Spaces:
Running
Running
| import sys | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| # fmt: off | |
| type_emoji = { | |
| "RTL-Specific": "🔴", | |
| "General": "🟢", | |
| "Coding": "🔵" | |
| } | |
| # fmt: on | |
| def model_hyperlink(link, model_name, release): | |
| if release == "V1": | |
| return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
| else: | |
| return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a> <span style="font-variant: all-small-caps; font-weight: 600">new</span>' | |
| def handle_special_cases(benchmark, metric): | |
| if metric == "Exact Matching (EM)": | |
| benchmark = "RTL-Repo" | |
| elif benchmark == "RTL-Repo": | |
| metric = "Exact Matching (EM)" | |
| return benchmark, metric | |
| def filter_RTLRepo(subset: pd.DataFrame) -> pd.DataFrame: | |
| subset = subset.drop(subset[subset.Score < 0.0].index) | |
| details = subset[ | |
| ["Model", "Model URL", "Model Type", "Params", "Release"] | |
| ].drop_duplicates("Model") | |
| filtered_df = subset[["Model", "Score"]].rename( | |
| columns={"Score": "Exact Matching (EM)"} | |
| ) | |
| filtered_df = pd.merge(filtered_df, details, on="Model", how="left") | |
| filtered_df["Model"] = filtered_df.apply( | |
| lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]), | |
| axis=1, | |
| ) | |
| filtered_df["Type"] = filtered_df["Model Type"].map(lambda x: type_emoji.get(x, "")) | |
| filtered_df = filtered_df[["Type", "Model", "Params", "Exact Matching (EM)"]] | |
| filtered_df = filtered_df.sort_values( | |
| by="Exact Matching (EM)", ascending=False | |
| ).reset_index(drop=True) | |
| return filtered_df | |
| def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None) -> pd.DataFrame: | |
| details = subset[ | |
| ["Model", "Model URL", "Model Type", "Params", "Release"] | |
| ].drop_duplicates("Model") | |
| if "RTLLM" in subset["Benchmark"].unique(): | |
| pivot_df = ( | |
| subset.pivot_table( | |
| index="Model", columns="Metric", values="Score", aggfunc=custom_agg_s2r | |
| ) | |
| .reset_index() | |
| .round(2) | |
| ) | |
| else: | |
| pivot_df = ( | |
| subset.pivot_table( | |
| index="Model", columns="Metric", values="Score", aggfunc=custom_agg_cc | |
| ) | |
| .reset_index() | |
| .round(2) | |
| ) | |
| # if df_agg is not None and agg_column is not None and agg_column in df_agg.columns: | |
| # agg_data = df_agg[["Model", agg_column]].rename( | |
| # columns={agg_column: "Aggregated ⬆️"} | |
| # ) | |
| # pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left") | |
| # else: # fallback | |
| # pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2) | |
| pivot_df = pd.merge(pivot_df, details, on="Model", how="left") | |
| pivot_df["Model"] = pivot_df.apply( | |
| lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]), | |
| axis=1, | |
| ) | |
| pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: type_emoji.get(x, "")) | |
| pivot_df["Post-Synthesis (PSQ)"] = ( | |
| pivot_df[["Power", "Performance", "Area"]].mean(axis=1).round(2) | |
| ) | |
| pivot_df.rename( | |
| columns={ | |
| "Params": "Parameters (B)", | |
| "Syntax (STX)": "Syntax", | |
| "Functionality (FNC)": "Functionality", | |
| "Synthesis (SYN)": "Synthesis", | |
| "Post-Synthesis (PSQ)": "Post-Synthesis", | |
| }, | |
| inplace=True, | |
| ) | |
| columns_order = [ | |
| "Type", | |
| "Model", | |
| "Parameters (B)", | |
| "Syntax", | |
| "Functionality", | |
| "Synthesis", | |
| "Post-Synthesis", | |
| ] | |
| pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]] | |
| pivot_df = pivot_df.sort_values(by="Functionality", ascending=False).reset_index( | |
| drop=True | |
| ) | |
| return pivot_df | |
| def custom_agg_s2r(vals): | |
| if len(vals) == 2: | |
| s2r_val = vals.iloc[0] | |
| rtllm_val = vals.iloc[1] | |
| w1 = 155 | |
| w2 = 47 | |
| result = (w1 * s2r_val + w2 * rtllm_val) / (w1 + w2) | |
| else: | |
| result = vals.iloc[0] | |
| return round(result, 2) | |
| def custom_agg_cc(vals): | |
| if len(vals) == 2: | |
| veval_val = vals.iloc[0] | |
| vgen_val = vals.iloc[1] | |
| w1 = 155 | |
| w2 = 17 | |
| result = (w1 * veval_val + w2 * vgen_val) / (w1 + w2) | |
| else: | |
| result = vals.iloc[0] | |
| return round(result, 2) | |
| def filter_bench_all( | |
| subset: pd.DataFrame, df_agg=None, agg_column=None | |
| ) -> pd.DataFrame: | |
| details = subset[ | |
| ["Model", "Model URL", "Model Type", "Params", "Release"] | |
| ].drop_duplicates("Model") | |
| if "RTLLM" in subset["Benchmark"].unique(): | |
| pivot_df = ( | |
| subset.pivot_table( | |
| index="Model", columns="Metric", values="Score", aggfunc=custom_agg_s2r | |
| ) | |
| .reset_index() | |
| .round(2) | |
| ) | |
| else: | |
| pivot_df = ( | |
| subset.pivot_table( | |
| index="Model", columns="Metric", values="Score", aggfunc=custom_agg_cc | |
| ) | |
| .reset_index() | |
| .round(2) | |
| ) | |
| pivot_df = pd.merge(pivot_df, details, on="Model", how="left") | |
| pivot_df["Model"] = pivot_df.apply( | |
| lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"]), | |
| axis=1, | |
| ) | |
| pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: type_emoji.get(x, "")) | |
| pivot_df["Post-Synthesis Quality"] = ( | |
| pivot_df[["Power", "Performance", "Area"]].mean(axis=1).round(2) | |
| ) | |
| pivot_df.rename( | |
| columns={ | |
| "Params": "Parameters (B)", | |
| "Exact Matching (EM)": "EM", | |
| "Syntax (STX)": "Syntax", | |
| "Functionality (FNC)": "Functionality", | |
| "Synthesis (SYN)": "Synthesis", | |
| "Post-Synthesis Quality": "Post-Synthesis", | |
| }, | |
| inplace=True, | |
| ) | |
| columns_order = [ | |
| "Type", | |
| "Model", | |
| "Parameters (B)", | |
| "Syntax", | |
| "Functionality", | |
| "Synthesis", | |
| "Post-Synthesis", | |
| ] | |
| pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]] | |
| pivot_df = pivot_df.sort_values(by="Functionality", ascending=False).reset_index( | |
| drop=True | |
| ) | |
| return pivot_df | |