Spaces:
Runtime error
Runtime error
First model version
Browse files- configs/pretrain_language_model.yaml +45 -0
- configs/pretrain_vision_model.yaml +58 -0
- configs/pretrain_vision_model_sv.yaml +58 -0
- configs/template.yaml +67 -0
- configs/train_abinet.yaml +71 -0
- configs/train_abinet_sv.yaml +71 -0
- configs/train_abinet_wo_iter.yaml +68 -0
configs/pretrain_language_model.yaml
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: pretrain-language-model
|
| 3 |
+
phase: train
|
| 4 |
+
stage: pretrain-language
|
| 5 |
+
workdir: workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/WikiText-103.csv'],
|
| 11 |
+
batch_size: 4096
|
| 12 |
+
}
|
| 13 |
+
test: {
|
| 14 |
+
roots: ['data/WikiText-103_eval_d1.csv'],
|
| 15 |
+
batch_size: 4096
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
training:
|
| 19 |
+
epochs: 80
|
| 20 |
+
show_iters: 50
|
| 21 |
+
eval_iters: 6000
|
| 22 |
+
save_iters: 3000
|
| 23 |
+
|
| 24 |
+
optimizer:
|
| 25 |
+
type: Adam
|
| 26 |
+
true_wd: False
|
| 27 |
+
wd: 0.0
|
| 28 |
+
bn_wd: False
|
| 29 |
+
clip_grad: 20
|
| 30 |
+
lr: 0.0001
|
| 31 |
+
args: {
|
| 32 |
+
betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 33 |
+
}
|
| 34 |
+
scheduler: {
|
| 35 |
+
periods: [70, 10],
|
| 36 |
+
gamma: 0.1,
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
model:
|
| 40 |
+
name: 'modules.model_language.BCNLanguage'
|
| 41 |
+
language: {
|
| 42 |
+
num_layers: 4,
|
| 43 |
+
loss_weight: 1.,
|
| 44 |
+
use_self_attn: False
|
| 45 |
+
}
|
configs/pretrain_vision_model.yaml
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: pretrain-vision-model
|
| 3 |
+
phase: train
|
| 4 |
+
stage: pretrain-vision
|
| 5 |
+
workdir: workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/training/MJ/MJ_train/',
|
| 11 |
+
'data/training/MJ/MJ_test/',
|
| 12 |
+
'data/training/MJ/MJ_valid/',
|
| 13 |
+
'data/training/ST'],
|
| 14 |
+
batch_size: 384
|
| 15 |
+
}
|
| 16 |
+
test: {
|
| 17 |
+
roots: ['data/evaluation/IIIT5k_3000',
|
| 18 |
+
'data/evaluation/SVT',
|
| 19 |
+
'data/evaluation/SVTP',
|
| 20 |
+
'data/evaluation/IC13_857',
|
| 21 |
+
'data/evaluation/IC15_1811',
|
| 22 |
+
'data/evaluation/CUTE80'],
|
| 23 |
+
batch_size: 384
|
| 24 |
+
}
|
| 25 |
+
data_aug: True
|
| 26 |
+
multiscales: False
|
| 27 |
+
num_workers: 14
|
| 28 |
+
|
| 29 |
+
training:
|
| 30 |
+
epochs: 8
|
| 31 |
+
show_iters: 50
|
| 32 |
+
eval_iters: 3000
|
| 33 |
+
save_iters: 3000
|
| 34 |
+
|
| 35 |
+
optimizer:
|
| 36 |
+
type: Adam
|
| 37 |
+
true_wd: False
|
| 38 |
+
wd: 0.0
|
| 39 |
+
bn_wd: False
|
| 40 |
+
clip_grad: 20
|
| 41 |
+
lr: 0.0001
|
| 42 |
+
args: {
|
| 43 |
+
betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 44 |
+
}
|
| 45 |
+
scheduler: {
|
| 46 |
+
periods: [6, 2],
|
| 47 |
+
gamma: 0.1,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
model:
|
| 51 |
+
name: 'modules.model_vision.BaseVision'
|
| 52 |
+
checkpoint: ~
|
| 53 |
+
vision: {
|
| 54 |
+
loss_weight: 1.,
|
| 55 |
+
attention: 'position',
|
| 56 |
+
backbone: 'transformer',
|
| 57 |
+
backbone_ln: 3,
|
| 58 |
+
}
|
configs/pretrain_vision_model_sv.yaml
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: pretrain-vision-model-sv
|
| 3 |
+
phase: train
|
| 4 |
+
stage: pretrain-vision
|
| 5 |
+
workdir: workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/training/MJ/MJ_train/',
|
| 11 |
+
'data/training/MJ/MJ_test/',
|
| 12 |
+
'data/training/MJ/MJ_valid/',
|
| 13 |
+
'data/training/ST'],
|
| 14 |
+
batch_size: 384
|
| 15 |
+
}
|
| 16 |
+
test: {
|
| 17 |
+
roots: ['data/evaluation/IIIT5k_3000',
|
| 18 |
+
'data/evaluation/SVT',
|
| 19 |
+
'data/evaluation/SVTP',
|
| 20 |
+
'data/evaluation/IC13_857',
|
| 21 |
+
'data/evaluation/IC15_1811',
|
| 22 |
+
'data/evaluation/CUTE80'],
|
| 23 |
+
batch_size: 384
|
| 24 |
+
}
|
| 25 |
+
data_aug: True
|
| 26 |
+
multiscales: False
|
| 27 |
+
num_workers: 14
|
| 28 |
+
|
| 29 |
+
training:
|
| 30 |
+
epochs: 8
|
| 31 |
+
show_iters: 50
|
| 32 |
+
eval_iters: 3000
|
| 33 |
+
save_iters: 3000
|
| 34 |
+
|
| 35 |
+
optimizer:
|
| 36 |
+
type: Adam
|
| 37 |
+
true_wd: False
|
| 38 |
+
wd: 0.0
|
| 39 |
+
bn_wd: False
|
| 40 |
+
clip_grad: 20
|
| 41 |
+
lr: 0.0001
|
| 42 |
+
args: {
|
| 43 |
+
betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 44 |
+
}
|
| 45 |
+
scheduler: {
|
| 46 |
+
periods: [6, 2],
|
| 47 |
+
gamma: 0.1,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
model:
|
| 51 |
+
name: 'modules.model_vision.BaseVision'
|
| 52 |
+
checkpoint: ~
|
| 53 |
+
vision: {
|
| 54 |
+
loss_weight: 1.,
|
| 55 |
+
attention: 'attention',
|
| 56 |
+
backbone: 'transformer',
|
| 57 |
+
backbone_ln: 2,
|
| 58 |
+
}
|
configs/template.yaml
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: exp
|
| 3 |
+
phase: train
|
| 4 |
+
stage: pretrain-vision
|
| 5 |
+
workdir: /tmp/workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/training/MJ/MJ_train/',
|
| 11 |
+
'data/training/MJ/MJ_test/',
|
| 12 |
+
'data/training/MJ/MJ_valid/',
|
| 13 |
+
'data/training/ST'],
|
| 14 |
+
batch_size: 128
|
| 15 |
+
}
|
| 16 |
+
test: {
|
| 17 |
+
roots: ['data/evaluation/IIIT5k_3000',
|
| 18 |
+
'data/evaluation/SVT',
|
| 19 |
+
'data/evaluation/SVTP',
|
| 20 |
+
'data/evaluation/IC13_857',
|
| 21 |
+
'data/evaluation/IC15_1811',
|
| 22 |
+
'data/evaluation/CUTE80'],
|
| 23 |
+
batch_size: 128
|
| 24 |
+
}
|
| 25 |
+
charset_path: data/charset_36.txt
|
| 26 |
+
num_workers: 4
|
| 27 |
+
max_length: 25 # 30
|
| 28 |
+
image_height: 32
|
| 29 |
+
image_width: 128
|
| 30 |
+
case_sensitive: False
|
| 31 |
+
eval_case_sensitive: False
|
| 32 |
+
data_aug: True
|
| 33 |
+
multiscales: False
|
| 34 |
+
pin_memory: True
|
| 35 |
+
smooth_label: False
|
| 36 |
+
smooth_factor: 0.1
|
| 37 |
+
one_hot_y: True
|
| 38 |
+
use_sm: False
|
| 39 |
+
|
| 40 |
+
training:
|
| 41 |
+
epochs: 6
|
| 42 |
+
show_iters: 50
|
| 43 |
+
eval_iters: 3000
|
| 44 |
+
save_iters: 20000
|
| 45 |
+
start_iters: 0
|
| 46 |
+
stats_iters: 100000
|
| 47 |
+
|
| 48 |
+
optimizer:
|
| 49 |
+
type: Adadelta # Adadelta, Adam
|
| 50 |
+
true_wd: False
|
| 51 |
+
wd: 0. # 0.001
|
| 52 |
+
bn_wd: False
|
| 53 |
+
args: {
|
| 54 |
+
# betas: !!python/tuple [0.9, 0.99], # betas=(0.9,0.99) for AdamW
|
| 55 |
+
# betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 56 |
+
}
|
| 57 |
+
clip_grad: 20
|
| 58 |
+
lr: [1.0, 1.0, 1.0] # lr: [0.005, 0.005, 0.005]
|
| 59 |
+
scheduler: {
|
| 60 |
+
periods: [3, 2, 1],
|
| 61 |
+
gamma: 0.1,
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
model:
|
| 65 |
+
name: 'modules.model_abinet.ABINetModel'
|
| 66 |
+
checkpoint: ~
|
| 67 |
+
strict: True
|
configs/train_abinet.yaml
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: train-abinet
|
| 3 |
+
phase: train
|
| 4 |
+
stage: train-super
|
| 5 |
+
workdir: workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/training/MJ/MJ_train/',
|
| 11 |
+
'data/training/MJ/MJ_test/',
|
| 12 |
+
'data/training/MJ/MJ_valid/',
|
| 13 |
+
'data/training/ST'],
|
| 14 |
+
batch_size: 384
|
| 15 |
+
}
|
| 16 |
+
test: {
|
| 17 |
+
roots: ['data/evaluation/IIIT5k_3000',
|
| 18 |
+
'data/evaluation/SVT',
|
| 19 |
+
'data/evaluation/SVTP',
|
| 20 |
+
'data/evaluation/IC13_857',
|
| 21 |
+
'data/evaluation/IC15_1811',
|
| 22 |
+
'data/evaluation/CUTE80'],
|
| 23 |
+
batch_size: 384
|
| 24 |
+
}
|
| 25 |
+
data_aug: True
|
| 26 |
+
multiscales: False
|
| 27 |
+
num_workers: 14
|
| 28 |
+
|
| 29 |
+
training:
|
| 30 |
+
epochs: 10
|
| 31 |
+
show_iters: 50
|
| 32 |
+
eval_iters: 3000
|
| 33 |
+
save_iters: 3000
|
| 34 |
+
|
| 35 |
+
optimizer:
|
| 36 |
+
type: Adam
|
| 37 |
+
true_wd: False
|
| 38 |
+
wd: 0.0
|
| 39 |
+
bn_wd: False
|
| 40 |
+
clip_grad: 20
|
| 41 |
+
lr: 0.0001
|
| 42 |
+
args: {
|
| 43 |
+
betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 44 |
+
}
|
| 45 |
+
scheduler: {
|
| 46 |
+
periods: [6, 4],
|
| 47 |
+
gamma: 0.1,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
model:
|
| 51 |
+
name: 'modules.model_abinet_iter.ABINetIterModel'
|
| 52 |
+
iter_size: 3
|
| 53 |
+
ensemble: ''
|
| 54 |
+
use_vision: False
|
| 55 |
+
vision: {
|
| 56 |
+
checkpoint: workdir/pretrain-vision-model/best-pretrain-vision-model.pth,
|
| 57 |
+
loss_weight: 1.,
|
| 58 |
+
attention: 'position',
|
| 59 |
+
backbone: 'transformer',
|
| 60 |
+
backbone_ln: 3,
|
| 61 |
+
}
|
| 62 |
+
language: {
|
| 63 |
+
checkpoint: workdir/pretrain-language-model/pretrain-language-model.pth,
|
| 64 |
+
num_layers: 4,
|
| 65 |
+
loss_weight: 1.,
|
| 66 |
+
detach: True,
|
| 67 |
+
use_self_attn: False
|
| 68 |
+
}
|
| 69 |
+
alignment: {
|
| 70 |
+
loss_weight: 1.,
|
| 71 |
+
}
|
configs/train_abinet_sv.yaml
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: train-abinet-sv
|
| 3 |
+
phase: train
|
| 4 |
+
stage: train-super
|
| 5 |
+
workdir: workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/training/MJ/MJ_train/',
|
| 11 |
+
'data/training/MJ/MJ_test/',
|
| 12 |
+
'data/training/MJ/MJ_valid/',
|
| 13 |
+
'data/training/ST'],
|
| 14 |
+
batch_size: 384
|
| 15 |
+
}
|
| 16 |
+
test: {
|
| 17 |
+
roots: ['data/evaluation/IIIT5k_3000',
|
| 18 |
+
'data/evaluation/SVT',
|
| 19 |
+
'data/evaluation/SVTP',
|
| 20 |
+
'data/evaluation/IC13_857',
|
| 21 |
+
'data/evaluation/IC15_1811',
|
| 22 |
+
'data/evaluation/CUTE80'],
|
| 23 |
+
batch_size: 384
|
| 24 |
+
}
|
| 25 |
+
data_aug: True
|
| 26 |
+
multiscales: False
|
| 27 |
+
num_workers: 14
|
| 28 |
+
|
| 29 |
+
training:
|
| 30 |
+
epochs: 10
|
| 31 |
+
show_iters: 50
|
| 32 |
+
eval_iters: 3000
|
| 33 |
+
save_iters: 3000
|
| 34 |
+
|
| 35 |
+
optimizer:
|
| 36 |
+
type: Adam
|
| 37 |
+
true_wd: False
|
| 38 |
+
wd: 0.0
|
| 39 |
+
bn_wd: False
|
| 40 |
+
clip_grad: 20
|
| 41 |
+
lr: 0.0001
|
| 42 |
+
args: {
|
| 43 |
+
betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 44 |
+
}
|
| 45 |
+
scheduler: {
|
| 46 |
+
periods: [6, 4],
|
| 47 |
+
gamma: 0.1,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
model:
|
| 51 |
+
name: 'modules.model_abinet_iter.ABINetIterModel'
|
| 52 |
+
iter_size: 3
|
| 53 |
+
ensemble: ''
|
| 54 |
+
use_vision: False
|
| 55 |
+
vision: {
|
| 56 |
+
checkpoint: workdir/pretrain-vision-model-sv/best-pretrain-vision-model-sv.pth,
|
| 57 |
+
loss_weight: 1.,
|
| 58 |
+
attention: 'attention',
|
| 59 |
+
backbone: 'transformer',
|
| 60 |
+
backbone_ln: 2,
|
| 61 |
+
}
|
| 62 |
+
language: {
|
| 63 |
+
checkpoint: workdir/pretrain-language-model/pretrain-language-model.pth,
|
| 64 |
+
num_layers: 4,
|
| 65 |
+
loss_weight: 1.,
|
| 66 |
+
detach: True,
|
| 67 |
+
use_self_attn: False
|
| 68 |
+
}
|
| 69 |
+
alignment: {
|
| 70 |
+
loss_weight: 1.,
|
| 71 |
+
}
|
configs/train_abinet_wo_iter.yaml
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
global:
|
| 2 |
+
name: train-abinet-wo-iter
|
| 3 |
+
phase: train
|
| 4 |
+
stage: train-super
|
| 5 |
+
workdir: workdir
|
| 6 |
+
seed: ~
|
| 7 |
+
|
| 8 |
+
dataset:
|
| 9 |
+
train: {
|
| 10 |
+
roots: ['data/training/MJ/MJ_train/',
|
| 11 |
+
'data/training/MJ/MJ_test/',
|
| 12 |
+
'data/training/MJ/MJ_valid/',
|
| 13 |
+
'data/training/ST'],
|
| 14 |
+
batch_size: 384
|
| 15 |
+
}
|
| 16 |
+
test: {
|
| 17 |
+
roots: ['data/evaluation/IIIT5k_3000',
|
| 18 |
+
'data/evaluation/SVT',
|
| 19 |
+
'data/evaluation/SVTP',
|
| 20 |
+
'data/evaluation/IC13_857',
|
| 21 |
+
'data/evaluation/IC15_1811',
|
| 22 |
+
'data/evaluation/CUTE80'],
|
| 23 |
+
batch_size: 384
|
| 24 |
+
}
|
| 25 |
+
data_aug: True
|
| 26 |
+
multiscales: False
|
| 27 |
+
num_workers: 14
|
| 28 |
+
|
| 29 |
+
training:
|
| 30 |
+
epochs: 10
|
| 31 |
+
show_iters: 50
|
| 32 |
+
eval_iters: 3000
|
| 33 |
+
save_iters: 3000
|
| 34 |
+
|
| 35 |
+
optimizer:
|
| 36 |
+
type: Adam
|
| 37 |
+
true_wd: False
|
| 38 |
+
wd: 0.0
|
| 39 |
+
bn_wd: False
|
| 40 |
+
clip_grad: 20
|
| 41 |
+
lr: 0.0001
|
| 42 |
+
args: {
|
| 43 |
+
betas: !!python/tuple [0.9, 0.999], # for default Adam
|
| 44 |
+
}
|
| 45 |
+
scheduler: {
|
| 46 |
+
periods: [6, 4],
|
| 47 |
+
gamma: 0.1,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
model:
|
| 51 |
+
name: 'modules.model_abinet.ABINetModel'
|
| 52 |
+
vision: {
|
| 53 |
+
checkpoint: workdir/pretrain-vision-model/best-pretrain-vision-model.pth,
|
| 54 |
+
loss_weight: 1.,
|
| 55 |
+
attention: 'position',
|
| 56 |
+
backbone: 'transformer',
|
| 57 |
+
backbone_ln: 3,
|
| 58 |
+
}
|
| 59 |
+
language: {
|
| 60 |
+
checkpoint: workdir/pretrain-language-model/pretrain-language-model.pth,
|
| 61 |
+
num_layers: 4,
|
| 62 |
+
loss_weight: 1.,
|
| 63 |
+
detach: True,
|
| 64 |
+
use_self_attn: False
|
| 65 |
+
}
|
| 66 |
+
alignment: {
|
| 67 |
+
loss_weight: 1.,
|
| 68 |
+
}
|