Spaces:
Sleeping
Sleeping
| import cv2 | |
| import numpy as np | |
| from fastapi import FastAPI, File, UploadFile | |
| from fastapi.responses import JSONResponse, Response | |
| import uvicorn | |
| import logging | |
| import time | |
| import supervision as sv | |
| from ultralytics import YOLO | |
| app = FastAPI() | |
| model = YOLO("models/best_v21.pt", task="detect") | |
| def parse_detection(detections): | |
| parsed_rows = [] | |
| for i in range(len(detections.xyxy)): | |
| x_min = float(detections.xyxy[i][0]) | |
| y_min = float(detections.xyxy[i][1]) | |
| x_max = float(detections.xyxy[i][2]) | |
| y_max = float(detections.xyxy[i][3]) | |
| width = int(x_max - x_min) | |
| height = int(y_max - y_min) | |
| row = { | |
| "x": int(y_min), | |
| "y": int(x_min), | |
| "width": width, | |
| "height": height, | |
| "class_id": "" | |
| if detections.class_id is None | |
| else int(detections.class_id[i]), | |
| "confidence": "" | |
| if detections.confidence is None | |
| else float(detections.confidence[i]), | |
| "tracker_id": "" | |
| if detections.tracker_id is None | |
| else int(detections.tracker_id[i]), | |
| } | |
| if hasattr(detections, "data"): | |
| for key, value in detections.data.items(): | |
| if key == "class_name": | |
| key = "class" | |
| row[key] = ( | |
| str(value[i]) | |
| if hasattr(value, "__getitem__") and value.ndim != 0 | |
| else str(value) | |
| ) | |
| parsed_rows.append(row) | |
| return parsed_rows | |
| def infer(image): | |
| image_arr = np.frombuffer(image, np.uint8) | |
| image = cv2.imdecode(image_arr, cv2.IMREAD_COLOR) | |
| image = cv2.resize(image, (640, 640)) | |
| results = model(image, conf=0.6, iou=0.25, imgsz=640)[0] | |
| width, height = results.orig_shape[1], results.orig_shape[0] | |
| print(results.speed) | |
| detections = sv.Detections.from_ultralytics(results) | |
| parsed_rows = parse_detection(detections) | |
| parsed_result = {'predictions': parsed_rows, 'image': {'width': width, 'height': height}} | |
| return parsed_result | |
| async def process_image(image: UploadFile = File(...)): | |
| filename = image.filename | |
| logging.info(f"Received process-image request for file: {filename}") | |
| image_data = await image.read() | |
| results = infer(image_data) | |
| logging.info("Returning JSON results") | |
| return JSONResponse(content=results) | |
| def hello_world(): | |
| return 'Hello World from Detomo AI!' | |
| if __name__ == "__main__": | |
| uvicorn.run("main:app", port=8001, reload=True) | |