File size: 19,735 Bytes
e447525
 
38a068f
6e75ce1
 
 
 
 
 
 
38a068f
3810cf0
6e75ce1
 
e447525
 
6e75ce1
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
 
6e75ce1
e447525
6e75ce1
 
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
e447525
 
 
6e75ce1
 
 
 
 
 
 
e447525
 
 
6e75ce1
 
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
 
6e75ce1
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
e447525
 
 
6e75ce1
 
 
 
 
 
 
 
e447525
 
 
6e75ce1
e447525
6e75ce1
e447525
 
 
6e75ce1
9a4b1c5
6e75ce1
 
 
 
 
 
 
 
e447525
 
6e75ce1
 
 
 
 
e447525
6e75ce1
 
 
e447525
6e75ce1
 
 
e447525
6e75ce1
e447525
 
 
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
e447525
 
6e75ce1
 
 
 
e447525
 
 
 
 
 
6e75ce1
e447525
 
 
6e75ce1
 
 
e447525
6e75ce1
e447525
 
9c3f582
e447525
 
6e75ce1
e447525
 
 
 
 
 
6e75ce1
 
 
 
e447525
 
 
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
 
e447525
6e75ce1
 
 
 
e447525
6e75ce1
e447525
 
6e75ce1
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
9c3f582
6e75ce1
 
 
 
 
 
 
 
 
9c3f582
6e75ce1
 
9c3f582
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e447525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e75ce1
e447525
6e75ce1
 
 
 
 
 
 
 
 
 
 
e447525
6e75ce1
 
 
e447525
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# app.py — SpectralMix Super UI: One Head, Two Modalities + Simulator
# HF Spaces-friendly, CPU-ready (Gradio 4.x)

import io
import json
import platform
from pathlib import Path

import gradio as gr
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt

# -------- local imports (должны быть в проекте) --------
# infer.py обязан экспонировать: load_classes, load_head, predict_image, routing_for_text
from infer import load_classes, load_head, predict_image, routing_for_text

# ---------------- Config ----------------
ROOT = Path(".")
CLASS_CANDIDATES = [ROOT / "classes.json", ROOT / "классы.json"]
WEIGHT_CANDIDATES = [ROOT / "head.pt", ROOT / "weights.pt", ROOT / "голова.pt", ROOT / "веса.pt"]
TAU_DEFAULT = 0.5  # стартовая температура (меняется слайдером)

# ---------------- Utilities ----------------
def pick_first_existing(paths):
    for p in paths:
        if p.exists():
            return p
    return None

def load_classes_fallback():
    p = pick_first_existing(CLASS_CANDIDATES)
    if p:
        try:
            return load_classes(str(p))
        except Exception:
            pass
    # fallback: try meta.json (root or 'artifacts'), else CIFAR-10 defaults
    for mp in [ROOT / "meta.json", ROOT / "artifacts" / "meta.json"]:
        if mp.exists():
            try:
                with open(mp, "r", encoding="utf-8") as f:
                    meta = json.load(f)
                    if isinstance(meta.get("classes"), list):
                        return meta["classes"]
            except Exception:
                pass
    return ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]

# Classes
CLASSES = load_classes_fallback()

# Weights (root only)
_weight_path = pick_first_existing(WEIGHT_CANDIDATES)
if _weight_path is None:
    print("[error] Model weights not found in repo root. Expected one of:",
          ", ".join([p.name for p in WEIGHT_CANDIDATES]))

# Загружаем голову (и переводим в eval)
HEAD = None
if _weight_path is not None:
    HEAD = load_head(str(_weight_path), num_classes=len(CLASSES))
    if hasattr(HEAD, "eval"):
        HEAD.eval()
    print(f"[info] Using local weights: {_weight_path}")

# ---------------- Plotting helpers (matplotlib; no custom colors) ----------------
def _fig_to_pil(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format="png", bbox_inches="tight")
    plt.close(fig)
    buf.seek(0)
    return Image.open(buf)

def plot_topk(labels, probs, title="Top-5 classes"):
    fig = plt.figure()
    if labels and probs:
        x = list(range(len(labels)))
        plt.bar(x, probs)
        plt.xticks(x, labels, rotation=30, ha="right")
    plt.ylabel("Probability")
    plt.title(title)
    return _fig_to_pil(fig)

def plot_expert_bars(vec, title="Expert activations (predicted class)"):
    vec = np.asarray(vec, dtype=np.float64)
    fig = plt.figure()
    x = list(range(len(vec)))
    plt.bar(x, vec)
    plt.xticks(x, [f"E{i}" for i in x], rotation=0)
    plt.ylabel("Routing weight")
    plt.title(title)
    return _fig_to_pil(fig)

def plot_routing_heatmap(routing, class_labels, title="Routing heatmap (classes × experts)"):
    arr = np.array(routing, dtype=np.float32)
    fig = plt.figure()
    im = plt.imshow(arr, aspect="auto", vmin=0.0, vmax=1.0)
    plt.colorbar(im)
    plt.yticks(range(len(class_labels)), class_labels)
    plt.xlabel("Experts")
    plt.ylabel("Classes")
    plt.title(title)
    return _fig_to_pil(fig)

def _softmax_np(x, tau=1.0):
    x = np.asarray(x, dtype=np.float64) / max(tau, 1e-12)
    x = x - x.max()
    ex = np.exp(x)
    s = ex.sum()
    return (ex / (s if s > 0 else 1.0)).astype(np.float64)

def cosine_sim(a, b, eps=1e-12):
    a = np.asarray(a, dtype=np.float64)
    b = np.asarray(b, dtype=np.float64)
    na = np.linalg.norm(a)
    nb = np.linalg.norm(b)
    if na < eps or nb < eps:
        return 0.0
    return float(np.dot(a, b) / (na * nb))

# ---------------- Inference wrappers ----------------
def _ensure_ready():
    if HEAD is None:
        raise gr.Error(
            "Model weights not found in repo root. "
            "Place `head.pt` (или `weights.pt` / `голова.pt` / `веса.pt`) рядом с app.py."
        )

def _preprocess_image(img: Image.Image) -> Image.Image:
    if img is None:
        raise gr.Error("Upload an image.")
    img = img.convert("RGB")
    # лёгкий ресайз, чтобы не ронять CPU
    max_side = max(img.size)
    if max_side > 1024:
        scale = 1024.0 / max_side
        img = img.resize((int(img.width * scale), int(img.height * scale)))
    return img

@torch.no_grad()
def run_image(img: Image.Image, tau: float):
    _ensure_ready()
    img = _preprocess_image(img)
    # Предсказание (детерминированно, без Gumbel-шума — в infer.py выключен шум на eval)
    idxs, vals, routing = predict_image(HEAD, img, CLASSES, tau=float(tau))  # routing [K,R]
    if len(idxs) == 0:
        empty = {"class": [], "prob": []}
        blank = plot_topk([], [], title="Top-5 (image)")
        return empty, blank, blank, blank, "No prediction."
    labels = [CLASSES[i] for i in idxs]
    probs = [float(v) for v in vals]
    pred_idx = int(idxs[0])
    expert_vec = routing[pred_idx].tolist()

    top5_plot = plot_topk(labels, probs, title="Top-5 (image)")
    experts_plot = plot_expert_bars(expert_vec, title="Experts (image, predicted class)")
    heatmap_plot = plot_routing_heatmap(routing, CLASSES, title="Routing heatmap (image)")

    top_ex = torch.topk(torch.tensor(expert_vec), k=min(5, len(expert_vec)))
    details = (
        f"Predicted: {CLASSES[pred_idx]}  |  τ={tau:.3f}\n"
        f"Top experts (idx:weight): " +
        ", ".join([f"{int(i)}:{float(w):.3f}" for i, w in zip(top_ex.indices.tolist(), top_ex.values.tolist())]) +
        f"\nSum(weights)={float(np.sum(expert_vec)):.3f}"
    )
    return {"class": labels, "prob": probs}, top5_plot, experts_plot, heatmap_plot, details

@torch.no_grad()
def run_text(text: str, tau: float):
    _ensure_ready()
    if not text or not text.strip():
        empty = {"class": [], "prob": []}
        blank = plot_topk([], [], title="Top-5 (text)")
        return empty, blank, blank, blank, "Enter a non-empty text."
    probs, routing = routing_for_text(HEAD, text, tau=float(tau))  # probs [K], routing [K,R]
    if probs is None or routing is None:
        blank = plot_topk([], [], title="Top-5 (text)")
        return {"class": [], "prob": []}, blank, blank, blank, "No output from text pipeline."
    top = torch.topk(probs, k=min(5, len(CLASSES)))
    labels = [CLASSES[i] for i in top.indices.tolist()]
    pvals = [float(v) for v in top.values.tolist()]
    pred_idx = int(torch.argmax(probs).item())
    expert_vec = routing[pred_idx].tolist()

    top5_plot = plot_topk(labels, pvals, title="Top-5 (text)")
    experts_plot = plot_expert_bars(expert_vec, title="Experts (text, predicted class)")
    heatmap_plot = plot_routing_heatmap(routing, CLASSES, title="Routing heatmap (text)")

    top_ex = torch.topk(torch.tensor(expert_vec), k=min(5, len(expert_vec)))
    details = (
        f"Predicted: {CLASSES[pred_idx]}  |  τ={tau:.3f}\n"
        f"Top experts (idx:weight): " +
        ", ".join([f"{int(i)}:{float(w):.3f}" for i, w in zip(top_ex.indices.tolist(), top_ex.values.tolist())]) +
        f"\nSum(weights)={float(np.sum(expert_vec)):.3f}"
    )
    return {"class": labels, "prob": pvals}, top5_plot, experts_plot, heatmap_plot, details

@torch.no_grad()
def run_compare(img: Image.Image, text: str, tau: float):
    _ensure_ready()
    if img is None or not text or not text.strip():
        blank = plot_topk([], [], title="Top-5")
        return blank, blank, "Provide both image and text."
    img = _preprocess_image(img)
    # image
    idxs_i, _, routing_i = predict_image(HEAD, img, CLASSES, tau=float(tau))
    if len(idxs_i) == 0:
        blank = plot_topk([], [], title="Top-5")
        return blank, blank, "No image prediction."
    pred_i = int(idxs_i[0])
    vec_i = routing_i[pred_i].tolist()
    # text
    probs_t, routing_t = routing_for_text(HEAD, text, tau=float(tau))
    if probs_t is None:
        blank = plot_topk([], [], title="Top-5")
        return blank, blank, "No text prediction."
    pred_t = int(torch.argmax(probs_t).item())
    vec_t = routing_t[pred_t].tolist()

    sim = cosine_sim(vec_i, vec_t)
    bar_i = plot_expert_bars(vec_i, title=f"Experts (image → {CLASSES[pred_i]})")
    bar_t = plot_expert_bars(vec_t, title=f"Experts (text  → {CLASSES[pred_t]})")
    info = (
        f"Predicted (image): {CLASSES[pred_i]} | Predicted (text): {CLASSES[pred_t]}\n"
        f"Cosine similarity of expert vectors: {sim:.3f}  (1.0 = identical, 0 = orthogonal)  |  τ={tau:.3f}"
    )
    return bar_i, bar_t, info

# ---------------- Simulator (how the head works) ----------------
_rng_global = np.random.default_rng(12345)

def _gumbel_softmax_np(logits, tau=1.0, hard=False, rng=None):
    rng = rng or _rng_global
    U = rng.uniform(low=1e-8, high=1-1e-8, size=len(logits))
    g = -np.log(-np.log(U))
    y = _softmax_np(np.asarray(logits) + g, tau=tau)
    if hard:
        hard_vec = np.zeros_like(y)
        hard_vec[int(np.argmax(y))] = 1.0
        return hard_vec
    return y

def simulate_mix(R=4, C=10, tau=0.5, hard=False, couple=0.5, seed=42, use_gumbel=False):
    """
    Возвращает:
      W: [R, C] — компонентные логиты для классов
      alpha_img, alpha_txt: [R] — смеси экспертов
      z_img, z_txt: [C] — итоговые логиты по классам
    """
    rng = np.random.default_rng(int(seed))
    # компонентные "головы": W_r \in R^{C}
    W = rng.normal(loc=0.0, scale=1.0, size=(R, C)).astype(np.float64)
    # гейтовые логиты
    gate_img = rng.normal(size=R)
    noise = rng.normal(size=R)
    gate_txt = couple * gate_img + (1.0 - couple) * noise

    if use_gumbel:
        alpha_img = _gumbel_softmax_np(gate_img, tau=tau, hard=hard, rng=rng)
        alpha_txt = _gumbel_softmax_np(gate_txt, tau=tau, hard=hard, rng=rng)
    else:
        alpha_img = _softmax_np(gate_img, tau=tau)
        alpha_txt = _softmax_np(gate_txt, tau=tau)
        if hard:
            h = np.zeros_like(alpha_img); h[int(np.argmax(alpha_img))] = 1.0; alpha_img = h
            h = np.zeros_like(alpha_txt); h[int(np.argmax(alpha_txt))] = 1.0; alpha_txt = h

    z_img = alpha_img @ W
    z_txt = alpha_txt @ W
    return W, alpha_img, alpha_txt, z_img, z_txt

def plot_class_logits(logits, class_labels, title):
    probs = _softmax_np(np.asarray(logits), tau=1.0)
    fig = plt.figure()
    x = list(range(len(class_labels)))
    plt.bar(x, probs)
    plt.xticks(x, class_labels, rotation=30, ha="right")
    plt.ylabel("Probability")
    plt.title(title)
    return _fig_to_pil(fig)

def plot_W_heatmap(W, title="Component heads W (R × C)"):
    arr = np.asarray(W, dtype=np.float32)
    if arr.shape[1] > 0:
        col_std = arr.std(axis=0, keepdims=True) + 1e-9
        arr = (arr - arr.mean(axis=0, keepdims=True)) / col_std
    fig = plt.figure()
    im = plt.imshow(arr, aspect="auto")
    plt.colorbar(im)
    plt.xlabel("Classes")
    plt.ylabel("Experts")
    plt.title(title)
    return _fig_to_pil(fig)

def run_simulator(R, C, tau, couple, seed, hard, use_gumbel):
    # валидные диапазоны
    R = int(max(2, min(16, R)))
    C = int(max(2, min(20, C)))
    # классы для подписи
    if len(CLASSES) >= C:
        cls = CLASSES[:C]
    else:
        cls = (CLASSES + [f"class_{i}" for i in range(C - len(CLASSES))])[:C]

    W, a_img, a_txt, z_img, z_txt = simulate_mix(
        R=R, C=C, tau=float(tau), hard=bool(hard),
        couple=float(couple), seed=int(seed), use_gumbel=bool(use_gumbel)
    )
    bars_img = plot_expert_bars(a_img, title="α (image)")
    bars_txt = plot_expert_bars(a_txt, title="α (text)")
    heat_W  = plot_W_heatmap(W, title="Components W (experts × classes)")
    cls_img = plot_class_logits(z_img, cls, title="Mixed logits → probs (image)")
    cls_txt = plot_class_logits(z_txt, cls, title="Mixed logits → probs (text)")

    sim = cosine_sim(a_img, a_txt)
    info = (
        f"Cosine(α_image, α_text) = {sim:.3f}  |  τ={tau:.3f} "
        f"| {'Gumbel' if use_gumbel else 'Softmax'} | {'hard' if hard else 'soft'} | couple={couple:.2f}"
    )
    top_ex_img = ", ".join([f"E{i}:{w:.3f}" for i, w in enumerate(a_img)])
    top_ex_txt = ", ".join([f"E{i}:{w:.3f}" for i, w in enumerate(a_txt)])
    details = f"α_image: [{top_ex_img}]\nα_text : [{top_ex_txt}]"
    return bars_img, bars_txt, heat_W, cls_img, cls_txt, info, details

# ---------------- UI helpers ----------------
def _env_banner(weights_path: str, classes_len: int):
    import importlib
    pkgs = {}
    try:
        import torchvision as _tv
        pkgs["torchvision"] = _tv.__version__
    except Exception:
        pkgs["torchvision"] = "n/a"
    try:
        import transformers as _tf
        pkgs["transformers"] = _tf.__version__
    except Exception:
        pkgs["transformers"] = "n/a"
    try:
        import open_clip_torch as _oc
        pkgs["open_clip_torch"] = getattr(_oc, "__version__", "present")
    except Exception:
        pkgs["open_clip_torch"] = "n/a"

    rows = [
        f"- **torch**: {torch.__version__}",
        f"- **torchvision**: {pkgs['torchvision']}",
        f"- **gradio**: {gr.__version__}",
        f"- **numpy**: {np.__version__}",
        f"- **matplotlib**: {plt.matplotlib.__version__}",
        f"- **transformers**: {pkgs['transformers']}",
        f"- **open_clip_torch**: {pkgs['open_clip_torch']}",
    ]
    sysrow = f"- **Python**: {platform.python_version()}  |  **Device**: {'CUDA' if torch.cuda.is_available() else 'CPU'}"
    wrow = f"**Using weights**: `{weights_path}`  |  **#classes**: {classes_len}"
    return wrow + "<br>" + sysrow + "<br>" + "<br>".join(rows)

# ---------------- UI ----------------
with gr.Blocks(title="SpectralMix — One Head, Two Modalities (Image/Text)") as demo:
    gr.HTML("""
    <style>.notranslate { translate: no; }</style>
    <div class="notranslate" style="font-size:28px; font-weight:700;">🧠 SpectralMix — One Head, Two Modalities</div>
    <div>One classifier head for <i>image</i> and <i>text</i>. We mix a few <b>orthogonal experts</b> with (Gumbel-)Softmax.<br>
    Same class ⇒ same expert (similarity≈1). Different classes ⇒ different experts (≈0). This avoids catastrophic forgetting across stages.</div>
    """)
    gr.Markdown(_env_banner(str(_weight_path) if _weight_path else "N/A", len(CLASSES)))

    # Общая температура для инференса
    tau_slider = gr.Slider(0.1, 2.0, value=TAU_DEFAULT, step=0.05, label="Temperature τ (inference)")

    with gr.Tab("Image → classes & experts"):
        with gr.Row():
            img_in = gr.Image(type="pil", label="Image", height=260)
            with gr.Column():
                top5_out = gr.JSON(label="Top-5 classes")
                details = gr.Textbox(label="Details", lines=3)
        with gr.Row():
            probs_plot   = gr.Image(label="Top-5 probabilities", height=260)
            experts_plot = gr.Image(label="Expert activations (predicted class)", height=260)
            routing_plot = gr.Image(label="Routing heatmap (classes × experts)", height=260)

        gr.Button("Predict").click(
            fn=run_image,
            inputs=[img_in, tau_slider],
            outputs=[top5_out, probs_plot, experts_plot, routing_plot, details],
            concurrency_limit=2
        )

    with gr.Tab("Text → classes & experts"):
        with gr.Row():
            txt_in = gr.Textbox(label="Text prompt (e.g., 'a photo of a dog')", lines=2)
            with gr.Column():
                txt_top = gr.JSON(label="Top-5 classes")
                txt_details = gr.Textbox(label="Details", lines=3)
        with gr.Row():
            txt_probs_plot   = gr.Image(label="Top-5 probabilities", height=260)
            txt_experts_plot = gr.Image(label="Expert activations (predicted class)", height=260)
            txt_routing_plot = gr.Image(label="Routing heatmap (classes × experts)", height=260)

        gr.Button("Run").click(
            fn=run_text, inputs=[txt_in, tau_slider],
            outputs=[txt_top, txt_probs_plot, txt_experts_plot, txt_routing_plot, txt_details],
            concurrency_limit=2
        )

    with gr.Tab("Compare (Image vs Text)"):
        with gr.Row():
            c_img = gr.Image(type="pil", label="Image", height=240)
            c_txt = gr.Textbox(label="Text prompt", lines=2)
        with gr.Row():
            bar_i = gr.Image(label="Experts (image)", height=260)
            bar_t = gr.Image(label="Experts (text)", height=260)
        info = gr.Textbox(label="Similarity", lines=2)
        gr.Button("Compare").click(
            run_compare, inputs=[c_img, c_txt, tau_slider], outputs=[bar_i, bar_t, info],
            concurrency_limit=2
        )
        gr.Markdown(
            "Tip: same-class pairs should give similarity ≈ **1.0**, different-class pairs → ≈ **0.0**."
        )

    with gr.Tab("Simulator (how the head works)"):
        gr.Markdown("Interactive simulator of routing and mixing. "
                    "Adjust #experts, temperature, and modality coupling; see α-vectors and class probabilities.")
        with gr.Row():
            R_in   = gr.Slider(2, 16, value=4, step=1, label="#Experts (R)")
            C_in   = gr.Slider(2, 20, value=min(10, len(CLASSES)), step=1, label="#Classes (C)")
            tau_in = gr.Slider(0.1, 2.0, value=0.5, step=0.05, label="Temperature τ (sim)")
        with gr.Row():
            couple_in  = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Coupling of modalities (0=different, 1=identical)")
            seed_in    = gr.Number(value=42, precision=0, label="Seed")
            hard_in    = gr.Checkbox(False, label="Hard routing (one-hot)")
            gumbel_in  = gr.Checkbox(False, label="Use Gumbel-Softmax (stochastic)")

        with gr.Row():
            sim_alpha_img = gr.Image(label="α (image)", height=220)
            sim_alpha_txt = gr.Image(label="α (text)",  height=220)
            sim_W_heat    = gr.Image(label="Components (W)", height=220)
        with gr.Row():
            sim_cls_img = gr.Image(label="Image → probs", height=240)
            sim_cls_txt = gr.Image(label="Text  → probs", height=240)

        sim_info    = gr.Textbox(label="Summary", lines=2)
        sim_details = gr.Textbox(label="Details", lines=3)

        gr.Button("Simulate").click(
            run_simulator,
            inputs=[R_in, C_in, tau_in, couple_in, seed_in, hard_in, gumbel_in],
            outputs=[sim_alpha_img, sim_alpha_txt, sim_W_heat, sim_cls_img, sim_cls_txt, sim_info, sim_details],
            concurrency_limit=2
        )

    # Healthcheck (скрытый блок, удобно при отладке)
    with gr.Row(visible=False):
        btn = gr.Button("Healthcheck")
        txt = gr.Textbox()
        def _healthcheck():
            try:
                _ensure_ready()
                return "ok"
            except Exception as e:
                return f"error: {e}"
        btn.click(lambda: _healthcheck(), outputs=txt, concurrency_limit=1)

# очередь и запуск (Gradio 4.x — без concurrency_count)
demo.queue()

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)