Charlie Li
commited on
Commit
Β·
988d509
1
Parent(s):
015a301
pregenerate samples
Browse files- app.py +36 -65
- requirements.txt +1 -0
- utils.py +30 -0
app.py
CHANGED
|
@@ -4,6 +4,9 @@ import random
|
|
| 4 |
import datetime
|
| 5 |
from utils import *
|
| 6 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip"
|
| 9 |
filename = "derendering_supp.zip"
|
|
@@ -14,7 +17,7 @@ video_cache_dir.mkdir(exist_ok=True)
|
|
| 14 |
|
| 15 |
download_file(file_url, filename)
|
| 16 |
unzip_file(filename)
|
| 17 |
-
print("Downloaded and unzipped the
|
| 18 |
|
| 19 |
diagram = get_svg_content("derendering_supp/derender_diagram.svg")
|
| 20 |
org = get_svg_content("org/cor.svg")
|
|
@@ -51,43 +54,23 @@ sketches_base64_strings = {
|
|
| 51 |
name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches
|
| 52 |
}
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
):
|
| 72 |
-
example_id = name.strip(".png")
|
| 73 |
-
inkml_file = os.path.join(
|
| 74 |
-
inkml_path_base, mode, f"{example_id}.inkml"
|
| 75 |
-
)
|
| 76 |
-
if not os.path.exists(inkml_file):
|
| 77 |
-
continue
|
| 78 |
-
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
| 79 |
-
video_filepath = video_cache_dir / video_filename
|
| 80 |
-
if not video_filepath.exists():
|
| 81 |
-
img_path = os.path.join(path, name)
|
| 82 |
-
img = load_and_pad_img_dir(img_path)
|
| 83 |
-
ink = inkml_to_ink(inkml_file)
|
| 84 |
-
plot_ink_to_video(ink, str(video_filepath), input_image=img)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
pregenerate_videos()
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def demo(Dataset, Model, Output_Format):
|
| 91 |
if Model == "Small-i":
|
| 92 |
inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml"
|
| 93 |
elif Model == "Small-p":
|
|
@@ -104,8 +87,6 @@ def demo(Dataset, Model, Output_Format):
|
|
| 104 |
Dataset,
|
| 105 |
"and model:",
|
| 106 |
Model,
|
| 107 |
-
"with output format:",
|
| 108 |
-
Output_Format,
|
| 109 |
)
|
| 110 |
path = f"./derendering_supp/{Dataset}/images_sample"
|
| 111 |
samples = os.listdir(path)
|
|
@@ -132,13 +113,10 @@ def demo(Dataset, Model, Output_Format):
|
|
| 132 |
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
| 133 |
video_filepath = video_cache_dir / video_filename
|
| 134 |
|
| 135 |
-
if
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
video_outputs.append("./" + str(video_filepath))
|
| 140 |
-
else:
|
| 141 |
-
video_outputs.append(None)
|
| 142 |
|
| 143 |
fig, ax = plt.subplots()
|
| 144 |
ax.axis("off")
|
|
@@ -152,13 +130,13 @@ def demo(Dataset, Model, Output_Format):
|
|
| 152 |
return (
|
| 153 |
img,
|
| 154 |
text_outputs[0],
|
| 155 |
-
img_outputs[0],
|
| 156 |
video_outputs[0],
|
| 157 |
text_outputs[1],
|
| 158 |
-
img_outputs[1],
|
| 159 |
video_outputs[1],
|
| 160 |
text_outputs[2],
|
| 161 |
-
img_outputs[2],
|
| 162 |
video_outputs[2],
|
| 163 |
)
|
| 164 |
|
|
@@ -182,7 +160,6 @@ with gr.Blocks() as app:
|
|
| 182 |
"""
|
| 183 |
π This demo highlights the capabilities of Small-i, Small-p, and Large-i across three public datasets (word-level, with 100 random samples each).<br>
|
| 184 |
π² Select a model variant and dataset (IAM, IMGUR5K, HierText), then hit 'Sample' to view a randomly selected input alongside its corresponding outputs for all three types of inference.<br>
|
| 185 |
-
πΌοΈ Output options: Image or Image+Video. Opting for images yields quicker results, adding videos offers a dynamic view of the digital ink writing process.<br>
|
| 186 |
"""
|
| 187 |
)
|
| 188 |
with gr.Row():
|
|
@@ -194,15 +171,12 @@ with gr.Blocks() as app:
|
|
| 194 |
label="InkSight Model Variant",
|
| 195 |
value="Small-i",
|
| 196 |
)
|
| 197 |
-
output_format = gr.Dropdown(
|
| 198 |
-
["Image", "Image+Video"], label="Output Format", value="Image"
|
| 199 |
-
)
|
| 200 |
im = gr.Image(label="Input Image")
|
| 201 |
|
| 202 |
-
with gr.Row():
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
with gr.Row():
|
| 208 |
d_t_text = gr.Textbox(
|
|
@@ -210,9 +184,6 @@ with gr.Blocks() as app:
|
|
| 210 |
)
|
| 211 |
r_d_text = gr.Textbox(label="Recognition from the model", interactive=False)
|
| 212 |
vanilla_text = gr.Textbox(label="Vanilla", interactive=False)
|
| 213 |
-
gr.Markdown(
|
| 214 |
-
"To visualize the writing process in video, select *Output format* as **Image+Video**."
|
| 215 |
-
)
|
| 216 |
with gr.Row():
|
| 217 |
d_t_vid = gr.Video(
|
| 218 |
label="Derender with Text (Click to stop/play)", autoplay=True
|
|
@@ -227,17 +198,17 @@ with gr.Blocks() as app:
|
|
| 227 |
|
| 228 |
btn_sub.click(
|
| 229 |
fn=demo,
|
| 230 |
-
inputs=[dataset, model
|
| 231 |
outputs=[
|
| 232 |
im,
|
| 233 |
d_t_text,
|
| 234 |
-
d_t_img,
|
| 235 |
d_t_vid,
|
| 236 |
r_d_text,
|
| 237 |
-
r_d_img,
|
| 238 |
r_d_vid,
|
| 239 |
vanilla_text,
|
| 240 |
-
vanilla_img,
|
| 241 |
vanilla_vid,
|
| 242 |
],
|
| 243 |
)
|
|
|
|
| 4 |
import datetime
|
| 5 |
from utils import *
|
| 6 |
from pathlib import Path
|
| 7 |
+
import gdown
|
| 8 |
+
|
| 9 |
+
pre_generate = False
|
| 10 |
|
| 11 |
file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip"
|
| 12 |
filename = "derendering_supp.zip"
|
|
|
|
| 17 |
|
| 18 |
download_file(file_url, filename)
|
| 19 |
unzip_file(filename)
|
| 20 |
+
print("Downloaded and unzipped the inks.")
|
| 21 |
|
| 22 |
diagram = get_svg_content("derendering_supp/derender_diagram.svg")
|
| 23 |
org = get_svg_content("org/cor.svg")
|
|
|
|
| 54 |
name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches
|
| 55 |
}
|
| 56 |
|
| 57 |
+
if not pre_generate:
|
| 58 |
+
print("Downloading pre-generated videos from google drive.")
|
| 59 |
+
# Download from gdown 1oT6zw1EbWg3lavBMXsL28piULGNmqJzA
|
| 60 |
+
gdown.download(
|
| 61 |
+
"https://drive.google.com/uc?id=1oT6zw1EbWg3lavBMXsL28piULGNmqJzA",
|
| 62 |
+
str(video_cache_dir / "gdrive_file.zip"),
|
| 63 |
+
quiet=False,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Unzip the file to video_cache_dir
|
| 67 |
+
unzip_file(str(video_cache_dir / "gdrive_file.zip"))
|
| 68 |
+
else:
|
| 69 |
+
pregenerate_videos(video_cache_dir=video_cache_dir)
|
| 70 |
+
print("Videos cached.")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def demo(Dataset, Model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
if Model == "Small-i":
|
| 75 |
inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml"
|
| 76 |
elif Model == "Small-p":
|
|
|
|
| 87 |
Dataset,
|
| 88 |
"and model:",
|
| 89 |
Model,
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
path = f"./derendering_supp/{Dataset}/images_sample"
|
| 92 |
samples = os.listdir(path)
|
|
|
|
| 113 |
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
| 114 |
video_filepath = video_cache_dir / video_filename
|
| 115 |
|
| 116 |
+
if not video_filepath.exists():
|
| 117 |
+
plot_ink_to_video(ink, str(video_filepath), input_image=img)
|
| 118 |
+
print("Cached video at:", video_filepath)
|
| 119 |
+
video_outputs.append("./" + str(video_filepath))
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
fig, ax = plt.subplots()
|
| 122 |
ax.axis("off")
|
|
|
|
| 130 |
return (
|
| 131 |
img,
|
| 132 |
text_outputs[0],
|
| 133 |
+
# img_outputs[0],
|
| 134 |
video_outputs[0],
|
| 135 |
text_outputs[1],
|
| 136 |
+
# img_outputs[1],
|
| 137 |
video_outputs[1],
|
| 138 |
text_outputs[2],
|
| 139 |
+
# img_outputs[2],
|
| 140 |
video_outputs[2],
|
| 141 |
)
|
| 142 |
|
|
|
|
| 160 |
"""
|
| 161 |
π This demo highlights the capabilities of Small-i, Small-p, and Large-i across three public datasets (word-level, with 100 random samples each).<br>
|
| 162 |
π² Select a model variant and dataset (IAM, IMGUR5K, HierText), then hit 'Sample' to view a randomly selected input alongside its corresponding outputs for all three types of inference.<br>
|
|
|
|
| 163 |
"""
|
| 164 |
)
|
| 165 |
with gr.Row():
|
|
|
|
| 171 |
label="InkSight Model Variant",
|
| 172 |
value="Small-i",
|
| 173 |
)
|
|
|
|
|
|
|
|
|
|
| 174 |
im = gr.Image(label="Input Image")
|
| 175 |
|
| 176 |
+
# with gr.Row():
|
| 177 |
+
# d_t_img = gr.Image(label="Derender with Text")
|
| 178 |
+
# r_d_img = gr.Image(label="Recognize and Derender")
|
| 179 |
+
# vanilla_img = gr.Image(label="Vanilla")
|
| 180 |
|
| 181 |
with gr.Row():
|
| 182 |
d_t_text = gr.Textbox(
|
|
|
|
| 184 |
)
|
| 185 |
r_d_text = gr.Textbox(label="Recognition from the model", interactive=False)
|
| 186 |
vanilla_text = gr.Textbox(label="Vanilla", interactive=False)
|
|
|
|
|
|
|
|
|
|
| 187 |
with gr.Row():
|
| 188 |
d_t_vid = gr.Video(
|
| 189 |
label="Derender with Text (Click to stop/play)", autoplay=True
|
|
|
|
| 198 |
|
| 199 |
btn_sub.click(
|
| 200 |
fn=demo,
|
| 201 |
+
inputs=[dataset, model],
|
| 202 |
outputs=[
|
| 203 |
im,
|
| 204 |
d_t_text,
|
| 205 |
+
# d_t_img,
|
| 206 |
d_t_vid,
|
| 207 |
r_d_text,
|
| 208 |
+
# r_d_img,
|
| 209 |
r_d_vid,
|
| 210 |
vanilla_text,
|
| 211 |
+
# vanilla_img,
|
| 212 |
vanilla_vid,
|
| 213 |
],
|
| 214 |
)
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ numpy
|
|
| 3 |
matplotlib
|
| 4 |
Pillow
|
| 5 |
numpy
|
|
|
|
|
|
| 3 |
matplotlib
|
| 4 |
Pillow
|
| 5 |
numpy
|
| 6 |
+
gdown
|
utils.py
CHANGED
|
@@ -240,3 +240,33 @@ def parse_inkml_annotations(inkml_file):
|
|
| 240 |
annotation_dict[annotation_type] = annotation_text
|
| 241 |
|
| 242 |
return annotation_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
annotation_dict[annotation_type] = annotation_text
|
| 241 |
|
| 242 |
return annotation_dict
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def pregenerate_videos(video_cache_dir):
|
| 246 |
+
datasets = ["IAM", "IMGUR5K", "HierText"]
|
| 247 |
+
models = ["Small-i", "Large-i", "Small-p"]
|
| 248 |
+
query_modes = ["d+t", "r+d", "vanilla"]
|
| 249 |
+
for Dataset in datasets:
|
| 250 |
+
for Model in models:
|
| 251 |
+
inkml_path_base = f"./derendering_supp/{Model.lower()}_{Dataset}_inkml"
|
| 252 |
+
for mode in query_modes:
|
| 253 |
+
path = f"./derendering_supp/{Dataset}/images_sample"
|
| 254 |
+
if not os.path.exists(path):
|
| 255 |
+
continue
|
| 256 |
+
samples = os.listdir(path)
|
| 257 |
+
for name in tqdm(
|
| 258 |
+
samples, desc=f"Generating {Model}-{Dataset}-{mode} videos"
|
| 259 |
+
):
|
| 260 |
+
example_id = name.strip(".png")
|
| 261 |
+
inkml_file = os.path.join(
|
| 262 |
+
inkml_path_base, mode, f"{example_id}.inkml"
|
| 263 |
+
)
|
| 264 |
+
if not os.path.exists(inkml_file):
|
| 265 |
+
continue
|
| 266 |
+
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
|
| 267 |
+
video_filepath = video_cache_dir / video_filename
|
| 268 |
+
if not video_filepath.exists():
|
| 269 |
+
img_path = os.path.join(path, name)
|
| 270 |
+
img = load_and_pad_img_dir(img_path)
|
| 271 |
+
ink = inkml_to_ink(inkml_file)
|
| 272 |
+
plot_ink_to_video(ink, str(video_filepath), input_image=img)
|