ggcristian commited on
Commit
6cf1214
·
1 Parent(s): d14185d

Remove aggregated column, we now match the paper

Browse files
Files changed (2) hide show
  1. app.py +6 -7
  2. utils.py +9 -53
app.py CHANGED
@@ -283,13 +283,12 @@ with gr.Blocks(
283
  "7%",
284
  "25%",
285
  "10%",
286
- "17%",
287
- "6%",
288
- "6%",
289
- "6%",
290
- "6%",
291
- "6%",
292
- "7%",
293
  ],
294
  )
295
 
 
283
  "7%",
284
  "25%",
285
  "10%",
286
+ "8%",
287
+ "8%",
288
+ "8%",
289
+ "8%",
290
+ "8%",
291
+ "8%",
 
292
  ],
293
  )
294
 
utils.py CHANGED
@@ -72,13 +72,13 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
72
  .round(2)
73
  )
74
 
75
- if df_agg is not None and agg_column is not None and agg_column in df_agg.columns:
76
- agg_data = df_agg[["Model", agg_column]].rename(
77
- columns={agg_column: "Aggregated ⬆️"}
78
- )
79
- pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
80
- else: # fallback
81
- pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2)
82
 
83
  pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
84
  pivot_df["Model"] = pivot_df.apply(
@@ -100,7 +100,6 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
100
  "Type",
101
  "Model",
102
  "Params",
103
- "Aggregated ⬆️",
104
  "STX",
105
  "FNC",
106
  "SYN",
@@ -109,9 +108,7 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
109
  "Area",
110
  ]
111
  pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
112
- pivot_df = pivot_df.sort_values(by="Aggregated ⬆️", ascending=False).reset_index(
113
- drop=True
114
- )
115
  return pivot_df
116
 
117
 
@@ -162,28 +159,6 @@ def filter_bench_all(
162
  .round(2)
163
  )
164
 
165
- if df_agg is not None:
166
- if agg_column is not None and agg_column in df_agg.columns:
167
- agg_data = df_agg[["Model", agg_column]].rename(
168
- columns={agg_column: "Aggregated ⬆️"}
169
- )
170
- pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
171
- else:
172
- agg_columns = [col for col in df_agg.columns if col.startswith("Agg ")]
173
- if agg_columns:
174
- df_agg["Average_Agg"] = df_agg[agg_columns].mean(axis=1)
175
- agg_data = df_agg[["Model", "Average_Agg"]].rename(
176
- columns={"Average_Agg": "Aggregated ⬆️"}
177
- )
178
- pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
179
- else: # fallback
180
- pivot_df["Aggregated ⬆️"] = pivot_df.mean(
181
- axis=1, numeric_only=True
182
- ).round(2)
183
- else: # fallback
184
- print("We do mean")
185
- pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2)
186
-
187
  pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
188
  pivot_df["Model"] = pivot_df.apply(
189
  lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]),
@@ -208,7 +183,6 @@ def filter_bench_all(
208
  "Type",
209
  "Model",
210
  "Params",
211
- "Aggregated ⬆️",
212
  "Agg STX",
213
  "Agg FNC",
214
  "Agg SYN",
@@ -217,25 +191,7 @@ def filter_bench_all(
217
  "Agg Area",
218
  ]
219
  pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
220
- pivot_df = pivot_df.sort_values(by="Aggregated ⬆️", ascending=False).reset_index(
221
  drop=True
222
  )
223
  return pivot_df
224
-
225
-
226
- def agg_S2R_metrics(verilog_eval_rtl, rtllm):
227
- if not verilog_eval_rtl or not rtllm:
228
- return None
229
- w1 = 155
230
- w2 = 47
231
- result = (w1 * verilog_eval_rtl + w2 * rtllm) / (w1 + w2)
232
- return round(result, 2)
233
-
234
-
235
- def agg_MC_metrics(verilog_eval_cc, verigen):
236
- if not verilog_eval_cc or not verigen:
237
- return None
238
- w1 = 155
239
- w2 = 17
240
- result = (w1 * verilog_eval_cc + w2 * verigen) / (w1 + w2)
241
- return round(result, 2)
 
72
  .round(2)
73
  )
74
 
75
+ # if df_agg is not None and agg_column is not None and agg_column in df_agg.columns:
76
+ # agg_data = df_agg[["Model", agg_column]].rename(
77
+ # columns={agg_column: "Aggregated ⬆️"}
78
+ # )
79
+ # pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
80
+ # else: # fallback
81
+ # pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2)
82
 
83
  pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
84
  pivot_df["Model"] = pivot_df.apply(
 
100
  "Type",
101
  "Model",
102
  "Params",
 
103
  "STX",
104
  "FNC",
105
  "SYN",
 
108
  "Area",
109
  ]
110
  pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
111
+ pivot_df = pivot_df.sort_values(by="FNC", ascending=False).reset_index(drop=True)
 
 
112
  return pivot_df
113
 
114
 
 
159
  .round(2)
160
  )
161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
163
  pivot_df["Model"] = pivot_df.apply(
164
  lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]),
 
183
  "Type",
184
  "Model",
185
  "Params",
 
186
  "Agg STX",
187
  "Agg FNC",
188
  "Agg SYN",
 
191
  "Agg Area",
192
  ]
193
  pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
194
+ pivot_df = pivot_df.sort_values(by="Agg FNC", ascending=False).reset_index(
195
  drop=True
196
  )
197
  return pivot_df