Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -165,165 +165,165 @@ def _predict_single_dog(image):
|
|
| 165 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 166 |
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
|
| 188 |
-
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
|
| 193 |
-
#
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
|
| 247 |
|
| 248 |
-
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
|
| 323 |
-
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
|
| 328 |
# async def predict(image):
|
| 329 |
# if image is None:
|
|
@@ -396,166 +396,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, me
|
|
| 396 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 397 |
|
| 398 |
|
| 399 |
-
# async def process_single_dog(image):
|
| 400 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 401 |
-
# if top1_prob < 0.2:
|
| 402 |
-
# initial_state = {
|
| 403 |
-
# "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
| 404 |
-
# "buttons": [],
|
| 405 |
-
# "show_back": False
|
| 406 |
-
# }
|
| 407 |
-
# return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 408 |
-
|
| 409 |
-
# breed = topk_breeds[0]
|
| 410 |
-
# description = get_dog_description(breed)
|
| 411 |
-
|
| 412 |
-
# if top1_prob >= 0.5:
|
| 413 |
-
# formatted_description = format_description(description, breed)
|
| 414 |
-
# initial_state = {
|
| 415 |
-
# "explanation": formatted_description,
|
| 416 |
-
# "buttons": [],
|
| 417 |
-
# "show_back": False
|
| 418 |
-
# }
|
| 419 |
-
# return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 420 |
-
# else:
|
| 421 |
-
# explanation = (
|
| 422 |
-
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
| 423 |
-
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
| 424 |
-
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
| 425 |
-
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
| 426 |
-
# "Click on a button to view more information about the breed."
|
| 427 |
-
# )
|
| 428 |
-
# buttons = [
|
| 429 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
| 430 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
| 431 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
| 432 |
-
# ]
|
| 433 |
-
# initial_state = {
|
| 434 |
-
# "explanation": explanation,
|
| 435 |
-
# "buttons": buttons,
|
| 436 |
-
# "show_back": True
|
| 437 |
-
# }
|
| 438 |
-
# return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
| 439 |
-
|
| 440 |
-
# def show_details(choice, previous_output, initial_state):
|
| 441 |
-
# if not choice:
|
| 442 |
-
# return previous_output, gr.update(visible=True), initial_state
|
| 443 |
-
|
| 444 |
-
# try:
|
| 445 |
-
# breed = choice.split("More about ")[-1]
|
| 446 |
-
# description = get_dog_description(breed)
|
| 447 |
-
# formatted_description = format_description(description, breed)
|
| 448 |
-
# return formatted_description, gr.update(visible=True), initial_state
|
| 449 |
-
# except Exception as e:
|
| 450 |
-
# error_msg = f"An error occurred while showing details: {e}"
|
| 451 |
-
# print(error_msg) # 添加日誌輸出
|
| 452 |
-
# return error_msg, gr.update(visible=True), initial_state
|
| 453 |
-
|
| 454 |
-
# # 介面部分
|
| 455 |
-
# with gr.Blocks() as iface:
|
| 456 |
-
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 457 |
-
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
| 458 |
-
|
| 459 |
-
# with gr.Row():
|
| 460 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
| 461 |
-
# output_image = gr.Image(label="Annotated Image")
|
| 462 |
-
|
| 463 |
-
# output = gr.Markdown(label="Prediction Results")
|
| 464 |
-
|
| 465 |
-
# with gr.Row():
|
| 466 |
-
# btn1 = gr.Button("View More 1", visible=False)
|
| 467 |
-
# btn2 = gr.Button("View More 2", visible=False)
|
| 468 |
-
# btn3 = gr.Button("View More 3", visible=False)
|
| 469 |
-
|
| 470 |
-
# back_button = gr.Button("Back", visible=False)
|
| 471 |
-
|
| 472 |
-
# initial_state = gr.State()
|
| 473 |
-
|
| 474 |
-
# input_image.change(
|
| 475 |
-
# predict,
|
| 476 |
-
# inputs=input_image,
|
| 477 |
-
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
| 478 |
-
# )
|
| 479 |
-
|
| 480 |
-
# for btn in [btn1, btn2, btn3]:
|
| 481 |
-
# btn.click(
|
| 482 |
-
# show_details,
|
| 483 |
-
# inputs=[btn, output, initial_state],
|
| 484 |
-
# outputs=[output, back_button, initial_state]
|
| 485 |
-
# )
|
| 486 |
-
|
| 487 |
-
# back_button.click(
|
| 488 |
-
# lambda state: (state["explanation"],
|
| 489 |
-
# state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
|
| 490 |
-
# state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
|
| 491 |
-
# gr.update(visible=state["show_back"])),
|
| 492 |
-
# inputs=[initial_state],
|
| 493 |
-
# outputs=[output, btn1, btn2, btn3, back_button]
|
| 494 |
-
# )
|
| 495 |
-
|
| 496 |
-
# gr.Examples(
|
| 497 |
-
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
| 498 |
-
# inputs=input_image
|
| 499 |
-
# )
|
| 500 |
-
|
| 501 |
-
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 502 |
-
|
| 503 |
-
# if __name__ == "__main__":
|
| 504 |
-
# iface.launch()
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
async def predict(image):
|
| 508 |
-
if image is None:
|
| 509 |
-
return "Please upload an image to start.", None, [], gr.update(visible=False), None
|
| 510 |
-
|
| 511 |
-
try:
|
| 512 |
-
if isinstance(image, np.ndarray):
|
| 513 |
-
image = Image.fromarray(image)
|
| 514 |
-
|
| 515 |
-
dogs = await detect_multiple_dogs(image)
|
| 516 |
-
|
| 517 |
-
if len(dogs) <= 1:
|
| 518 |
-
return await process_single_dog(image)
|
| 519 |
-
|
| 520 |
-
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 521 |
-
explanations = []
|
| 522 |
-
buttons = []
|
| 523 |
-
annotated_image = image.copy()
|
| 524 |
-
draw = ImageDraw.Draw(annotated_image)
|
| 525 |
-
font = ImageFont.load_default()
|
| 526 |
-
|
| 527 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
| 528 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 529 |
-
color = color_list[i % len(color_list)]
|
| 530 |
-
draw.rectangle(box, outline=color, width=3)
|
| 531 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 532 |
-
|
| 533 |
-
breed = topk_breeds[0]
|
| 534 |
-
if top1_prob >= 0.5:
|
| 535 |
-
description = get_dog_description(breed)
|
| 536 |
-
formatted_description = format_description(description, breed)
|
| 537 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 538 |
-
else:
|
| 539 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 540 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 541 |
-
explanations.append(dog_explanation)
|
| 542 |
-
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
| 543 |
-
|
| 544 |
-
final_explanation = "\n\n".join(explanations)
|
| 545 |
-
if buttons:
|
| 546 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 547 |
-
|
| 548 |
-
initial_state = {
|
| 549 |
-
"explanation": final_explanation,
|
| 550 |
-
"buttons": buttons,
|
| 551 |
-
"show_back": bool(buttons)
|
| 552 |
-
}
|
| 553 |
-
return final_explanation, annotated_image, buttons, gr.update(visible=bool(buttons)), initial_state
|
| 554 |
-
|
| 555 |
-
except Exception as e:
|
| 556 |
-
error_msg = f"An error occurred: {str(e)}"
|
| 557 |
-
print(error_msg) # 添加日誌輸出
|
| 558 |
-
return error_msg, None, [], gr.update(visible=False), None
|
| 559 |
|
| 560 |
async def process_single_dog(image):
|
| 561 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
@@ -565,7 +405,7 @@ async def process_single_dog(image):
|
|
| 565 |
"buttons": [],
|
| 566 |
"show_back": False
|
| 567 |
}
|
| 568 |
-
return initial_state["explanation"], None,
|
| 569 |
|
| 570 |
breed = topk_breeds[0]
|
| 571 |
description = get_dog_description(breed)
|
|
@@ -577,7 +417,7 @@ async def process_single_dog(image):
|
|
| 577 |
"buttons": [],
|
| 578 |
"show_back": False
|
| 579 |
}
|
| 580 |
-
return formatted_description, image,
|
| 581 |
else:
|
| 582 |
explanation = (
|
| 583 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
|
@@ -586,13 +426,17 @@ async def process_single_dog(image):
|
|
| 586 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
| 587 |
"Click on a button to view more information about the breed."
|
| 588 |
)
|
| 589 |
-
buttons = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
initial_state = {
|
| 591 |
"explanation": explanation,
|
| 592 |
"buttons": buttons,
|
| 593 |
"show_back": True
|
| 594 |
}
|
| 595 |
-
return explanation, image, buttons, gr.update(visible=True), initial_state
|
| 596 |
|
| 597 |
def show_details(choice, previous_output, initial_state):
|
| 598 |
if not choice:
|
|
@@ -608,6 +452,7 @@ def show_details(choice, previous_output, initial_state):
|
|
| 608 |
print(error_msg) # 添加日誌輸出
|
| 609 |
return error_msg, gr.update(visible=True), initial_state
|
| 610 |
|
|
|
|
| 611 |
with gr.Blocks() as iface:
|
| 612 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 613 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
|
@@ -618,54 +463,43 @@ with gr.Blocks() as iface:
|
|
| 618 |
|
| 619 |
output = gr.Markdown(label="Prediction Results")
|
| 620 |
|
| 621 |
-
|
|
|
|
|
|
|
|
|
|
| 622 |
|
| 623 |
back_button = gr.Button("Back", visible=False)
|
| 624 |
|
| 625 |
initial_state = gr.State()
|
| 626 |
|
| 627 |
-
def create_buttons(button_texts):
|
| 628 |
-
buttons = []
|
| 629 |
-
for text in button_texts:
|
| 630 |
-
button = gr.Button(text)
|
| 631 |
-
button.click(
|
| 632 |
-
show_details,
|
| 633 |
-
inputs=[button, output, initial_state],
|
| 634 |
-
outputs=[output, back_button, initial_state]
|
| 635 |
-
)
|
| 636 |
-
buttons.append(button)
|
| 637 |
-
return buttons
|
| 638 |
-
|
| 639 |
-
def update_ui(explanation, image, button_texts, show_back, state):
|
| 640 |
-
button_container.clear()
|
| 641 |
-
buttons = create_buttons(button_texts)
|
| 642 |
-
return explanation, image, *buttons, gr.update(visible=show_back), state
|
| 643 |
-
|
| 644 |
input_image.change(
|
| 645 |
predict,
|
| 646 |
inputs=input_image,
|
| 647 |
-
outputs=[output, output_image,
|
| 648 |
-
).then(
|
| 649 |
-
update_ui,
|
| 650 |
-
inputs=[output, output_image, button_container, back_button, initial_state],
|
| 651 |
-
outputs=[output, output_image] + [button_container] * 9 + [back_button, initial_state]
|
| 652 |
)
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
|
| 657 |
back_button.click(
|
| 658 |
-
|
|
|
|
|
|
|
|
|
|
| 659 |
inputs=[initial_state],
|
| 660 |
-
outputs=[output,
|
| 661 |
)
|
| 662 |
-
|
| 663 |
gr.Examples(
|
| 664 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
| 665 |
inputs=input_image
|
| 666 |
)
|
| 667 |
-
|
| 668 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 669 |
|
| 670 |
-
if __name__ == "__main__":
|
| 671 |
-
|
|
|
|
| 165 |
return top1_prob, topk_breeds, topk_probs_percent
|
| 166 |
|
| 167 |
|
| 168 |
+
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
| 169 |
+
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 170 |
+
dogs = []
|
| 171 |
+
for box in results.boxes:
|
| 172 |
+
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
| 173 |
+
xyxy = box.xyxy[0].tolist()
|
| 174 |
+
confidence = box.conf.item()
|
| 175 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
| 176 |
+
dogs.append((cropped_image, confidence, xyxy))
|
| 177 |
+
return dogs
|
| 178 |
|
| 179 |
|
| 180 |
+
async def predict(image):
|
| 181 |
+
if image is None:
|
| 182 |
+
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 183 |
|
| 184 |
+
try:
|
| 185 |
+
if isinstance(image, np.ndarray):
|
| 186 |
+
image = Image.fromarray(image)
|
| 187 |
|
| 188 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
| 189 |
|
| 190 |
+
if len(dogs) <= 1:
|
| 191 |
+
return await process_single_dog(image)
|
| 192 |
|
| 193 |
+
# 多狗情境
|
| 194 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 195 |
+
explanations = []
|
| 196 |
+
buttons = []
|
| 197 |
+
annotated_image = image.copy()
|
| 198 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 199 |
+
font = ImageFont.load_default()
|
| 200 |
|
| 201 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
| 202 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 203 |
+
color = color_list[i % len(color_list)]
|
| 204 |
+
draw.rectangle(box, outline=color, width=3)
|
| 205 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 206 |
|
| 207 |
+
breed = topk_breeds[0]
|
| 208 |
+
if top1_prob >= 0.5:
|
| 209 |
+
description = get_dog_description(breed)
|
| 210 |
+
formatted_description = format_description(description, breed)
|
| 211 |
+
explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 212 |
+
elif top1_prob >= 0.2:
|
| 213 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 214 |
+
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 215 |
+
explanations.append(dog_explanation)
|
| 216 |
+
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
| 217 |
+
else:
|
| 218 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
| 219 |
|
| 220 |
+
final_explanation = "\n\n".join(explanations)
|
| 221 |
+
if buttons:
|
| 222 |
+
final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 223 |
+
initial_state = {
|
| 224 |
+
"explanation": final_explanation,
|
| 225 |
+
"buttons": buttons,
|
| 226 |
+
"show_back": True
|
| 227 |
+
}
|
| 228 |
+
return (final_explanation, annotated_image,
|
| 229 |
+
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
| 230 |
+
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
| 231 |
+
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
| 232 |
+
gr.update(visible=True),
|
| 233 |
+
initial_state)
|
| 234 |
+
else:
|
| 235 |
+
initial_state = {
|
| 236 |
+
"explanation": final_explanation,
|
| 237 |
+
"buttons": [],
|
| 238 |
+
"show_back": False
|
| 239 |
+
}
|
| 240 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 241 |
|
| 242 |
+
except Exception as e:
|
| 243 |
+
error_msg = f"An error occurred: {str(e)}"
|
| 244 |
+
print(error_msg) # 添加日誌輸出
|
| 245 |
+
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 246 |
|
| 247 |
|
| 248 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
|
| 249 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 250 |
+
# dogs = []
|
| 251 |
|
| 252 |
+
# image_area = image.width * image.height
|
| 253 |
+
# min_area_ratio = 0.005 # 最小檢測面積佔整個圖像的比例
|
| 254 |
|
| 255 |
+
# for box in results.boxes:
|
| 256 |
+
# if box.cls == 16: # COCO 數據集中狗的類別是 16
|
| 257 |
+
# xyxy = box.xyxy[0].tolist()
|
| 258 |
+
# area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
| 259 |
+
# if area / image_area >= min_area_ratio:
|
| 260 |
+
# confidence = box.conf.item()
|
| 261 |
+
# dogs.append((xyxy, confidence))
|
| 262 |
|
| 263 |
+
# if dogs:
|
| 264 |
+
# boxes = torch.tensor([dog[0] for dog in dogs])
|
| 265 |
+
# scores = torch.tensor([dog[1] for dog in dogs])
|
| 266 |
|
| 267 |
+
# # 應用 NMS
|
| 268 |
+
# keep = nms(boxes, scores, iou_threshold)
|
| 269 |
|
| 270 |
+
# merged_dogs = []
|
| 271 |
+
# for i in keep:
|
| 272 |
+
# xyxy = boxes[i].tolist()
|
| 273 |
+
# confidence = scores[i].item()
|
| 274 |
+
# merged_dogs.append((xyxy, confidence))
|
| 275 |
|
| 276 |
+
# # 後處理:分離過於接近的檢測框
|
| 277 |
+
# final_dogs = []
|
| 278 |
+
# while merged_dogs:
|
| 279 |
+
# base_dog = merged_dogs.pop(0)
|
| 280 |
+
# to_merge = [base_dog]
|
| 281 |
|
| 282 |
+
# i = 0
|
| 283 |
+
# while i < len(merged_dogs):
|
| 284 |
+
# iou = box_iou(torch.tensor([base_dog[0]]), torch.tensor([merged_dogs[i][0]]))[0][0].item()
|
| 285 |
+
# if iou > merge_threshold:
|
| 286 |
+
# to_merge.append(merged_dogs.pop(i))
|
| 287 |
+
# else:
|
| 288 |
+
# i += 1
|
| 289 |
|
| 290 |
+
# if len(to_merge) == 1:
|
| 291 |
+
# final_dogs.append(base_dog)
|
| 292 |
+
# else:
|
| 293 |
+
# # 如果檢測到多個重疊框,嘗試分離它們
|
| 294 |
+
# centers = torch.tensor([[((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)] for box, _ in to_merge])
|
| 295 |
+
# distances = torch.cdist(centers, centers)
|
| 296 |
|
| 297 |
+
# if torch.any(distances > 0): # 確保不是完全重疊
|
| 298 |
+
# max_distance = distances.max()
|
| 299 |
+
# if max_distance > (base_dog[0][2] - base_dog[0][0]) * 0.5: # 如果最大距離大於框寬度的一半
|
| 300 |
+
# final_dogs.extend(to_merge)
|
| 301 |
+
# else:
|
| 302 |
+
# # 合併為一個框
|
| 303 |
+
# merged_box = torch.tensor([box for box, _ in to_merge]).mean(dim=0)
|
| 304 |
+
# merged_confidence = max(conf for _, conf in to_merge)
|
| 305 |
+
# final_dogs.append((merged_box.tolist(), merged_confidence))
|
| 306 |
+
# else:
|
| 307 |
+
# # 完全重疊的情況,保留置信度最高的
|
| 308 |
+
# best_dog = max(to_merge, key=lambda x: x[1])
|
| 309 |
+
# final_dogs.append(best_dog)
|
| 310 |
|
| 311 |
+
# # 擴展邊界框並創建剪裁的圖像
|
| 312 |
+
# expanded_dogs = []
|
| 313 |
+
# for xyxy, confidence in final_dogs:
|
| 314 |
+
# expanded_xyxy = [
|
| 315 |
+
# max(0, xyxy[0] - 20),
|
| 316 |
+
# max(0, xyxy[1] - 20),
|
| 317 |
+
# min(image.width, xyxy[2] + 20),
|
| 318 |
+
# min(image.height, xyxy[3] + 20)
|
| 319 |
+
# ]
|
| 320 |
+
# cropped_image = image.crop(expanded_xyxy)
|
| 321 |
+
# expanded_dogs.append((cropped_image, confidence, expanded_xyxy))
|
| 322 |
|
| 323 |
+
# return expanded_dogs
|
| 324 |
|
| 325 |
+
# # 如果沒有檢測到狗狗,返回整張圖片
|
| 326 |
+
# return [(image, 1.0, [0, 0, image.width, image.height])]
|
| 327 |
|
| 328 |
# async def predict(image):
|
| 329 |
# if image is None:
|
|
|
|
| 396 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 397 |
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
async def process_single_dog(image):
|
| 401 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
|
|
| 405 |
"buttons": [],
|
| 406 |
"show_back": False
|
| 407 |
}
|
| 408 |
+
return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 409 |
|
| 410 |
breed = topk_breeds[0]
|
| 411 |
description = get_dog_description(breed)
|
|
|
|
| 417 |
"buttons": [],
|
| 418 |
"show_back": False
|
| 419 |
}
|
| 420 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 421 |
else:
|
| 422 |
explanation = (
|
| 423 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
|
|
|
| 426 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
| 427 |
"Click on a button to view more information about the breed."
|
| 428 |
)
|
| 429 |
+
buttons = [
|
| 430 |
+
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
| 431 |
+
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
| 432 |
+
gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
| 433 |
+
]
|
| 434 |
initial_state = {
|
| 435 |
"explanation": explanation,
|
| 436 |
"buttons": buttons,
|
| 437 |
"show_back": True
|
| 438 |
}
|
| 439 |
+
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
| 440 |
|
| 441 |
def show_details(choice, previous_output, initial_state):
|
| 442 |
if not choice:
|
|
|
|
| 452 |
print(error_msg) # 添加日誌輸出
|
| 453 |
return error_msg, gr.update(visible=True), initial_state
|
| 454 |
|
| 455 |
+
# 介面部分
|
| 456 |
with gr.Blocks() as iface:
|
| 457 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 458 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
|
|
|
| 463 |
|
| 464 |
output = gr.Markdown(label="Prediction Results")
|
| 465 |
|
| 466 |
+
with gr.Row():
|
| 467 |
+
btn1 = gr.Button("View More 1", visible=False)
|
| 468 |
+
btn2 = gr.Button("View More 2", visible=False)
|
| 469 |
+
btn3 = gr.Button("View More 3", visible=False)
|
| 470 |
|
| 471 |
back_button = gr.Button("Back", visible=False)
|
| 472 |
|
| 473 |
initial_state = gr.State()
|
| 474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
input_image.change(
|
| 476 |
predict,
|
| 477 |
inputs=input_image,
|
| 478 |
+
outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
)
|
| 480 |
+
|
| 481 |
+
for btn in [btn1, btn2, btn3]:
|
| 482 |
+
btn.click(
|
| 483 |
+
show_details,
|
| 484 |
+
inputs=[btn, output, initial_state],
|
| 485 |
+
outputs=[output, back_button, initial_state]
|
| 486 |
+
)
|
| 487 |
|
| 488 |
back_button.click(
|
| 489 |
+
lambda state: (state["explanation"],
|
| 490 |
+
state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
|
| 491 |
+
state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
|
| 492 |
+
gr.update(visible=state["show_back"])),
|
| 493 |
inputs=[initial_state],
|
| 494 |
+
outputs=[output, btn1, btn2, btn3, back_button]
|
| 495 |
)
|
| 496 |
+
|
| 497 |
gr.Examples(
|
| 498 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
| 499 |
inputs=input_image
|
| 500 |
)
|
| 501 |
+
|
| 502 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 503 |
|
| 504 |
+
if __name__ == "__main__":
|
| 505 |
+
iface.launch()
|