Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,43 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from DPTNet_eval.DPTNet_quant_sep import load_dpt_model, dpt_sep_process
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# 加載模型
|
| 6 |
model = load_dpt_model()
|
| 7 |
|
| 8 |
def separate_audio(input_wav):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
outfilename = "output.wav"
|
| 10 |
-
dpt_sep_process(
|
|
|
|
| 11 |
return (
|
| 12 |
outfilename.replace('.wav', '_sep1.wav'),
|
| 13 |
outfilename.replace('.wav', '_sep2.wav')
|
|
@@ -25,14 +55,14 @@ description_html = """
|
|
| 25 |
<a href='http://deeplearning101.twman.org' target='_blank'>Deep Learning 101</a>
|
| 26 |
</div>
|
| 27 |
|
| 28 |
-
<br
|
| 29 |
|
| 30 |
### 🔍 使用方式:
|
| 31 |
- 上傳一段包含兩人對話的混音音檔(支援 `.mp3`, `.wav`)
|
| 32 |
- 點擊「Separate」按鈕
|
| 33 |
- 分離出兩個說話人的音軌
|
| 34 |
|
| 35 |
-
<br
|
| 36 |
|
| 37 |
### 📘 相關技術文章:
|
| 38 |
<ul>
|
|
@@ -69,4 +99,4 @@ if __name__ == "__main__":
|
|
| 69 |
allow_flagging="never"
|
| 70 |
)
|
| 71 |
|
| 72 |
-
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from DPTNet_eval.DPTNet_quant_sep import load_dpt_model, dpt_sep_process
|
| 4 |
+
import os
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
import numpy as np
|
| 7 |
+
import librosa
|
| 8 |
+
import warnings
|
| 9 |
|
| 10 |
# 加載模型
|
| 11 |
model = load_dpt_model()
|
| 12 |
|
| 13 |
def separate_audio(input_wav):
|
| 14 |
+
"""
|
| 15 |
+
Gradio Audio(filepath) → 處理 → 回傳兩個分離後的音檔路徑
|
| 16 |
+
"""
|
| 17 |
+
file_extension = os.path.splitext(input_wav)[1].lower()
|
| 18 |
+
|
| 19 |
+
# 如果是 MP3 或其他格式,先轉成 WAV
|
| 20 |
+
if file_extension != ".wav":
|
| 21 |
+
data, sr = sf.read(input_wav)
|
| 22 |
+
|
| 23 |
+
# 轉單聲道
|
| 24 |
+
if len(data.shape) > 1:
|
| 25 |
+
data = data.mean(axis=1)
|
| 26 |
+
|
| 27 |
+
# 重採樣到 16kHz
|
| 28 |
+
if sr != 16000:
|
| 29 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
| 30 |
+
|
| 31 |
+
# 存成 WAV
|
| 32 |
+
sf.write("input.wav", data, 16000)
|
| 33 |
+
wav_path = "input.wav"
|
| 34 |
+
else:
|
| 35 |
+
wav_path = input_wav
|
| 36 |
+
|
| 37 |
+
# 分離語音
|
| 38 |
outfilename = "output.wav"
|
| 39 |
+
dpt_sep_process(wav_path, model=model, outfilename=outfilename)
|
| 40 |
+
|
| 41 |
return (
|
| 42 |
outfilename.replace('.wav', '_sep1.wav'),
|
| 43 |
outfilename.replace('.wav', '_sep2.wav')
|
|
|
|
| 55 |
<a href='http://deeplearning101.twman.org' target='_blank'>Deep Learning 101</a>
|
| 56 |
</div>
|
| 57 |
|
| 58 |
+
<br>
|
| 59 |
|
| 60 |
### 🔍 使用方式:
|
| 61 |
- 上傳一段包含兩人對話的混音音檔(支援 `.mp3`, `.wav`)
|
| 62 |
- 點擊「Separate」按鈕
|
| 63 |
- 分離出兩個說話人的音軌
|
| 64 |
|
| 65 |
+
<br>
|
| 66 |
|
| 67 |
### 📘 相關技術文章:
|
| 68 |
<ul>
|
|
|
|
| 99 |
allow_flagging="never"
|
| 100 |
)
|
| 101 |
|
| 102 |
+
interface.launch(debug=True)
|