Spaces:
Running
Running
| import torch | |
| import modelscope | |
| import huggingface_hub | |
| import gradio as gr | |
| from threading import Thread | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from utils import EN_US | |
| ZH2EN = { | |
| "有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试": "If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment", | |
| "⚙️ 参数设置": "⚙️ Parameters", | |
| "系统提示词": "System prompt", | |
| "最大 token 数": "Max new tokens", | |
| "温度参数": "Temperature", | |
| "Top-K 采样": "Top K sampling", | |
| "Top-P 采样": "Top P sampling", | |
| "重复性惩罚": "Repetition penalty", | |
| } | |
| def _L(zh_txt: str): | |
| return ZH2EN[zh_txt] if EN_US else zh_txt | |
| MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| CONTEXT_LENGTH = 16000 | |
| DESCRIPTION = ( | |
| f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment" | |
| if EN_US | |
| else f"当前仅提供 {MODEL_NAME} 模型的 ModelScope 版部署实例,有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试" | |
| ) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| if device == torch.device("cuda"): | |
| MODEL_DIR = ( | |
| huggingface_hub.snapshot_download(MODEL_ID, cache_dir="./__pycache__") | |
| if EN_US | |
| else modelscope.snapshot_download(MODEL_ID, cache_dir="./__pycache__") | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, device_map="auto") | |
| def predict(msg, history, prompt, temper, max_tokens, top_k, repeat_penalty, top_p): | |
| # Format history with a given chat template | |
| stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"] | |
| instruction = "<|im_start|>system\n" + prompt + "\n<|im_end|>\n" | |
| for user, assistant in history: | |
| instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n" | |
| instruction += f"<|im_start|>user\n{msg}\n<|im_end|>\n<|im_start|>assistant\n" | |
| try: | |
| if device == torch.device("cpu"): | |
| raise EnvironmentError( | |
| _L("有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试") | |
| ) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, | |
| skip_prompt=True, | |
| skip_special_tokens=True, | |
| ) | |
| enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) | |
| input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
| if input_ids.shape[1] > CONTEXT_LENGTH: | |
| input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
| attention_mask = attention_mask[:, -CONTEXT_LENGTH:] | |
| generate_kwargs = dict( | |
| input_ids=input_ids.to(device), | |
| attention_mask=attention_mask.to(device), | |
| streamer=streamer, | |
| do_sample=True, | |
| temperature=temper, | |
| max_new_tokens=max_tokens, | |
| top_k=top_k, | |
| repetition_penalty=repeat_penalty, | |
| top_p=top_p, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| except Exception as e: | |
| streamer = f"{e}" | |
| outputs = [] | |
| for new_token in streamer: | |
| outputs.append(new_token) | |
| if new_token in stop_tokens: | |
| break | |
| yield "".join(outputs) | |
| def DeepSeek_R1_Qwen_7B(): | |
| with gr.Accordion(label=_L("⚙️ 参数设置"), open=False) as ds_acc: | |
| prompt = gr.Textbox( | |
| "You are a useful assistant. first recognize user request and then reply carfuly and thinking", | |
| label=_L("系统提示词"), | |
| ) | |
| temper = gr.Slider(0, 1, 0.6, label=_L("温度参数")) | |
| maxtoken = gr.Slider(0, 32000, 10000, label=_L("最大 token 数")) | |
| topk = gr.Slider(1, 80, 40, label=_L("Top-K 采样")) | |
| repet = gr.Slider(0, 2, 1.1, label=_L("重复性惩罚")) | |
| topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样")) | |
| return gr.ChatInterface( | |
| predict, | |
| description=DESCRIPTION, | |
| additional_inputs_accordion=ds_acc, | |
| additional_inputs=[prompt, temper, maxtoken, topk, repet, topp], | |
| ).queue() | |