Spaces:
Running
Running
Commit
·
6cf1214
1
Parent(s):
d14185d
Remove aggregated column, we now match the paper
Browse files
app.py
CHANGED
|
@@ -283,13 +283,12 @@ with gr.Blocks(
|
|
| 283 |
"7%",
|
| 284 |
"25%",
|
| 285 |
"10%",
|
| 286 |
-
"
|
| 287 |
-
"
|
| 288 |
-
"
|
| 289 |
-
"
|
| 290 |
-
"
|
| 291 |
-
"
|
| 292 |
-
"7%",
|
| 293 |
],
|
| 294 |
)
|
| 295 |
|
|
|
|
| 283 |
"7%",
|
| 284 |
"25%",
|
| 285 |
"10%",
|
| 286 |
+
"8%",
|
| 287 |
+
"8%",
|
| 288 |
+
"8%",
|
| 289 |
+
"8%",
|
| 290 |
+
"8%",
|
| 291 |
+
"8%",
|
|
|
|
| 292 |
],
|
| 293 |
)
|
| 294 |
|
utils.py
CHANGED
|
@@ -72,13 +72,13 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
|
|
| 72 |
.round(2)
|
| 73 |
)
|
| 74 |
|
| 75 |
-
if df_agg is not None and agg_column is not None and agg_column in df_agg.columns:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
else: # fallback
|
| 81 |
-
|
| 82 |
|
| 83 |
pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
|
| 84 |
pivot_df["Model"] = pivot_df.apply(
|
|
@@ -100,7 +100,6 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
|
|
| 100 |
"Type",
|
| 101 |
"Model",
|
| 102 |
"Params",
|
| 103 |
-
"Aggregated ⬆️",
|
| 104 |
"STX",
|
| 105 |
"FNC",
|
| 106 |
"SYN",
|
|
@@ -109,9 +108,7 @@ def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataF
|
|
| 109 |
"Area",
|
| 110 |
]
|
| 111 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
| 112 |
-
pivot_df = pivot_df.sort_values(by="
|
| 113 |
-
drop=True
|
| 114 |
-
)
|
| 115 |
return pivot_df
|
| 116 |
|
| 117 |
|
|
@@ -162,28 +159,6 @@ def filter_bench_all(
|
|
| 162 |
.round(2)
|
| 163 |
)
|
| 164 |
|
| 165 |
-
if df_agg is not None:
|
| 166 |
-
if agg_column is not None and agg_column in df_agg.columns:
|
| 167 |
-
agg_data = df_agg[["Model", agg_column]].rename(
|
| 168 |
-
columns={agg_column: "Aggregated ⬆️"}
|
| 169 |
-
)
|
| 170 |
-
pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
|
| 171 |
-
else:
|
| 172 |
-
agg_columns = [col for col in df_agg.columns if col.startswith("Agg ")]
|
| 173 |
-
if agg_columns:
|
| 174 |
-
df_agg["Average_Agg"] = df_agg[agg_columns].mean(axis=1)
|
| 175 |
-
agg_data = df_agg[["Model", "Average_Agg"]].rename(
|
| 176 |
-
columns={"Average_Agg": "Aggregated ⬆️"}
|
| 177 |
-
)
|
| 178 |
-
pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
|
| 179 |
-
else: # fallback
|
| 180 |
-
pivot_df["Aggregated ⬆️"] = pivot_df.mean(
|
| 181 |
-
axis=1, numeric_only=True
|
| 182 |
-
).round(2)
|
| 183 |
-
else: # fallback
|
| 184 |
-
print("We do mean")
|
| 185 |
-
pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2)
|
| 186 |
-
|
| 187 |
pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
|
| 188 |
pivot_df["Model"] = pivot_df.apply(
|
| 189 |
lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]),
|
|
@@ -208,7 +183,6 @@ def filter_bench_all(
|
|
| 208 |
"Type",
|
| 209 |
"Model",
|
| 210 |
"Params",
|
| 211 |
-
"Aggregated ⬆️",
|
| 212 |
"Agg STX",
|
| 213 |
"Agg FNC",
|
| 214 |
"Agg SYN",
|
|
@@ -217,25 +191,7 @@ def filter_bench_all(
|
|
| 217 |
"Agg Area",
|
| 218 |
]
|
| 219 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
| 220 |
-
pivot_df = pivot_df.sort_values(by="
|
| 221 |
drop=True
|
| 222 |
)
|
| 223 |
return pivot_df
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
def agg_S2R_metrics(verilog_eval_rtl, rtllm):
|
| 227 |
-
if not verilog_eval_rtl or not rtllm:
|
| 228 |
-
return None
|
| 229 |
-
w1 = 155
|
| 230 |
-
w2 = 47
|
| 231 |
-
result = (w1 * verilog_eval_rtl + w2 * rtllm) / (w1 + w2)
|
| 232 |
-
return round(result, 2)
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
def agg_MC_metrics(verilog_eval_cc, verigen):
|
| 236 |
-
if not verilog_eval_cc or not verigen:
|
| 237 |
-
return None
|
| 238 |
-
w1 = 155
|
| 239 |
-
w2 = 17
|
| 240 |
-
result = (w1 * verilog_eval_cc + w2 * verigen) / (w1 + w2)
|
| 241 |
-
return round(result, 2)
|
|
|
|
| 72 |
.round(2)
|
| 73 |
)
|
| 74 |
|
| 75 |
+
# if df_agg is not None and agg_column is not None and agg_column in df_agg.columns:
|
| 76 |
+
# agg_data = df_agg[["Model", agg_column]].rename(
|
| 77 |
+
# columns={agg_column: "Aggregated ⬆️"}
|
| 78 |
+
# )
|
| 79 |
+
# pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
|
| 80 |
+
# else: # fallback
|
| 81 |
+
# pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2)
|
| 82 |
|
| 83 |
pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
|
| 84 |
pivot_df["Model"] = pivot_df.apply(
|
|
|
|
| 100 |
"Type",
|
| 101 |
"Model",
|
| 102 |
"Params",
|
|
|
|
| 103 |
"STX",
|
| 104 |
"FNC",
|
| 105 |
"SYN",
|
|
|
|
| 108 |
"Area",
|
| 109 |
]
|
| 110 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
| 111 |
+
pivot_df = pivot_df.sort_values(by="FNC", ascending=False).reset_index(drop=True)
|
|
|
|
|
|
|
| 112 |
return pivot_df
|
| 113 |
|
| 114 |
|
|
|
|
| 159 |
.round(2)
|
| 160 |
)
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
|
| 163 |
pivot_df["Model"] = pivot_df.apply(
|
| 164 |
lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]),
|
|
|
|
| 183 |
"Type",
|
| 184 |
"Model",
|
| 185 |
"Params",
|
|
|
|
| 186 |
"Agg STX",
|
| 187 |
"Agg FNC",
|
| 188 |
"Agg SYN",
|
|
|
|
| 191 |
"Agg Area",
|
| 192 |
]
|
| 193 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
| 194 |
+
pivot_df = pivot_df.sort_values(by="Agg FNC", ascending=False).reset_index(
|
| 195 |
drop=True
|
| 196 |
)
|
| 197 |
return pivot_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|