Spaces:
Sleeping
Sleeping
| import os | |
| os.system("pip install torch transformers gradio matplotlib") | |
| # Install required packages | |
| # !pip install torch transformers gradio matplotlib | |
| import torch | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| # Load model and tokenizer from Hugging Face Hub | |
| model_name = "HyperX-Sentience/RogueBERT-Toxicity-85K" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Move model to CUDA if available | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| # Toxicity category labels | |
| labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] | |
| # Function to predict toxicity | |
| def predict_toxicity(comment): | |
| inputs = tokenizer([comment], truncation=True, padding="max_length", max_length=128, return_tensors="pt") | |
| inputs = {key: val.to(device) for key, val in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| probabilities = torch.sigmoid(logits).cpu().numpy()[0] | |
| toxicity_scores = {label: float(probabilities[i]) for i, label in enumerate(labels)} | |
| return toxicity_scores | |
| # Function to create a bar chart | |
| def plot_toxicity(comment): | |
| toxicity_scores = predict_toxicity(comment) | |
| categories = list(toxicity_scores.keys()) | |
| scores = list(toxicity_scores.values()) | |
| plt.figure(figsize=(12, 7), dpi=300, facecolor='black') | |
| ax = plt.gca() | |
| ax.set_facecolor('black') | |
| bars = plt.bar(categories, scores, color='#20B2AA', edgecolor='white', width=0.5) # Sea green | |
| plt.xticks(color='white', fontsize=14, rotation=25, ha='right') | |
| plt.yticks(color='white', fontsize=14) | |
| plt.title("Toxicity Score Analysis", color='white', fontsize=16) | |
| plt.ylim(0, 1.1) | |
| for bar in bars: | |
| yval = bar.get_height() | |
| plt.text(bar.get_x() + bar.get_width()/2, yval + 0.03, f'{yval:.2f}', ha='center', color='white', fontsize=12, fontweight='bold') | |
| plt.tight_layout(pad=2) | |
| plt.savefig("toxicity_chart.png", facecolor='black', bbox_inches='tight') | |
| plt.close() | |
| return "toxicity_chart.png" | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=plot_toxicity, | |
| inputs=gr.Textbox(label="Enter a comment"), | |
| outputs=gr.Image(type="filepath", label="Toxicity Analysis"), | |
| title="Toxicity Detector", | |
| description="Enter a comment to analyze its toxicity scores across different categories.", | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| demo.launch() | |