6 |
+
sentiment_analyzer = pipeline(
|
| 7 |
+
"sentiment-analysis",
|
| 8 |
+
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
| 9 |
+
tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
| 10 |
+
return_all_scores=True,
|
| 11 |
+
truncation=True,
|
| 12 |
+
padding=True,
|
| 13 |
+
device_map="auto"
|
| 14 |
+
)
|
| 15 |
|
| 16 |
+
def _polarity_from_scores(scores):
|
| 17 |
+
# scores is a list like [{'label': 'negative', 'score': 0.01}, {'label':'neutral',...}, {'label':'positive',...}]
|
| 18 |
+
probs = {s["label"].lower(): float(s["score"]) for s in scores}
|
| 19 |
+
p_pos = probs.get("positive", 0.0)
|
| 20 |
+
p_neg = probs.get("negative", 0.0)
|
| 21 |
+
return p_pos - p_neg # range roughly [-1, 1]
|
| 22 |
+
|
| 23 |
+
def analyze_tone_and_bias(text, chunk_size=500, neutral_margin=0.1):
|
| 24 |
+
"""
|
| 25 |
+
Analyze emotional tone and potential bias in sources.
|
| 26 |
+
Uses polarity = P(positive) - P(negative) and respects neutral.
|
| 27 |
+
"""
|
| 28 |
+
# Make chunks
|
| 29 |
+
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
| 30 |
+
chunks = [c for c in chunks if len(c.strip()) > 10]
|
| 31 |
+
if not chunks:
|
| 32 |
+
return {"error": "Could not analyze sentiment"}
|
| 33 |
+
|
| 34 |
+
# Batch inference
|
| 35 |
+
batch_outputs = sentiment_analyzer(chunks) # list of lists of dicts
|
| 36 |
+
|
| 37 |
+
# Compute per-chunk polarity
|
| 38 |
+
chunk_polarities = [_polarity_from_scores(scores) for scores in batch_outputs]
|
| 39 |
+
|
| 40 |
+
# Aggregate
|
| 41 |
+
avg_polarity = sum(chunk_polarities) / len(chunk_polarities)
|
| 42 |
+
if avg_polarity > neutral_margin:
|
| 43 |
+
overall = "POSITIVE"
|
| 44 |
+
elif avg_polarity < -neutral_margin:
|
| 45 |
+
overall = "NEGATIVE"
|
| 46 |
+
else:
|
| 47 |
+
overall = "NEUTRAL"
|
| 48 |
+
|
| 49 |
+
# Build a compact per-chunk view
|
| 50 |
+
# Use the model's top label for human-readable chunk summaries
|
| 51 |
+
tops = []
|
| 52 |
+
for scores in batch_outputs[:5]:
|
| 53 |
+
top = max(scores, key=lambda s: s["score"])
|
| 54 |
+
tops.append({"label": top["label"].upper(), "score": float(top["score"])})
|
| 55 |
+
|
| 56 |
+
return {
|
| 57 |
+
"overall_sentiment": overall,
|
| 58 |
+
"confidence": float(abs(avg_polarity)),
|
| 59 |
+
"chunk_analysis": tops
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
print("✅ Sentiment analysis pipeline ready")
|
| 63 |
+
|
| 64 |
+
def analyze_sentiment(text):
|
| 65 |
+
result = analyze_tone_and_bias(text)
|
| 66 |
+
return result['chunk_analysis'][0]
|
| 67 |
+
|
| 68 |
+
demo = gr.Interface(fn=analyze_sentiment, inputs="textbox", outputs="textbox")
|
| 69 |
+
|
| 70 |
+
test_txt = "Nærmeste samtlige biler og vogntog som passerte Ørskogfjellet da kontrollen pågikk ble stoppet. Hele 50 personer fra de ulike etatene var involvert i kontrollen."
|
| 71 |
+
|
| 72 |
+
print(analyze_sentiment(test_txt))
|
| 73 |
+
|
| 74 |
+
demo.launch(share=True)
|