File size: 7,364 Bytes
1ed3f19
 
 
 
2fbc343
1ed3f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b766d
1ed3f19
a6b766d
1ed3f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cc63ea
 
1ed3f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# infer.py (hotfix, совместимая версия)
import os, json, torch, torch.nn as nn, torch.nn.functional as F
from typing import List, Literal, Optional
from torchvision import models, transforms
from PIL import Image
from transformers import AutoTokenizer, AutoModel

device = "cuda" if torch.cuda.is_available() else "cpu"
SHARED_DIM = 512

# ---------- Энкодеры ----------
USE_OPEN_CLIP = False
try:
    import open_clip
    clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
        "ViT-B-16", pretrained="laion2b_s34b_b88k", device=device
    )
    clip_model.eval().requires_grad_(False)
    preprocess = clip_preprocess
    USE_OPEN_CLIP = True
except Exception:
    preprocess = transforms.Compose([
        transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(),
        transforms.Normalize(mean=(0.485,0.456,0.406), std=(0.229,0.224,0.225))
    ])
    _res = models.resnet18(weights=models.ResNet18_Weights.DEFAULT).to(device).eval()
    for p in _res.parameters(): p.requires_grad = False
    class Identity(nn.Module):
        def forward(self, x): return x
    _res.fc = Identity()

tok = AutoTokenizer.from_pretrained("distilbert-base-uncased", use_fast=True)
bert = AutoModel.from_pretrained("distilbert-base-uncased").to(device).eval()
for p in bert.parameters(): p.requires_grad = False
TEXT_DIM = getattr(bert.config, "hidden_size", 768)

# текстовая проекция (по умолчанию identity→512)
_text_proj = nn.Linear(TEXT_DIM, SHARED_DIM, bias=False).to(device).eval()
for p in _text_proj.parameters(): p.requires_grad = False
with torch.no_grad():
    W = torch.zeros((SHARED_DIM, TEXT_DIM), device=device)
    eye_dim = min(SHARED_DIM, TEXT_DIM)
    W[:eye_dim, :eye_dim] = torch.eye(eye_dim, device=W.device)
    _text_proj.weight.copy_(W)

# ---------- Вспомогательные ----------
def _ensure_2d(x: torch.Tensor, name: str, last_dim: int=None) -> torch.Tensor:
    if x.dim() == 1:
        x = x.unsqueeze(0)
    if last_dim is not None and x.size(-1) != last_dim:
        raise RuntimeError(f"{name} last dim mismatch: expected {last_dim}, got {x.size(-1)}")
    return x.contiguous()

@torch.no_grad()
def encode_images_pil(img: Image.Image) -> torch.Tensor:
    xb = preprocess(img).unsqueeze(0).to(device, non_blocking=True)
    if USE_OPEN_CLIP:
        feats = clip_model.encode_image(xb).float()
    else:
        feats = _res(xb).float()
    return F.normalize(feats, dim=-1)

@torch.no_grad()
def encode_texts(sentences: List[str]) -> torch.Tensor:
    batch = tok(sentences, return_tensors="pt", padding=True, truncation=True, max_length=48)
    for k in batch: batch[k] = batch[k].to(device, non_blocking=True)
    out = bert(**batch).last_hidden_state
    attn = batch["attention_mask"].unsqueeze(-1).float()
    summed = (out * attn).sum(dim=1)
    denom = attn.sum(dim=1).clamp_min(1.0)
    pooled = summed / denom
    proj = _text_proj(pooled)
    return F.normalize(proj.float(), dim=-1)

# ---------- Голова ----------
class SpectralMixHead(nn.Module):
    def __init__(self, in_dim, out_dim, R=8, num_modalities=2, num_tags=10, d_embed=16, k_active=2):
        super().__init__()
        self.R = int(R)
        self.k_active = int(k_active)
        self.out_dim = int(out_dim)
        self.num_tags = int(num_tags)

        self.W = nn.Parameter(torch.randn(self.R, self.out_dim, in_dim) * (0.02 / (in_dim ** 0.5)))
        self.bias = nn.Parameter(torch.zeros(self.out_dim))

        self.mod_emb = nn.Embedding(num_modalities, d_embed)
        self.tag_emb = nn.Embedding(self.num_tags, d_embed)
        self.gate = nn.Sequential(
            nn.Linear(2*d_embed, 4*self.R),
            nn.ReLU(True),
            nn.Linear(4*self.R, self.R)
        )

    def coeffs_all_tags(self, mod_ids: torch.Tensor, tau: float = 0.5,
                        mode: Literal["soft","hard","topk"] = "soft") -> torch.Tensor:
        B = mod_ids.size(0); device = mod_ids.device
        K = self.tag_emb.num_embeddings
        all_tags = torch.arange(K, device=device).unsqueeze(0).expand(B, -1)
        z_mod = self.mod_emb(mod_ids).unsqueeze(1).expand(B, K, -1)
        z_tag = self.tag_emb(all_tags)
        z = torch.cat([z_mod, z_tag], dim=-1)
        logits = self.gate(z)
        a = torch.softmax(logits / max(tau, 1e-6), dim=-1)
        if mode == "soft":
            return a
        if mode == "hard" or self.k_active <= 0:
            idx = torch.argmax(a, dim=-1, keepdim=True)
            out = torch.zeros_like(a).scatter_(-1, idx, 1.0)
            return out
        k = min(self.k_active, self.R)
        vals, idx = torch.topk(a, k=k, dim=-1)
        denom = vals.sum(dim=-1, keepdim=True).clamp_min(1e-9)
        weights = vals / denom
        out = torch.zeros_like(a).scatter_(-1, idx, weights)
        return out

    def forward(self, x: torch.Tensor, mod_ids: torch.Tensor,
                tau: float = 0.5, return_all: bool = False,
                routing_mode: Literal["soft","hard","topk"] = "soft"):
        x = _ensure_2d(x, "x", None)
        mod_ids = mod_ids.view(-1)
        a_all = self.coeffs_all_tags(mod_ids, tau=tau, mode=routing_mode)
        Wmix_rows = torch.einsum('bkr,rki->bki', a_all, self.W)
        logits = torch.einsum('bi,bki->bk', x, Wmix_rows) + self.bias
        return (logits, a_all) if return_all else logits

# ---------- I/O ----------
def load_classes(path="classes.json"):
    with open(path,"r", encoding="utf-8") as f:
        classes = json.load(f)
    return classes

def load_head(ckpt_path="./artifacts/head.pt", num_classes=10,
              R=6, d_embed=16, k_active=2) -> SpectralMixHead:
    sd = torch.load(ckpt_path, map_location=device)
    cfg = sd.get("config", {})
    head = SpectralMixHead(
        in_dim=cfg.get("in_dim", SHARED_DIM),
        out_dim=cfg.get("out_dim", num_classes),
        R=cfg.get("R", R),
        num_modalities=cfg.get("num_modalities", 2),
        num_tags=cfg.get("num_tags", num_classes),
        d_embed=cfg.get("D_EMBED", d_embed),
        k_active=cfg.get("K_ACTIVE", k_active),
    ).to(device)
    head.load_state_dict(sd["state_dict"], strict=False)
    head.eval()
    return head

# ---------- Инференс ----------
@torch.no_grad()
def predict_image(head: SpectralMixHead, img: Image.Image, classes: List[str],
                  tau=0.5, routing_mode: Literal["soft","hard","topk"]="soft"):
    x = encode_images_pil(img)
    mod = torch.zeros(1, dtype=torch.long, device=device)
    logits, a_all = head(x, mod, tau=tau, return_all=True, routing_mode=routing_mode)
    probs = logits.softmax(-1).squeeze(0).cpu()
    K = min(5, len(classes))
    topk = torch.topk(probs, k=K)
    routing = a_all.squeeze(0).cpu()[topk.indices]
    return topk.indices.tolist(), topk.values.tolist(), routing

@torch.no_grad()
def routing_for_text(head: SpectralMixHead, text: str,
                     tau=0.5, routing_mode: Literal["soft","hard","topk"]="soft"):
    x = encode_texts([text])
    mod = torch.ones(1, dtype=torch.long, device=device)
    logits, a_all = head(x, mod, tau=tau, return_all=True, routing_mode=routing_mode)
    probs = logits.softmax(-1).squeeze(0).cpu()
    K = min(5, probs.numel())
    topk = torch.topk(probs, k=K)
    routing = a_all.squeeze(0).cpu()[topk.indices]
    return probs, routing