Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +724 -239
scoring_calculation_system.py
CHANGED
|
@@ -419,104 +419,370 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 419 |
raise KeyError("Size information missing")
|
| 420 |
|
| 421 |
|
| 422 |
-
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
|
| 453 |
-
|
| 454 |
-
|
| 455 |
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
|
|
|
| 498 |
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
|
| 506 |
|
| 507 |
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
| 508 |
"""
|
| 509 |
精確評估品種運動需求與使用者運動條件的匹配度
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
Returns:
|
| 517 |
-
float: -0.2 到 0.2 之間的匹配分數
|
| 518 |
"""
|
| 519 |
-
# 定義更細緻的運動需求等級
|
| 520 |
exercise_levels = {
|
| 521 |
'VERY HIGH': {
|
| 522 |
'min': 120,
|
|
@@ -524,7 +790,12 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 524 |
'max': 180,
|
| 525 |
'intensity': 'high',
|
| 526 |
'sessions': 'multiple',
|
| 527 |
-
'preferred_types': ['active_training', 'intensive_exercise']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
},
|
| 529 |
'HIGH': {
|
| 530 |
'min': 90,
|
|
@@ -532,7 +803,12 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 532 |
'max': 150,
|
| 533 |
'intensity': 'moderate_high',
|
| 534 |
'sessions': 'multiple',
|
| 535 |
-
'preferred_types': ['active_training', 'moderate_activity']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
},
|
| 537 |
'MODERATE HIGH': {
|
| 538 |
'min': 70,
|
|
@@ -540,7 +816,12 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 540 |
'max': 120,
|
| 541 |
'intensity': 'moderate',
|
| 542 |
'sessions': 'flexible',
|
| 543 |
-
'preferred_types': ['moderate_activity', 'active_training']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
},
|
| 545 |
'MODERATE': {
|
| 546 |
'min': 45,
|
|
@@ -548,7 +829,12 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 548 |
'max': 90,
|
| 549 |
'intensity': 'moderate',
|
| 550 |
'sessions': 'flexible',
|
| 551 |
-
'preferred_types': ['moderate_activity', 'light_walks']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
},
|
| 553 |
'MODERATE LOW': {
|
| 554 |
'min': 30,
|
|
@@ -556,7 +842,12 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 556 |
'max': 70,
|
| 557 |
'intensity': 'light_moderate',
|
| 558 |
'sessions': 'flexible',
|
| 559 |
-
'preferred_types': ['light_walks', 'moderate_activity']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
},
|
| 561 |
'LOW': {
|
| 562 |
'min': 15,
|
|
@@ -564,37 +855,62 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 564 |
'max': 45,
|
| 565 |
'intensity': 'light',
|
| 566 |
'sessions': 'single',
|
| 567 |
-
'preferred_types': ['light_walks']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
}
|
| 569 |
}
|
| 570 |
-
|
| 571 |
-
# 獲取品種的運動需求配置
|
| 572 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 573 |
|
| 574 |
-
#
|
| 575 |
-
|
| 576 |
-
if exercise_time
|
| 577 |
-
|
| 578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 579 |
else:
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
time_score = 0.05 + (time_ratio * 0.10)
|
| 585 |
-
else:
|
| 586 |
-
# 運動時間不足,根據差距程度扣分
|
| 587 |
-
time_ratio = max(0, exercise_time / breed_level['min'])
|
| 588 |
-
time_score = -0.20 * (1 - time_ratio)
|
| 589 |
-
|
| 590 |
# 運動類型匹配度評估
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
|
| 599 |
|
| 600 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
@@ -1293,166 +1609,335 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
| 1293 |
# return 0.90 + position * 0.08
|
| 1294 |
|
| 1295 |
|
| 1296 |
-
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1297 |
-
|
| 1298 |
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
-
|
| 1302 |
-
|
| 1303 |
-
|
| 1304 |
-
|
| 1305 |
-
|
| 1306 |
-
|
| 1307 |
-
|
| 1308 |
-
|
| 1309 |
-
|
| 1310 |
-
|
| 1311 |
|
| 1312 |
-
|
| 1313 |
-
|
| 1314 |
-
|
| 1315 |
|
| 1316 |
-
|
| 1317 |
-
|
| 1318 |
|
| 1319 |
-
|
| 1320 |
-
|
| 1321 |
-
|
| 1322 |
-
|
| 1323 |
-
|
| 1324 |
-
|
| 1325 |
-
|
| 1326 |
-
|
| 1327 |
-
|
| 1328 |
-
|
| 1329 |
-
|
| 1330 |
-
|
| 1331 |
-
|
| 1332 |
-
|
| 1333 |
-
|
| 1334 |
-
|
| 1335 |
-
|
| 1336 |
-
|
| 1337 |
-
|
| 1338 |
-
|
| 1339 |
-
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
|
| 1343 |
-
|
| 1344 |
-
|
| 1345 |
-
|
| 1346 |
-
|
| 1347 |
-
|
| 1348 |
-
|
| 1349 |
-
|
| 1350 |
|
| 1351 |
-
|
| 1352 |
-
|
| 1353 |
-
|
| 1354 |
-
|
| 1355 |
-
|
| 1356 |
-
|
| 1357 |
-
|
| 1358 |
-
|
| 1359 |
|
| 1360 |
-
|
| 1361 |
-
|
| 1362 |
-
# 計算調整係數
|
| 1363 |
-
space_mult, exercise_mult = evaluate_key_features()
|
| 1364 |
-
exp_mult = evaluate_experience()
|
| 1365 |
-
|
| 1366 |
-
# 調整基礎分數
|
| 1367 |
-
adjusted_scores = {
|
| 1368 |
-
'space': scores['space'] * space_mult,
|
| 1369 |
-
'exercise': scores['exercise'] * exercise_mult,
|
| 1370 |
-
'experience': scores['experience'] * exp_mult,
|
| 1371 |
-
'grooming': scores['grooming'],
|
| 1372 |
-
'health': scores['health'] * (1.5 if user_prefs.health_sensitivity == 'high' else 1.0),
|
| 1373 |
-
'noise': scores['noise']
|
| 1374 |
-
}
|
| 1375 |
|
| 1376 |
-
|
| 1377 |
-
|
| 1378 |
-
|
| 1379 |
-
'exercise': 0.25,
|
| 1380 |
-
'experience': 0.15,
|
| 1381 |
-
'grooming': 0.15,
|
| 1382 |
-
'health': 0.10,
|
| 1383 |
-
'noise': 0.10
|
| 1384 |
-
}
|
| 1385 |
|
| 1386 |
-
|
| 1387 |
-
|
| 1388 |
-
|
| 1389 |
-
|
| 1390 |
-
|
| 1391 |
-
|
| 1392 |
-
|
| 1393 |
-
|
| 1394 |
-
|
| 1395 |
|
| 1396 |
-
|
| 1397 |
-
|
| 1398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1399 |
|
| 1400 |
-
# 運動時間極端情況
|
| 1401 |
-
if user_prefs.exercise_time < 30:
|
| 1402 |
-
weights['exercise'] *= 2.0
|
| 1403 |
-
elif user_prefs.exercise_time > 150:
|
| 1404 |
-
weights['exercise'] *= 1.5
|
| 1405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1406 |
# 正規化權重
|
| 1407 |
total_weight = sum(weights.values())
|
| 1408 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1409 |
-
|
| 1410 |
-
#
|
| 1411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1412 |
|
| 1413 |
# 品種特性加成
|
| 1414 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1415 |
|
| 1416 |
-
#
|
| 1417 |
-
|
|
|
|
|
|
|
|
|
|
| 1418 |
|
| 1419 |
# 完美匹配加成
|
| 1420 |
-
if all(score >= 0.8 for score in
|
| 1421 |
-
base_score *= 1.
|
| 1422 |
|
| 1423 |
-
#
|
| 1424 |
-
|
| 1425 |
-
|
| 1426 |
-
|
| 1427 |
-
|
|
|
|
|
|
|
| 1428 |
|
| 1429 |
|
| 1430 |
def amplify_score_extreme(score: float) -> float:
|
| 1431 |
"""
|
| 1432 |
-
|
| 1433 |
-
|
| 1434 |
-
|
| 1435 |
-
|
| 1436 |
-
|
| 1437 |
-
|
| 1438 |
-
- 良好匹配 (0.6-0.8) -> 85-92%
|
| 1439 |
-
- 優秀匹配 (0.8-0.9) -> 92-96%
|
| 1440 |
-
- 完美匹配 (0.9-1.0) -> 96-99%
|
| 1441 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1442 |
if score < 0.2:
|
| 1443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1444 |
elif score < 0.4:
|
|
|
|
|
|
|
|
|
|
| 1445 |
position = (score - 0.2) / 0.2
|
| 1446 |
-
return
|
|
|
|
| 1447 |
elif score < 0.6:
|
|
|
|
|
|
|
|
|
|
| 1448 |
position = (score - 0.4) / 0.2
|
| 1449 |
-
return
|
|
|
|
| 1450 |
elif score < 0.8:
|
|
|
|
|
|
|
|
|
|
| 1451 |
position = (score - 0.6) / 0.2
|
| 1452 |
-
return
|
|
|
|
| 1453 |
elif score < 0.9:
|
|
|
|
|
|
|
|
|
|
| 1454 |
position = (score - 0.8) / 0.1
|
| 1455 |
-
return
|
|
|
|
| 1456 |
else:
|
|
|
|
|
|
|
|
|
|
| 1457 |
position = (score - 0.9) / 0.1
|
| 1458 |
-
return
|
|
|
|
| 419 |
raise KeyError("Size information missing")
|
| 420 |
|
| 421 |
|
| 422 |
+
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 423 |
+
# """
|
| 424 |
+
# 主要改進:
|
| 425 |
+
# 1. 更均衡的基礎分數分配
|
| 426 |
+
# 2. 更細緻的空間需求評估
|
| 427 |
+
# 3. 強化運動需求與空間的關聯性
|
| 428 |
+
# """
|
| 429 |
+
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
| 430 |
+
# base_scores = {
|
| 431 |
+
# "Small": {
|
| 432 |
+
# "apartment": 0.90, # 降低滿分機會
|
| 433 |
+
# "house_small": 0.85, # 小型犬不應在大空間得到太高分數
|
| 434 |
+
# "house_large": 0.80 # 避免小型犬總是得到最高分
|
| 435 |
+
# },
|
| 436 |
+
# "Medium": {
|
| 437 |
+
# "apartment": 0.40, # 維持對公寓環境的限制
|
| 438 |
+
# "house_small": 0.80, # 適中的分數
|
| 439 |
+
# "house_large": 0.90 # 給予合理的獎勵
|
| 440 |
+
# },
|
| 441 |
+
# "Large": {
|
| 442 |
+
# "apartment": 0.10, # 加重對大型犬在公寓的限制
|
| 443 |
+
# "house_small": 0.60, # 中等適合度
|
| 444 |
+
# "house_large": 0.95 # 最適合的環境
|
| 445 |
+
# },
|
| 446 |
+
# "Giant": {
|
| 447 |
+
# "apartment": 0.10, # 更嚴格的限制
|
| 448 |
+
# "house_small": 0.45, # 顯著的空間限制
|
| 449 |
+
# "house_large": 0.95 # 最理想的配對
|
| 450 |
+
# }
|
| 451 |
+
# }
|
| 452 |
|
| 453 |
+
# # 取得基礎分數
|
| 454 |
+
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
| 455 |
|
| 456 |
+
# # 運動需求相關的調整更加動態
|
| 457 |
+
# exercise_adjustments = {
|
| 458 |
+
# "Very High": {
|
| 459 |
+
# "apartment": -0.25, # 加重在受限空間的懲罰
|
| 460 |
+
# "house_small": -0.15,
|
| 461 |
+
# "house_large": -0.05
|
| 462 |
+
# },
|
| 463 |
+
# "High": {
|
| 464 |
+
# "apartment": -0.20,
|
| 465 |
+
# "house_small": -0.10,
|
| 466 |
+
# "house_large": 0
|
| 467 |
+
# },
|
| 468 |
+
# "Moderate": {
|
| 469 |
+
# "apartment": -0.10,
|
| 470 |
+
# "house_small": -0.05,
|
| 471 |
+
# "house_large": 0
|
| 472 |
+
# },
|
| 473 |
+
# "Low": {
|
| 474 |
+
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
|
| 475 |
+
# "house_small": 0,
|
| 476 |
+
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
| 477 |
+
# }
|
| 478 |
+
# }
|
| 479 |
+
|
| 480 |
+
# # 根據空間類型獲取運動需求調整
|
| 481 |
+
# adjustment = exercise_adjustments.get(exercise_needs,
|
| 482 |
+
# exercise_adjustments["Moderate"])[living_space]
|
| 483 |
+
|
| 484 |
+
# # 院子效益根據品種大小和運動需求動態調整
|
| 485 |
+
# if has_yard:
|
| 486 |
+
# yard_bonus = {
|
| 487 |
+
# "Giant": 0.20,
|
| 488 |
+
# "Large": 0.15,
|
| 489 |
+
# "Medium": 0.10,
|
| 490 |
+
# "Small": 0.05
|
| 491 |
+
# }.get(size, 0.10)
|
| 492 |
+
|
| 493 |
+
# # 運動需求會影響院子的重要性
|
| 494 |
+
# if exercise_needs in ["Very High", "High"]:
|
| 495 |
+
# yard_bonus *= 1.2
|
| 496 |
+
# elif exercise_needs == "Low":
|
| 497 |
+
# yard_bonus *= 0.8
|
| 498 |
+
|
| 499 |
+
# current_score = base_score + adjustment + yard_bonus
|
| 500 |
+
# else:
|
| 501 |
+
# current_score = base_score + adjustment
|
| 502 |
+
|
| 503 |
+
# # 確保分數在合理範圍內,但避免極端值
|
| 504 |
+
# return min(0.95, max(0.15, current_score))
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
| 508 |
+
# """
|
| 509 |
+
# 精確評估品種運動需求與使用者運動條件的匹配度
|
| 510 |
+
|
| 511 |
+
# Parameters:
|
| 512 |
+
# breed_needs: 品種的運動需求等級
|
| 513 |
+
# exercise_time: 使用者能提供的運動時間(分鐘)
|
| 514 |
+
# exercise_type: 使用者偏好的運動類型
|
| 515 |
+
|
| 516 |
+
# Returns:
|
| 517 |
+
# float: -0.2 到 0.2 之間的匹配分數
|
| 518 |
+
# """
|
| 519 |
+
# # 定義更細緻的運動需求等級
|
| 520 |
+
# exercise_levels = {
|
| 521 |
+
# 'VERY HIGH': {
|
| 522 |
+
# 'min': 120,
|
| 523 |
+
# 'ideal': 150,
|
| 524 |
+
# 'max': 180,
|
| 525 |
+
# 'intensity': 'high',
|
| 526 |
+
# 'sessions': 'multiple',
|
| 527 |
+
# 'preferred_types': ['active_training', 'intensive_exercise']
|
| 528 |
+
# },
|
| 529 |
+
# 'HIGH': {
|
| 530 |
+
# 'min': 90,
|
| 531 |
+
# 'ideal': 120,
|
| 532 |
+
# 'max': 150,
|
| 533 |
+
# 'intensity': 'moderate_high',
|
| 534 |
+
# 'sessions': 'multiple',
|
| 535 |
+
# 'preferred_types': ['active_training', 'moderate_activity']
|
| 536 |
+
# },
|
| 537 |
+
# 'MODERATE HIGH': {
|
| 538 |
+
# 'min': 70,
|
| 539 |
+
# 'ideal': 90,
|
| 540 |
+
# 'max': 120,
|
| 541 |
+
# 'intensity': 'moderate',
|
| 542 |
+
# 'sessions': 'flexible',
|
| 543 |
+
# 'preferred_types': ['moderate_activity', 'active_training']
|
| 544 |
+
# },
|
| 545 |
+
# 'MODERATE': {
|
| 546 |
+
# 'min': 45,
|
| 547 |
+
# 'ideal': 60,
|
| 548 |
+
# 'max': 90,
|
| 549 |
+
# 'intensity': 'moderate',
|
| 550 |
+
# 'sessions': 'flexible',
|
| 551 |
+
# 'preferred_types': ['moderate_activity', 'light_walks']
|
| 552 |
+
# },
|
| 553 |
+
# 'MODERATE LOW': {
|
| 554 |
+
# 'min': 30,
|
| 555 |
+
# 'ideal': 45,
|
| 556 |
+
# 'max': 70,
|
| 557 |
+
# 'intensity': 'light_moderate',
|
| 558 |
+
# 'sessions': 'flexible',
|
| 559 |
+
# 'preferred_types': ['light_walks', 'moderate_activity']
|
| 560 |
+
# },
|
| 561 |
+
# 'LOW': {
|
| 562 |
+
# 'min': 15,
|
| 563 |
+
# 'ideal': 30,
|
| 564 |
+
# 'max': 45,
|
| 565 |
+
# 'intensity': 'light',
|
| 566 |
+
# 'sessions': 'single',
|
| 567 |
+
# 'preferred_types': ['light_walks']
|
| 568 |
+
# }
|
| 569 |
+
# }
|
| 570 |
+
|
| 571 |
+
# # 獲取品種的運動需求配置
|
| 572 |
+
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 573 |
+
|
| 574 |
+
# # 計算時間匹配度(使用更平滑的評分曲線)
|
| 575 |
+
# if exercise_time >= breed_level['ideal']:
|
| 576 |
+
# if exercise_time > breed_level['max']:
|
| 577 |
+
# # 運動時間過長,適度降分
|
| 578 |
+
# time_score = 0.15 - (0.08 * (exercise_time - breed_level['max']) / 30)
|
| 579 |
+
# else:
|
| 580 |
+
# time_score = 0.15
|
| 581 |
+
# elif exercise_time >= breed_level['min']:
|
| 582 |
+
# # 在最小需求和理想需求之間,線性計算分數
|
| 583 |
+
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
| 584 |
+
# time_score = 0.05 + (time_ratio * 0.10)
|
| 585 |
+
# else:
|
| 586 |
+
# # 運動時間不足,根據差距程度扣分
|
| 587 |
+
# time_ratio = max(0, exercise_time / breed_level['min'])
|
| 588 |
+
# time_score = -0.20 * (1 - time_ratio)
|
| 589 |
|
| 590 |
+
# # 運動類型匹配度評估
|
| 591 |
+
# type_score = 0.0
|
| 592 |
+
# if exercise_type in breed_level['preferred_types']:
|
| 593 |
+
# type_score = 0.05
|
| 594 |
+
# if exercise_type == breed_level['preferred_types'][0]:
|
| 595 |
+
# type_score = 0.08 # 最佳匹配類型給予更高分數
|
| 596 |
|
| 597 |
+
# return max(-0.2, min(0.2, time_score + type_score))
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
| 601 |
+
"""
|
| 602 |
+
改進的空間評分系統,提供更細緻的居住環境評估
|
| 603 |
+
|
| 604 |
+
改進重點:
|
| 605 |
+
1. 更動態的基礎分數矩陣
|
| 606 |
+
2. 強化空間品質評估
|
| 607 |
+
3. 增加極端情況處理
|
| 608 |
+
4. 考慮不同空間組合的協同效應
|
| 609 |
+
"""
|
| 610 |
+
def get_base_score():
|
| 611 |
+
# 基礎分數矩陣 - 更極端的分數分配
|
| 612 |
+
base_matrix = {
|
| 613 |
+
"Small": {
|
| 614 |
+
"apartment": {
|
| 615 |
+
"no_yard": 0.85, # 小型犬在公寓仍然適合
|
| 616 |
+
"shared_yard": 0.90, # 共享院子提供額外活動空間
|
| 617 |
+
"private_yard": 0.95 # 私人院子最理想
|
| 618 |
+
},
|
| 619 |
+
"house_small": {
|
| 620 |
+
"no_yard": 0.80,
|
| 621 |
+
"shared_yard": 0.85,
|
| 622 |
+
"private_yard": 0.90
|
| 623 |
+
},
|
| 624 |
+
"house_large": {
|
| 625 |
+
"no_yard": 0.75,
|
| 626 |
+
"shared_yard": 0.80,
|
| 627 |
+
"private_yard": 0.85
|
| 628 |
+
}
|
| 629 |
+
},
|
| 630 |
+
"Medium": {
|
| 631 |
+
"apartment": {
|
| 632 |
+
"no_yard": 0.35, # 中型犬在公寓較受限
|
| 633 |
+
"shared_yard": 0.45,
|
| 634 |
+
"private_yard": 0.55
|
| 635 |
+
},
|
| 636 |
+
"house_small": {
|
| 637 |
+
"no_yard": 0.75,
|
| 638 |
+
"shared_yard": 0.85,
|
| 639 |
+
"private_yard": 0.90
|
| 640 |
+
},
|
| 641 |
+
"house_large": {
|
| 642 |
+
"no_yard": 0.85,
|
| 643 |
+
"shared_yard": 0.90,
|
| 644 |
+
"private_yard": 0.95
|
| 645 |
+
}
|
| 646 |
+
},
|
| 647 |
+
"Large": {
|
| 648 |
+
"apartment": {
|
| 649 |
+
"no_yard": 0.15, # 大型犬在公寓極不適合
|
| 650 |
+
"shared_yard": 0.25,
|
| 651 |
+
"private_yard": 0.35
|
| 652 |
+
},
|
| 653 |
+
"house_small": {
|
| 654 |
+
"no_yard": 0.55,
|
| 655 |
+
"shared_yard": 0.65,
|
| 656 |
+
"private_yard": 0.75
|
| 657 |
+
},
|
| 658 |
+
"house_large": {
|
| 659 |
+
"no_yard": 0.85,
|
| 660 |
+
"shared_yard": 0.90,
|
| 661 |
+
"private_yard": 1.0
|
| 662 |
+
}
|
| 663 |
+
},
|
| 664 |
+
"Giant": {
|
| 665 |
+
"apartment": {
|
| 666 |
+
"no_yard": 0.10, # 巨型犬在公寓基本不適合
|
| 667 |
+
"shared_yard": 0.20,
|
| 668 |
+
"private_yard": 0.30
|
| 669 |
+
},
|
| 670 |
+
"house_small": {
|
| 671 |
+
"no_yard": 0.40,
|
| 672 |
+
"shared_yard": 0.50,
|
| 673 |
+
"private_yard": 0.60
|
| 674 |
+
},
|
| 675 |
+
"house_large": {
|
| 676 |
+
"no_yard": 0.80,
|
| 677 |
+
"shared_yard": 0.90,
|
| 678 |
+
"private_yard": 1.0
|
| 679 |
+
}
|
| 680 |
+
}
|
| 681 |
+
}
|
| 682 |
+
|
| 683 |
+
yard_type = "private_yard" if has_yard else "no_yard"
|
| 684 |
+
return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type]
|
| 685 |
+
|
| 686 |
+
def calculate_exercise_adjustment():
|
| 687 |
+
# 運動需求對空間評分的影響
|
| 688 |
+
exercise_impact = {
|
| 689 |
+
"Very High": {
|
| 690 |
+
"apartment": -0.30, # 高運動需求在公寓環境更受限
|
| 691 |
+
"house_small": -0.15,
|
| 692 |
+
"house_large": -0.05
|
| 693 |
+
},
|
| 694 |
+
"High": {
|
| 695 |
+
"apartment": -0.25,
|
| 696 |
+
"house_small": -0.10,
|
| 697 |
+
"house_large": 0
|
| 698 |
+
},
|
| 699 |
+
"Moderate": {
|
| 700 |
+
"apartment": -0.15,
|
| 701 |
+
"house_small": -0.05,
|
| 702 |
+
"house_large": 0
|
| 703 |
+
},
|
| 704 |
+
"Low": {
|
| 705 |
+
"apartment": 0.10, # 低運動需求反而適合小空間
|
| 706 |
+
"house_small": 0.05,
|
| 707 |
+
"house_large": 0
|
| 708 |
+
}
|
| 709 |
+
}
|
| 710 |
|
| 711 |
+
return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space]
|
| 712 |
+
|
| 713 |
+
def calculate_yard_bonus():
|
| 714 |
+
# 院子效益評估更加細緻
|
| 715 |
+
if not has_yard:
|
| 716 |
+
return 0
|
| 717 |
|
| 718 |
+
yard_benefits = {
|
| 719 |
+
"Giant": {
|
| 720 |
+
"Very High": 0.25,
|
| 721 |
+
"High": 0.20,
|
| 722 |
+
"Moderate": 0.15,
|
| 723 |
+
"Low": 0.10
|
| 724 |
+
},
|
| 725 |
+
"Large": {
|
| 726 |
+
"Very High": 0.20,
|
| 727 |
+
"High": 0.15,
|
| 728 |
+
"Moderate": 0.10,
|
| 729 |
+
"Low": 0.05
|
| 730 |
+
},
|
| 731 |
+
"Medium": {
|
| 732 |
+
"Very High": 0.15,
|
| 733 |
+
"High": 0.10,
|
| 734 |
+
"Moderate": 0.08,
|
| 735 |
+
"Low": 0.05
|
| 736 |
+
},
|
| 737 |
+
"Small": {
|
| 738 |
+
"Very High": 0.10,
|
| 739 |
+
"High": 0.08,
|
| 740 |
+
"Moderate": 0.05,
|
| 741 |
+
"Low": 0.03
|
| 742 |
+
}
|
| 743 |
+
}
|
| 744 |
|
| 745 |
+
size_benefits = yard_benefits.get(size, yard_benefits["Medium"])
|
| 746 |
+
return size_benefits.get(exercise_needs, size_benefits["Moderate"])
|
| 747 |
+
|
| 748 |
+
def apply_extreme_case_adjustments(score):
|
| 749 |
+
# 處理極端情況
|
| 750 |
+
if size == "Giant" and living_space == "apartment":
|
| 751 |
+
return score * 0.5 # 巨型犬在公寓給予更嚴重的懲罰
|
| 752 |
+
|
| 753 |
+
if size == "Large" and living_space == "apartment" and exercise_needs == "Very High":
|
| 754 |
+
return score * 0.6 # 高運動需求的大型犬在公寓更不適合
|
| 755 |
+
|
| 756 |
+
if size == "Small" and living_space == "house_large" and exercise_needs == "Low":
|
| 757 |
+
return score * 0.9 # 低運動需求的小型犬在大房子可能過於寬敞
|
| 758 |
+
|
| 759 |
+
return score
|
| 760 |
+
|
| 761 |
+
# 計算最終分數
|
| 762 |
+
base_score = get_base_score()
|
| 763 |
+
exercise_adj = calculate_exercise_adjustment()
|
| 764 |
+
yard_bonus = calculate_yard_bonus()
|
| 765 |
+
|
| 766 |
+
# 整合所有評分因素
|
| 767 |
+
initial_score = base_score + exercise_adj + yard_bonus
|
| 768 |
+
|
| 769 |
+
# 應用極端情況調整
|
| 770 |
+
final_score = apply_extreme_case_adjustments(initial_score)
|
| 771 |
+
|
| 772 |
+
# 確保分數在有效範圍內,但允許更極端的結果
|
| 773 |
+
return max(0.05, min(1.0, final_score))
|
| 774 |
|
| 775 |
|
| 776 |
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
| 777 |
"""
|
| 778 |
精確評估品種運動需求與使用者運動條件的匹配度
|
| 779 |
|
| 780 |
+
改進重點:
|
| 781 |
+
1. 擴大分數範圍到 0.1-1.0
|
| 782 |
+
2. 加強運動類型影響
|
| 783 |
+
3. 考慮運動強度與時間的綜合效果
|
| 784 |
+
4. 更細緻的時間匹配評估
|
|
|
|
|
|
|
| 785 |
"""
|
|
|
|
| 786 |
exercise_levels = {
|
| 787 |
'VERY HIGH': {
|
| 788 |
'min': 120,
|
|
|
|
| 790 |
'max': 180,
|
| 791 |
'intensity': 'high',
|
| 792 |
'sessions': 'multiple',
|
| 793 |
+
'preferred_types': ['active_training', 'intensive_exercise'],
|
| 794 |
+
'type_weights': {
|
| 795 |
+
'active_training': 1.0,
|
| 796 |
+
'moderate_activity': 0.6,
|
| 797 |
+
'light_walks': 0.3
|
| 798 |
+
}
|
| 799 |
},
|
| 800 |
'HIGH': {
|
| 801 |
'min': 90,
|
|
|
|
| 803 |
'max': 150,
|
| 804 |
'intensity': 'moderate_high',
|
| 805 |
'sessions': 'multiple',
|
| 806 |
+
'preferred_types': ['active_training', 'moderate_activity'],
|
| 807 |
+
'type_weights': {
|
| 808 |
+
'active_training': 0.9,
|
| 809 |
+
'moderate_activity': 0.8,
|
| 810 |
+
'light_walks': 0.4
|
| 811 |
+
}
|
| 812 |
},
|
| 813 |
'MODERATE HIGH': {
|
| 814 |
'min': 70,
|
|
|
|
| 816 |
'max': 120,
|
| 817 |
'intensity': 'moderate',
|
| 818 |
'sessions': 'flexible',
|
| 819 |
+
'preferred_types': ['moderate_activity', 'active_training'],
|
| 820 |
+
'type_weights': {
|
| 821 |
+
'active_training': 0.8,
|
| 822 |
+
'moderate_activity': 0.9,
|
| 823 |
+
'light_walks': 0.5
|
| 824 |
+
}
|
| 825 |
},
|
| 826 |
'MODERATE': {
|
| 827 |
'min': 45,
|
|
|
|
| 829 |
'max': 90,
|
| 830 |
'intensity': 'moderate',
|
| 831 |
'sessions': 'flexible',
|
| 832 |
+
'preferred_types': ['moderate_activity', 'light_walks'],
|
| 833 |
+
'type_weights': {
|
| 834 |
+
'active_training': 0.7,
|
| 835 |
+
'moderate_activity': 1.0,
|
| 836 |
+
'light_walks': 0.8
|
| 837 |
+
}
|
| 838 |
},
|
| 839 |
'MODERATE LOW': {
|
| 840 |
'min': 30,
|
|
|
|
| 842 |
'max': 70,
|
| 843 |
'intensity': 'light_moderate',
|
| 844 |
'sessions': 'flexible',
|
| 845 |
+
'preferred_types': ['light_walks', 'moderate_activity'],
|
| 846 |
+
'type_weights': {
|
| 847 |
+
'active_training': 0.6,
|
| 848 |
+
'moderate_activity': 0.9,
|
| 849 |
+
'light_walks': 1.0
|
| 850 |
+
}
|
| 851 |
},
|
| 852 |
'LOW': {
|
| 853 |
'min': 15,
|
|
|
|
| 855 |
'max': 45,
|
| 856 |
'intensity': 'light',
|
| 857 |
'sessions': 'single',
|
| 858 |
+
'preferred_types': ['light_walks'],
|
| 859 |
+
'type_weights': {
|
| 860 |
+
'active_training': 0.5,
|
| 861 |
+
'moderate_activity': 0.8,
|
| 862 |
+
'light_walks': 1.0
|
| 863 |
+
}
|
| 864 |
}
|
| 865 |
}
|
| 866 |
+
|
|
|
|
| 867 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
| 868 |
|
| 869 |
+
# 時間匹配度評估(基礎分數)
|
| 870 |
+
def calculate_time_score():
|
| 871 |
+
if exercise_time >= breed_level['ideal']:
|
| 872 |
+
if exercise_time > breed_level['max']:
|
| 873 |
+
# 超出最大值的懲罰更明顯
|
| 874 |
+
excess = (exercise_time - breed_level['max']) / 30
|
| 875 |
+
return max(0.4, 1.0 - (excess * 0.2))
|
| 876 |
+
return 1.0 # 理想範圍內給予滿分
|
| 877 |
+
elif exercise_time >= breed_level['min']:
|
| 878 |
+
# 在最小值和理想值之間使用更陡峭的曲線
|
| 879 |
+
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
| 880 |
+
return 0.5 + (progress * 0.5)
|
| 881 |
else:
|
| 882 |
+
# 低於最小值時給予更嚴厲的懲罰
|
| 883 |
+
deficit_ratio = exercise_time / breed_level['min']
|
| 884 |
+
return max(0.1, deficit_ratio * 0.5)
|
| 885 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 886 |
# 運動類型匹配度評估
|
| 887 |
+
def calculate_type_score():
|
| 888 |
+
type_weight = breed_level['type_weights'].get(exercise_type, 0.5)
|
| 889 |
+
|
| 890 |
+
# 根據運動需求等級調整類型權重
|
| 891 |
+
if breed_needs.upper() in ['VERY HIGH', 'HIGH']:
|
| 892 |
+
if exercise_type == 'light_walks':
|
| 893 |
+
type_weight *= 0.5 # 高需求品種做輕度運動的懲罰
|
| 894 |
+
elif breed_needs.upper() == 'LOW':
|
| 895 |
+
if exercise_type == 'active_training':
|
| 896 |
+
type_weight *= 0.7 # 低需求品種做高強度運動的輕微懲罰
|
| 897 |
+
|
| 898 |
+
return type_weight
|
| 899 |
+
|
| 900 |
+
# 計算最終分數
|
| 901 |
+
time_score = calculate_time_score()
|
| 902 |
+
type_score = calculate_type_score()
|
| 903 |
+
|
| 904 |
+
# 綜合評分,運動時間佔70%,類型佔30%
|
| 905 |
+
final_score = (time_score * 0.7) + (type_score * 0.3)
|
| 906 |
|
| 907 |
+
# 特殊情況調整
|
| 908 |
+
if exercise_time < breed_level['min'] * 0.5: # 運動時間嚴重不足
|
| 909 |
+
final_score *= 0.5
|
| 910 |
+
elif exercise_time > breed_level['max'] * 1.5: # 運動時間過多
|
| 911 |
+
final_score *= 0.7
|
| 912 |
+
|
| 913 |
+
return max(0.1, min(1.0, final_score))
|
| 914 |
|
| 915 |
|
| 916 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
|
|
| 1609 |
# return 0.90 + position * 0.08
|
| 1610 |
|
| 1611 |
|
| 1612 |
+
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1613 |
+
# """改進的品種相容性評分系統"""
|
| 1614 |
|
| 1615 |
+
# def evaluate_key_features():
|
| 1616 |
+
# # 空間適配性評估 - 更極端的調整
|
| 1617 |
+
# space_multiplier = 1.0
|
| 1618 |
+
# if user_prefs.living_space == 'apartment':
|
| 1619 |
+
# if breed_info['Size'] == 'Giant':
|
| 1620 |
+
# space_multiplier = 0.2 # 更嚴重的懲罰
|
| 1621 |
+
# elif breed_info['Size'] == 'Large':
|
| 1622 |
+
# space_multiplier = 0.3
|
| 1623 |
+
# elif breed_info['Size'] == 'Medium':
|
| 1624 |
+
# space_multiplier = 0.7
|
| 1625 |
+
# elif breed_info['Size'] == 'Small':
|
| 1626 |
+
# space_multiplier = 1.6 # 更大的獎勵
|
| 1627 |
|
| 1628 |
+
# # 運動需求評估 - 更細緻的匹配
|
| 1629 |
+
# exercise_multiplier = 1.0
|
| 1630 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1631 |
|
| 1632 |
+
# # 運動時間差異計算
|
| 1633 |
+
# time_diff_ratio = abs(user_prefs.exercise_time - get_ideal_exercise_time(exercise_needs)) / 60.0
|
| 1634 |
|
| 1635 |
+
# if exercise_needs == 'VERY HIGH':
|
| 1636 |
+
# if user_prefs.exercise_time < 90:
|
| 1637 |
+
# exercise_multiplier = max(0.2, 1.0 - time_diff_ratio)
|
| 1638 |
+
# elif user_prefs.exercise_time > 150:
|
| 1639 |
+
# exercise_multiplier = min(2.0, 1.0 + time_diff_ratio/2)
|
| 1640 |
+
# elif exercise_needs == 'HIGH':
|
| 1641 |
+
# if user_prefs.exercise_time < 60:
|
| 1642 |
+
# exercise_multiplier = max(0.3, 1.0 - time_diff_ratio)
|
| 1643 |
+
# elif user_prefs.exercise_time > 120:
|
| 1644 |
+
# exercise_multiplier = min(1.8, 1.0 + time_diff_ratio/2)
|
| 1645 |
+
# elif exercise_needs == 'LOW':
|
| 1646 |
+
# if user_prefs.exercise_time > 120:
|
| 1647 |
+
# exercise_multiplier = max(0.4, 1.0 - time_diff_ratio/2)
|
| 1648 |
+
|
| 1649 |
+
# return space_multiplier, exercise_multiplier
|
| 1650 |
+
|
| 1651 |
+
# def get_ideal_exercise_time(exercise_needs: str) -> int:
|
| 1652 |
+
# """獲取理想運動時間"""
|
| 1653 |
+
# return {
|
| 1654 |
+
# 'VERY HIGH': 150,
|
| 1655 |
+
# 'HIGH': 120,
|
| 1656 |
+
# 'MODERATE HIGH': 90,
|
| 1657 |
+
# 'MODERATE': 60,
|
| 1658 |
+
# 'MODERATE LOW': 45,
|
| 1659 |
+
# 'LOW': 30
|
| 1660 |
+
# }.get(exercise_needs, 60)
|
| 1661 |
+
|
| 1662 |
+
# # 經驗匹配度評估 - 更強的影響力
|
| 1663 |
+
# def evaluate_experience():
|
| 1664 |
+
# exp_multiplier = 1.0
|
| 1665 |
+
# care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1666 |
|
| 1667 |
+
# if care_level == 'High':
|
| 1668 |
+
# if user_prefs.experience_level == 'beginner':
|
| 1669 |
+
# exp_multiplier = 0.3 # 更嚴重的懲罰
|
| 1670 |
+
# elif user_prefs.experience_level == 'advanced':
|
| 1671 |
+
# exp_multiplier = 1.5 # 更大的獎勵
|
| 1672 |
+
# elif care_level == 'Low':
|
| 1673 |
+
# if user_prefs.experience_level == 'advanced':
|
| 1674 |
+
# exp_multiplier = 0.8
|
| 1675 |
|
| 1676 |
+
# return exp_multiplier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1677 |
|
| 1678 |
+
# # 計算調整係數
|
| 1679 |
+
# space_mult, exercise_mult = evaluate_key_features()
|
| 1680 |
+
# exp_mult = evaluate_experience()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1681 |
|
| 1682 |
+
# # 調整基礎分數
|
| 1683 |
+
# adjusted_scores = {
|
| 1684 |
+
# 'space': scores['space'] * space_mult,
|
| 1685 |
+
# 'exercise': scores['exercise'] * exercise_mult,
|
| 1686 |
+
# 'experience': scores['experience'] * exp_mult,
|
| 1687 |
+
# 'grooming': scores['grooming'],
|
| 1688 |
+
# 'health': scores['health'] * (1.5 if user_prefs.health_sensitivity == 'high' else 1.0),
|
| 1689 |
+
# 'noise': scores['noise']
|
| 1690 |
+
# }
|
| 1691 |
|
| 1692 |
+
# # 基礎權重
|
| 1693 |
+
# weights = {
|
| 1694 |
+
# 'space': 0.25,
|
| 1695 |
+
# 'exercise': 0.25,
|
| 1696 |
+
# 'experience': 0.15,
|
| 1697 |
+
# 'grooming': 0.15,
|
| 1698 |
+
# 'health': 0.10,
|
| 1699 |
+
# 'noise': 0.10
|
| 1700 |
+
# }
|
| 1701 |
+
|
| 1702 |
+
# # 動態權重調整 - 更強的條件反應
|
| 1703 |
+
# if user_prefs.has_children:
|
| 1704 |
+
# if user_prefs.children_age == 'toddler':
|
| 1705 |
+
# weights['noise'] *= 2.0 # 更強的噪音影響
|
| 1706 |
+
# weights['experience'] *= 1.5
|
| 1707 |
+
# weights['health'] *= 1.3
|
| 1708 |
+
# elif user_prefs.children_age == 'school_age':
|
| 1709 |
+
# weights['noise'] *= 1.5
|
| 1710 |
+
# weights['experience'] *= 1.3
|
| 1711 |
+
|
| 1712 |
+
# if user_prefs.living_space == 'apartment':
|
| 1713 |
+
# weights['space'] *= 1.8 # 更強的空間限制
|
| 1714 |
+
# weights['noise'] *= 1.6
|
| 1715 |
+
|
| 1716 |
+
# # 運動時間極端情況
|
| 1717 |
+
# if user_prefs.exercise_time < 30:
|
| 1718 |
+
# weights['exercise'] *= 2.0
|
| 1719 |
+
# elif user_prefs.exercise_time > 150:
|
| 1720 |
+
# weights['exercise'] *= 1.5
|
| 1721 |
+
|
| 1722 |
+
# # 正規化權重
|
| 1723 |
+
# total_weight = sum(weights.values())
|
| 1724 |
+
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1725 |
+
|
| 1726 |
+
# # 計算基礎分數
|
| 1727 |
+
# base_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
| 1728 |
+
|
| 1729 |
+
# # 品種特性加成
|
| 1730 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1731 |
+
|
| 1732 |
+
# # 動態整合係數
|
| 1733 |
+
# bonus_weight = min(0.25, max(0.15, breed_bonus)) # 讓優秀特性有更大影響
|
| 1734 |
+
|
| 1735 |
+
# # 完美匹配加成
|
| 1736 |
+
# if all(score >= 0.8 for score in adjusted_scores.values()):
|
| 1737 |
+
# base_score *= 1.2
|
| 1738 |
+
|
| 1739 |
+
# # 極端不匹配懲罰
|
| 1740 |
+
# if any(score <= 0.3 for score in adjusted_scores.values()):
|
| 1741 |
+
# base_score *= 0.6
|
| 1742 |
+
|
| 1743 |
+
# return min(1.0, max(0.0, (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)))
|
| 1744 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1745 |
|
| 1746 |
+
# def amplify_score_extreme(score: float) -> float:
|
| 1747 |
+
# """
|
| 1748 |
+
# 改進的分數轉換函數,提供更動態的分數範圍
|
| 1749 |
+
|
| 1750 |
+
# 動態轉換邏輯:
|
| 1751 |
+
# - 極差匹配 (0.0-0.2) -> 45-58%
|
| 1752 |
+
# - 較差匹配 (0.2-0.4) -> 58-72%
|
| 1753 |
+
# - 中等匹配 (0.4-0.6) -> 72-85%
|
| 1754 |
+
# - 良好匹配 (0.6-0.8) -> 85-92%
|
| 1755 |
+
# - 優秀匹配 (0.8-0.9) -> 92-96%
|
| 1756 |
+
# - 完美匹配 (0.9-1.0) -> 96-99%
|
| 1757 |
+
# """
|
| 1758 |
+
# if score < 0.2:
|
| 1759 |
+
# return 0.45 + (score / 0.2) * 0.13
|
| 1760 |
+
# elif score < 0.4:
|
| 1761 |
+
# position = (score - 0.2) / 0.2
|
| 1762 |
+
# return 0.58 + position * 0.14
|
| 1763 |
+
# elif score < 0.6:
|
| 1764 |
+
# position = (score - 0.4) / 0.2
|
| 1765 |
+
# return 0.72 + position * 0.13
|
| 1766 |
+
# elif score < 0.8:
|
| 1767 |
+
# position = (score - 0.6) / 0.2
|
| 1768 |
+
# return 0.85 + position * 0.07
|
| 1769 |
+
# elif score < 0.9:
|
| 1770 |
+
# position = (score - 0.8) / 0.1
|
| 1771 |
+
# return 0.92 + position * 0.04
|
| 1772 |
+
# else:
|
| 1773 |
+
# position = (score - 0.9) / 0.1
|
| 1774 |
+
# return 0.96 + position * 0.03
|
| 1775 |
+
|
| 1776 |
+
|
| 1777 |
+
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
| 1778 |
+
"""
|
| 1779 |
+
改進的品種相容性評分系統,提供更動態和精確的評分
|
| 1780 |
+
|
| 1781 |
+
主要改進:
|
| 1782 |
+
1. 更動態的權重系統
|
| 1783 |
+
2. 更強的極端情況處理
|
| 1784 |
+
3. 更精確的品種特性評估
|
| 1785 |
+
"""
|
| 1786 |
+
def evaluate_condition_extremity():
|
| 1787 |
+
"""評估使用者條件的極端程度"""
|
| 1788 |
+
extremity_count = 0
|
| 1789 |
+
|
| 1790 |
+
# 空間條件極端性
|
| 1791 |
+
if user_prefs.living_space == 'apartment' and breed_info['Size'] in ['Large', 'Giant']:
|
| 1792 |
+
extremity_count += 2
|
| 1793 |
+
elif user_prefs.living_space == 'house_large' and breed_info['Size'] == 'Small':
|
| 1794 |
+
extremity_count += 1
|
| 1795 |
+
|
| 1796 |
+
# 運動需求極端性
|
| 1797 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
| 1798 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
| 1799 |
+
extremity_count += 2
|
| 1800 |
+
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
| 1801 |
+
extremity_count += 1
|
| 1802 |
+
|
| 1803 |
+
# 經驗等級極端性
|
| 1804 |
+
care_level = breed_info.get('Care Level', 'MODERATE')
|
| 1805 |
+
if care_level == 'High' and user_prefs.experience_level == 'beginner':
|
| 1806 |
+
extremity_count += 2
|
| 1807 |
+
|
| 1808 |
+
return extremity_count
|
| 1809 |
+
|
| 1810 |
+
def calculate_dynamic_weights():
|
| 1811 |
+
"""計算動態權重"""
|
| 1812 |
+
# 基礎權重
|
| 1813 |
+
weights = {
|
| 1814 |
+
'space': 0.20,
|
| 1815 |
+
'exercise': 0.20,
|
| 1816 |
+
'experience': 0.15,
|
| 1817 |
+
'grooming': 0.15,
|
| 1818 |
+
'health': 0.15,
|
| 1819 |
+
'noise': 0.15
|
| 1820 |
+
}
|
| 1821 |
+
|
| 1822 |
+
# 根據生活環境調整權重
|
| 1823 |
+
if user_prefs.living_space == 'apartment':
|
| 1824 |
+
weights['space'] *= 2.0
|
| 1825 |
+
weights['noise'] *= 1.8
|
| 1826 |
+
|
| 1827 |
+
# 根據家庭情況調整
|
| 1828 |
+
if user_prefs.has_children:
|
| 1829 |
+
if user_prefs.children_age == 'toddler':
|
| 1830 |
+
weights['noise'] *= 2.0
|
| 1831 |
+
weights['experience'] *= 1.8
|
| 1832 |
+
weights['health'] *= 1.5
|
| 1833 |
+
elif user_prefs.children_age == 'school_age':
|
| 1834 |
+
weights['noise'] *= 1.5
|
| 1835 |
+
weights['experience'] *= 1.3
|
| 1836 |
+
|
| 1837 |
+
# 根據運動時間調整
|
| 1838 |
+
if user_prefs.exercise_time < 30:
|
| 1839 |
+
weights['exercise'] *= 2.5
|
| 1840 |
+
elif user_prefs.exercise_time > 150:
|
| 1841 |
+
weights['exercise'] *= 2.0
|
| 1842 |
+
|
| 1843 |
+
# 根據健康敏感度調整
|
| 1844 |
+
if user_prefs.health_sensitivity == 'high':
|
| 1845 |
+
weights['health'] *= 1.8
|
| 1846 |
+
|
| 1847 |
+
return weights
|
| 1848 |
+
|
| 1849 |
+
# 計算條件極端程度
|
| 1850 |
+
extremity_level = evaluate_condition_extremity()
|
| 1851 |
+
|
| 1852 |
+
# 計算動態權重
|
| 1853 |
+
weights = calculate_dynamic_weights()
|
| 1854 |
+
|
| 1855 |
# 正規化權重
|
| 1856 |
total_weight = sum(weights.values())
|
| 1857 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
| 1858 |
+
|
| 1859 |
+
# 計算加權分數
|
| 1860 |
+
weighted_scores = {
|
| 1861 |
+
k: scores[k] * normalized_weights[k] for k in scores.keys()
|
| 1862 |
+
}
|
| 1863 |
+
|
| 1864 |
+
# 基礎分數
|
| 1865 |
+
base_score = sum(weighted_scores.values())
|
| 1866 |
|
| 1867 |
# 品種特性加成
|
| 1868 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
| 1869 |
|
| 1870 |
+
# 根據極端程度調整最終分數
|
| 1871 |
+
if extremity_level >= 3:
|
| 1872 |
+
base_score *= 0.6 # 多個極端條件的嚴重懲罰
|
| 1873 |
+
elif extremity_level >= 2:
|
| 1874 |
+
base_score *= 0.8 # 較少極端條件的適度懲罰
|
| 1875 |
|
| 1876 |
# 完美匹配加成
|
| 1877 |
+
if all(score >= 0.8 for score in scores.values()):
|
| 1878 |
+
base_score *= 1.3
|
| 1879 |
|
| 1880 |
+
# 品種特性影響力隨匹配度增加
|
| 1881 |
+
bonus_weight = min(0.35, max(0.15, breed_bonus))
|
| 1882 |
+
|
| 1883 |
+
# 最終分數計算
|
| 1884 |
+
final_score = (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)
|
| 1885 |
+
|
| 1886 |
+
return min(1.0, max(0.0, final_score))
|
| 1887 |
|
| 1888 |
|
| 1889 |
def amplify_score_extreme(score: float) -> float:
|
| 1890 |
"""
|
| 1891 |
+
改進的分數轉換函數,提供更合理的分數分布
|
| 1892 |
+
|
| 1893 |
+
特點:
|
| 1894 |
+
1. 更大的分數範圍
|
| 1895 |
+
2. 更平滑的轉換曲線
|
| 1896 |
+
3. 更準確的極端情況處理
|
|
|
|
|
|
|
|
|
|
| 1897 |
"""
|
| 1898 |
+
def sigmoid_transform(x: float, steepness: float = 10) -> float:
|
| 1899 |
+
"""使用 sigmoid 函數實現更平滑的轉換"""
|
| 1900 |
+
import math
|
| 1901 |
+
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
| 1902 |
+
|
| 1903 |
if score < 0.2:
|
| 1904 |
+
# 極差匹配:使用更低的起始分數
|
| 1905 |
+
base = 0.40
|
| 1906 |
+
range_score = 0.15
|
| 1907 |
+
position = score / 0.2
|
| 1908 |
+
return base + (sigmoid_transform(position) * range_score)
|
| 1909 |
+
|
| 1910 |
elif score < 0.4:
|
| 1911 |
+
# 較差匹配:緩慢增長
|
| 1912 |
+
base = 0.55
|
| 1913 |
+
range_score = 0.15
|
| 1914 |
position = (score - 0.2) / 0.2
|
| 1915 |
+
return base + (sigmoid_transform(position) * range_score)
|
| 1916 |
+
|
| 1917 |
elif score < 0.6:
|
| 1918 |
+
# 中等匹配:較大增長
|
| 1919 |
+
base = 0.70
|
| 1920 |
+
range_score = 0.15
|
| 1921 |
position = (score - 0.4) / 0.2
|
| 1922 |
+
return base + (sigmoid_transform(position) * range_score)
|
| 1923 |
+
|
| 1924 |
elif score < 0.8:
|
| 1925 |
+
# 良好匹配:快速增長
|
| 1926 |
+
base = 0.85
|
| 1927 |
+
range_score = 0.10
|
| 1928 |
position = (score - 0.6) / 0.2
|
| 1929 |
+
return base + (sigmoid_transform(position) * range_score)
|
| 1930 |
+
|
| 1931 |
elif score < 0.9:
|
| 1932 |
+
# 優秀匹配:接近最高分
|
| 1933 |
+
base = 0.95
|
| 1934 |
+
range_score = 0.03
|
| 1935 |
position = (score - 0.8) / 0.1
|
| 1936 |
+
return base + (sigmoid_transform(position) * range_score)
|
| 1937 |
+
|
| 1938 |
else:
|
| 1939 |
+
# 完美匹配:可能達到最高分
|
| 1940 |
+
base = 0.98
|
| 1941 |
+
range_score = 0.02
|
| 1942 |
position = (score - 0.9) / 0.1
|
| 1943 |
+
return base + (sigmoid_transform(position) * range_score)
|