File size: 18,509 Bytes
6bf01ee 97d9f7d e340879 6bf01ee a6db50e 007b03f 6bf01ee cbc5c4f 52947a8 b2b0ba4 7da11c0 0ef86f0 61c5e3f b2b0ba4 c4da416 6bf01ee 6553d2e 0ef86f0 6553d2e b2b0ba4 d59ad96 6bf01ee 8d41f45 6034f32 198517c 3a0abab 198517c 8d41f45 0ef86f0 79f451b 6bf01ee c451a74 6bf01ee c451a74 b2b0ba4 82bf440 6bf01ee b2b0ba4 6bf01ee b2b0ba4 6bf01ee 23f4a93 6bf01ee 6553d2e aea9a14 95df290 aea9a14 6bf01ee 85e51be b2b0ba4 6bf01ee 0ef86f0 79f451b 6bf01ee 94c072e 6bf01ee 0ef86f0 6bf01ee 0ef86f0 79f451b 6bf01ee b2b0ba4 6bf01ee b2b0ba4 aea9a14 b7146d7 6bf01ee ccf831d 0ef86f0 82bf440 52947a8 0ef86f0 82bf440 52947a8 b81b835 52947a8 0ef86f0 0a759e0 315e48e d5e45a8 b7146d7 d5e45a8 b7146d7 d5e45a8 b7146d7 d5e45a8 1d73000 95df290 0ef86f0 b2b0ba4 6bf01ee 91813ed c5136a1 0ef86f0 6bf01ee b2b0ba4 3517c33 0ef86f0 82bf440 c451a74 95df290 0ef86f0 95df290 6bf01ee 0ef86f0 6bf01ee aea9a14 82bf440 6bf01ee 0ef86f0 6bf01ee 0ef86f0 6bf01ee ee87f39 6bf01ee 6a05c32 6bf01ee f07ce30 198517c 6034f32 6bf01ee b2b0ba4 198517c 6bf01ee 0ade16f 4b59605 5bed01e 957d924 6bf01ee b2b0ba4 7de1321 7da11c0 6220eaa 6bf01ee c451a74 6bf01ee 5d5ce97 6bf01ee c451a74 6bf01ee 7da11c0 6bf01ee bee7df0 85e51be 6bf01ee 957d924 64771ae 7de1321 5611f39 6bf01ee 7da11c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import os
import json
import datetime
import requests
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset, VerificationMode
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM
# InfoStrings
#from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, DATA_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
TOKEN = os.environ.get("TOKEN", None)
OWNER="Blanca"
DATA_DATASET = f"{OWNER}/CQs-Gen_test_embeddings"
INTERNAL_DATA_DATASET = f"{OWNER}/CQs-Gen_test_embeddings"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
#SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public"
#CONTACT_DATASET = f"{OWNER}/contact_info" # TODO: I should reactivate this
RESULTS_DATASET = f"{OWNER}/results_public"
LEADERBOARD_PATH = f"HiTZ/Critical_Questions_Leaderboard"
METRIC = 'similarity'
api = HfApi()
if METRIC == 'similarity':
similarity_model = SentenceTransformer("stsb-mpnet-base-v2")
if METRIC == 'gemma': # WARNING: this can't be used because I do not have GPU in HF
model = AutoModelForCausalLM.from_pretrained('google/gemma-3-12b-it', device_map="auto", attn_implementation='eager')
tokenizer = AutoTokenizer.from_pretrained('google/gemma-3-12b-it')
YEAR_VERSION = "2025"
#ref_scores_len = {"test": 32}
os.makedirs("scored", exist_ok=True)
# Should be False on spaces and True outside
LOCAL_DEBUG = False #not (os.environ.get("system") == "spaces")
# Display the results
eval_results = {}
eval_results['test'] = load_dataset(
RESULTS_DATASET,
YEAR_VERSION,
split="test",
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
trust_remote_code=True,
)
# TODO: I should reactivate saving contact infos
#contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
def get_dataframe_from_results(eval_results, split):
local_df = eval_results[split]
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
local_df = local_df.remove_columns(["system_prompt", "url"])
local_df = local_df.rename_column("model", "Submission name")
local_df = local_df.rename_column("model_family", "Model family")
local_df = local_df.rename_column("organisation", "Authors")
local_df = local_df.rename_column("score", "Score (%)")
local_df = local_df.rename_column("NAE", "NAE (%)")
local_df = local_df.rename_column("date", "Submission date")
df = pd.DataFrame(local_df)
df = df.sort_values(by=["Score (%)"], ascending=False)
return df
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
# Gold answers
gold_results = {}
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, "test", token=TOKEN, trust_remote_code=True)['test']
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "number", "number", "number", "number", "str", "str", "str"]
def run_model(model, tokenizer, prompt):
chat = [{"role": "user", "content": prompt}]
chat_formated = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
#print(chat_formated, flush=True)
inputs = tokenizer(chat_formated, return_tensors="pt")
inputs = inputs.to('cuda')
generated_ids = model.generate(**inputs, max_new_tokens=512)
out = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
try:
output = out.split('model\n')[1].replace('\n', '')
except IndexError:
print('EVAL ERROR: '+output, flush=True)
output = output.strip()
return output
def get_prompts(cq, references):
return {
'compare': f"""You will be given a set of reference questions, each with an identifying ID, and a newly generated question. Your task is to determine if any of the reference questions are asking for the same information as the new question.
Here is the set of reference questions with their IDs:
<reference_questions>
{references}
</reference_questions>
Here is the newly generated question:
<new_question>
{cq}
</new_question>
Compare the new question to each of the reference questions. Look for questions that are asking for the same information, even if they are worded differently. Consider the core meaning and intent of each question, not just the exact wording.
If you find a reference question that is asking for the same information as the new question, output only the ID of that reference question.
If none of the reference questions are asking for the same information as the new question, output exactly 'Similar reference not found.' (without quotes).
Your final output should consist of only one of the following:
1. The ID of the most similar reference question
2. The exact phrase 'Similar reference not found.'
Do not include any explanation, reasoning, or additional text in your output."""}
def call_start():
return format_log("We are starting your evaluation. This can take a few minutes.")
def add_new_eval(
model: str,
model_family: str,
system_prompt: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
profile: gr.OAuthProfile,
):
# Was the profile created less than 2 month ago?
user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
creation_date = json.loads(user_data.content)["createdAt"]
if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
return format_error("This account is not authorized to submit on this leaderboard.")
# TODO: I should reactivate this check
#contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
#user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username)
#if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'):
# return format_error("You already submitted once today, please try again tomorrow.")
val_or_test = "test"
is_validation = False
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organisation.lower() in set([o.lower() for o in eval_results[val_or_test]["organisation"]]):
return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# SAVE UNSCORED SUBMISSION
if LOCAL_DEBUG:
print("mock uploaded submission")
else:
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.json",
repo_type="dataset",
token=TOKEN
)
# SAVE CONTACT
contact_info = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"username": profile.username,
"mail": mail,
"date": datetime.datetime.today().strftime('%Y-%m-%d')
}
# TODO: reactivate this
#contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info)
#if LOCAL_DEBUG:
# print("mock uploaded contact info")
#else:
# contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN)
# SCORE SUBMISSION
file_path = path_to_file.name
scores = 0
num_questions = 0
task_ids = []
call_start()
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
data = json.load(f)
scores = []
nae = 0
num_cqs = 0
for id_to_eval, line in data.items(): # data to evaluate
intervention_score = 0
for indx, intervention_id in enumerate(gold_dataset['intervention_id']): # references
if id_to_eval == intervention_id:
references = gold_dataset['cqs']
reference_embeddings = [row['embedding'] for row in references[indx]]
# TODO: here upload the embedding that I have saved, so they can be used in similarity evaluation
#print(reference_set, flush=True)
if len(line['cqs']) < 3 or type(line['cqs']) is not list: # make sure there are at least 3 cqs
num_cqs += 3
#return format_warning("Make sure that there are at least 3 questions per intervention, or check that the format is right.")
continue
for cq in line['cqs'][:3]: # here only take the first 3 cqs
if type(cq) is not dict:
num_cqs += 1
continue
cq_text = cq['cq']
if METRIC == 'similarity':
sentence_embedding = similarity_model.encode(cq_text)
#reference_embedding = similarity_model.encode(reference_set) # TODO: here have the embeddings directly, do no calculate each time
sims = similarity_model.similarity(sentence_embedding, reference_embeddings).tolist()[0]
winner = np.argmax(sims)
# make sure the similarity of the winning reference sentence is at least 0.65
if sims[winner] > 0.65:
label = references[indx][winner]['label']
else:
label = 'not_able_to_evaluate'
if METRIC == 'gemma':
prompts = get_prompts(cq_text, '\n'.join(reference_set))
winner = run_model(model, tokenizer, prompts['compare'])
try: # here make sure the output is the id of a reference cq
if winner.strip() != 'Similar reference not found.':
label = references[index][int(winner)]['label']
else:
label = 'not_able_to_evaluate'
print(winner, flush=True)
except IndexError:
label = 'evaluation_issue'
print(winner, flush=True)
except ValueError:
label = 'evaluation_issue'
print(winner, flush=True)
#print(label, flush=True)
num_cqs += 1
if label == 'Useful':
intervention_score += 1/3
if label == 'not_able_to_evaluate':
nae += 1
#print(id_to_eval, intervention_score, flush=True)
scores.append(intervention_score)
scored_file.write(
json.dumps({
"id": intervention_id,
#"model_answer": answer,
"score": intervention_score
}) + "\n"
)
task_ids.append(id_to_eval)
#scores += score
#num_questions += 1
#break
#return format_error(score)
nae_score = round(nae/num_cqs*100, 1)
score = round(sum(scores)/len(scores)*100,3)
#print(score, flush=True)
#print(task_ids, flush=True)
# Check if there's any duplicate in the submission
if len(task_ids) != len(set(task_ids)):
return format_error("There are duplicates in your submission. Please check your file and resubmit it.")
# SAVE SCORED SUBMISSION
if LOCAL_DEBUG:
print("mock uploaded scored submission")
else:
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# SAVE TO LEADERBOARD DATA
eval_entry = {
"model": model,
"model_family": model_family,
"system_prompt": system_prompt,
"url": url,
"organisation": organisation,
"score": score, #s / ref_scores_len,#[val_or_test],
"NAE": nae_score,
"date": datetime.datetime.today().strftime('%Y-%m-%d')
}
#TODO: if I find potential errors, I should check them here and maybe suggest that they open a discussion
# TODO: I should reactivate this
# Testing for duplicates - to see if we want to add something like it as it would allow people to try to see the content of other submissions
#eval_entry_no_date = {k: v for k, v in eval_entry if k != "date"}
#columns_no_date = [c for c in eval_results[val_or_test].column_names if c != "date"]
#if eval_entry_no_date in eval_results[val_or_test].select_columns(columns_no_date):
# return format_error(f"Your submission is an exact duplicate from an existing submission.")
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
print(eval_results)
if LOCAL_DEBUG:
print("mock uploaded results to lb")
else:
eval_results[val_or_test].push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN)
return format_log(f"Submission {model} submitted by {organisation} successfully.\nPlease refresh the leaderboard to see your score displayed.")
def refresh():
eval_results['test'] = load_dataset(
RESULTS_DATASET,
YEAR_VERSION,
split="test",
token=TOKEN,
download_mode="force_redownload",
verification_mode=VerificationMode.NO_CHECKS,
trust_remote_code=True,
)
eval_dataframe_test = get_dataframe_from_results(eval_results={"test": eval_results['test']}, split="test")
return eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
#with gr.Row():
# with gr.Column(scale=1, min_width=0):
# pass
# gr.Image(
# value="examples.png",
# label="Example",
# interactive=False,
# show_label=False,
# show_download_button=False,
# show_share_button=False
# )
# with gr.Column(scale=1, min_width=0):
# pass
gr.Markdown(DATA_TEXT, elem_classes="markdown-text")
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
refresh_button = gr.Button("Refresh")
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table_test])
with gr.Accordion(""):
with gr.Row():
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["test"], value="test", label="Split")
model_name_textbox = gr.Textbox(label="Submission name")
model_family_textbox = gr.Textbox(label="Model family")
system_prompt_textbox = gr.Textbox(label="System prompt example")
url_textbox = gr.Textbox(label="Url to submission information")
with gr.Column():
organisation = gr.Textbox(label="Team name")
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)")
file_output = gr.File()
with gr.Row():
gr.LoginButton()
submit_button = gr.Button("Submit Eval")
status = gr.Label(label="Status")
submission_result = gr.Markdown()
submit_button.click(
fn=lambda: "⏳ Submitting...",
inputs=None,
outputs=status,
).then(
add_new_eval,
[
model_name_textbox,
model_family_textbox,
system_prompt_textbox,
url_textbox,
file_output,
organisation,
mail
],
submission_result,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=True):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=8,
max_lines=10,
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True) |