File size: 6,540 Bytes
4fcc94b
 
 
 
 
 
 
 
 
 
 
 
 
 
508dbb9
 
 
4fcc94b
 
 
508dbb9
 
4fcc94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508dbb9
4fcc94b
 
508dbb9
4fcc94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508dbb9
4fcc94b
 
 
 
 
 
 
 
 
 
 
508dbb9
4fcc94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508dbb9
4fcc94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508dbb9
4fcc94b
 
 
 
 
 
508dbb9
4fcc94b
 
 
 
 
 
 
 
508dbb9
4fcc94b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from pathlib import Path
import traceback
import json
import time
import sys

import numpy as np
import cv2
import open3d as o3d
import torch
import trimesh
from transformers import AutoImageProcessor, AutoModelForDepthEstimation

# Pipeline settings
DEPTH_CHECKPOINT = os.environ.get("DEPTH_CHECKPOINT", "LiheYoung/depth-anything-large-hf") # Default to HF Hub model if local not found
USE_GPU = int(os.environ.get("USE_GPU", "0")) # Default to CPU for HF Spaces
POISSON_DEPTH = int(os.environ.get("POISSON_DEPTH", "9"))
OUTLIER_NEIGHBORS = int(os.environ.get("OUTLIER_NEIGHBORS", "15"))
OUTLIER_STD_RATIO = float(os.environ.get("OUTLIER_STD_RATIO", "1.0"))
ORTHO_SCALE_FACTOR = float(os.environ.get("ORTHO_SCALE_FACTOR", "255"))
INFERENCE_RESIZE = int(os.environ.get("INFERENCE_RESIZE", "0"))
RESULT_PREFIX = os.environ.get("RESULT_PREFIX", "")

try:
    torch.set_num_threads(max(1, (os.cpu_count() or 2) // 2))
except Exception:
    pass

_model = None
_processor = None
_device = "cpu"

def log(msg):
    print(msg, flush=True)
    sys.stdout.flush()

def load_model():
    global _model, _processor, _device
    if _model is None:
        log(f"Loading model: {DEPTH_CHECKPOINT}")
        _processor = AutoImageProcessor.from_pretrained(DEPTH_CHECKPOINT)
        _model = AutoModelForDepthEstimation.from_pretrained(DEPTH_CHECKPOINT)
        if USE_GPU and torch.cuda.is_available():
            _device = "cuda"
            _model = _model.to("cuda")
        else:
            _device = "cpu"
        _model.eval()
    return _model, _processor, _device

def normalize_depth_uint8(depth_np: np.ndarray) -> np.ndarray:
    m = np.max(depth_np)
    if m <= 0:
        return np.zeros_like(depth_np, dtype=np.uint8)
    return (depth_np * 255.0 / m).astype("uint8")

def build_orthographic_point_cloud(depth_u8: np.ndarray, color_rgb: np.ndarray) -> o3d.geometry.PointCloud:
    depth_map = depth_u8.astype(np.float32)
    h, w = depth_map.shape
    y, x = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
    z = (depth_map / ORTHO_SCALE_FACTOR) * (h / 2.0)
    points = np.stack((x, y, z), axis=-1).reshape(-1, 3)
    mask = points[:, 2] != 0
    points = points[mask]
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)
    colors = color_rgb.reshape(-1, 3)[mask] / 255.0
    pcd.colors = o3d.utility.Vector3dVector(colors)
    return pcd

def process_image_task(image_path: str, result_dir: str, job_id: str, status_callback):
    start = time.time()
    try:
        status_callback(job_id, "RUNNING", "Loading model")
        model, processor, device = load_model()
        log(f"[{job_id}] Model loaded on {device}")

        img_bgr = cv2.imread(image_path)
        if img_bgr is None:
            raise RuntimeError("Failed to read image")
        img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
        orig_h, orig_w = img_rgb.shape[:2]

        # Optional resize (not used in your notebook; keep 0 for fidelity)
        if INFERENCE_RESIZE and INFERENCE_RESIZE > 0:
            scale = INFERENCE_RESIZE / max(orig_h, orig_w)
            new_w = int(orig_w * scale)
            new_h = int(orig_h * scale)
            img_proc = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA)
        else:
            img_proc = img_rgb

        status_callback(job_id, "RUNNING", "Running depth inference")
        depth_inputs = processor(images=img_proc, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = model(**depth_inputs)
        depth = outputs.predicted_depth.squeeze().detach().cpu().numpy()

        # Match notebook: use depth resolution, resize color to depth size
        dh, dw = depth.shape
        color_resized = cv2.resize(img_proc, (dw, dh), interpolation=cv2.INTER_LINEAR)

        depth_u8 = normalize_depth_uint8(depth)

        status_callback(job_id, "RUNNING", "Building orthographic point cloud")
        pcd = build_orthographic_point_cloud(depth_u8, color_resized)

        # Outlier removal (nb=15, std_ratio=1.0)
        try:
            cl, ind = pcd.remove_statistical_outlier(nb_neighbors=OUTLIER_NEIGHBORS,
                                                     std_ratio=OUTLIER_STD_RATIO)
            pcd = pcd.select_by_index(ind)
        except Exception as e:
            log(f"[{job_id}] Outlier removal warning: {e}")

        # Normals (your notebook: estimate_normals + orient_normals_to_align_with_direction)
        if len(pcd.points) >= 10:
            try:
                pcd.estimate_normals()
                pcd.orient_normals_to_align_with_direction()
            except Exception as e:
                log(f"[{job_id}] Normal estimation warning: {e}")

        num_pts = np.asarray(pcd.points).shape[0]
        log(f"[{job_id}] Point cloud size after cleanup: {num_pts}")
        if num_pts == 0:
            raise RuntimeError("Empty point cloud after cleanup")

        status_callback(job_id, "RUNNING", f"Poisson reconstruction depth={POISSON_DEPTH}")
        mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=POISSON_DEPTH
        )

        # Compute normals
        try:
            mesh.compute_vertex_normals()
        except Exception:
            pass
        mesh.compute_triangle_normals()

        num_vertices = np.asarray(mesh.vertices).shape[0]
        num_tris = np.asarray(mesh.triangles).shape[0]
        log(f"[{job_id}] Mesh stats vertices={num_vertices} triangles={num_tris}")
        if num_tris == 0:
            raise RuntimeError("Poisson produced empty mesh")

        Path(result_dir).mkdir(parents=True, exist_ok=True)
        stl_path = Path(result_dir) / f"{RESULT_PREFIX}{job_id}.stl"

        status_callback(job_id, "RUNNING", "Exporting STL")
        tm = trimesh.Trimesh(vertices=np.asarray(mesh.vertices),
                             faces=np.asarray(mesh.triangles),
                             process=True)
        tm.export(str(stl_path), file_type="stl")

        total = time.time() - start
        status_callback(job_id, "SUCCESS", f"Done in {total:.2f}s", str(stl_path))
        log(f"[{job_id}] SUCCESS total={total:.2f}s STL={stl_path}")
        return {
            "status": "success",
            "stl": str(stl_path),
            "mesh_stats": {"vertices": int(num_vertices), "triangles": int(num_tris)}
        }
    except Exception as e:
        traceback.print_exc()
        status_callback(job_id, "FAILURE", str(e))
        log(f"[{job_id}] FAILURE: {e}")
        raise