Spaces:
Runtime error
Runtime error
First model version
Browse files- app.py +1 -1
- configs/{template.yaml β rec/template.yaml} +0 -0
- configs/{train_abinet.yaml β rec/train_abinet.yaml} +0 -0
- modules/__init__.py +0 -0
- modules/attention.py +0 -97
- modules/backbone.py +0 -36
- modules/model.py +0 -50
- modules/model_abinet.py +0 -30
- modules/model_abinet_iter.py +0 -34
- modules/model_alignment.py +0 -34
- modules/model_language.py +0 -67
- modules/model_vision.py +0 -47
- modules/resnet.py +0 -104
- modules/transformer.py +0 -901
- utils.py +1 -1
app.py
CHANGED
|
@@ -10,7 +10,7 @@ from demo import get_model, preprocess, postprocess, load
|
|
| 10 |
from utils import Config, Logger, CharsetMapper
|
| 11 |
|
| 12 |
def process_image(image):
|
| 13 |
-
config = Config('configs/train_abinet.yaml')
|
| 14 |
config.model_vision_checkpoint = None
|
| 15 |
model = get_model(config)
|
| 16 |
model = load(model, 'workdir/train-abinet/best-train-abinet.pth')
|
|
|
|
| 10 |
from utils import Config, Logger, CharsetMapper
|
| 11 |
|
| 12 |
def process_image(image):
|
| 13 |
+
config = Config('configs/rec/train_abinet.yaml')
|
| 14 |
config.model_vision_checkpoint = None
|
| 15 |
model = get_model(config)
|
| 16 |
model = load(model, 'workdir/train-abinet/best-train-abinet.pth')
|
configs/{template.yaml β rec/template.yaml}
RENAMED
|
File without changes
|
configs/{train_abinet.yaml β rec/train_abinet.yaml}
RENAMED
|
File without changes
|
modules/__init__.py
DELETED
|
File without changes
|
modules/attention.py
DELETED
|
@@ -1,97 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from .transformer import PositionalEncoding
|
| 4 |
-
|
| 5 |
-
class Attention(nn.Module):
|
| 6 |
-
def __init__(self, in_channels=512, max_length=25, n_feature=256):
|
| 7 |
-
super().__init__()
|
| 8 |
-
self.max_length = max_length
|
| 9 |
-
|
| 10 |
-
self.f0_embedding = nn.Embedding(max_length, in_channels)
|
| 11 |
-
self.w0 = nn.Linear(max_length, n_feature)
|
| 12 |
-
self.wv = nn.Linear(in_channels, in_channels)
|
| 13 |
-
self.we = nn.Linear(in_channels, max_length)
|
| 14 |
-
|
| 15 |
-
self.active = nn.Tanh()
|
| 16 |
-
self.softmax = nn.Softmax(dim=2)
|
| 17 |
-
|
| 18 |
-
def forward(self, enc_output):
|
| 19 |
-
enc_output = enc_output.permute(0, 2, 3, 1).flatten(1, 2)
|
| 20 |
-
reading_order = torch.arange(self.max_length, dtype=torch.long, device=enc_output.device)
|
| 21 |
-
reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1) # (S,) -> (B, S)
|
| 22 |
-
reading_order_embed = self.f0_embedding(reading_order) # b,25,512
|
| 23 |
-
|
| 24 |
-
t = self.w0(reading_order_embed.permute(0, 2, 1)) # b,512,256
|
| 25 |
-
t = self.active(t.permute(0, 2, 1) + self.wv(enc_output)) # b,256,512
|
| 26 |
-
|
| 27 |
-
attn = self.we(t) # b,256,25
|
| 28 |
-
attn = self.softmax(attn.permute(0, 2, 1)) # b,25,256
|
| 29 |
-
g_output = torch.bmm(attn, enc_output) # b,25,512
|
| 30 |
-
return g_output, attn.view(*attn.shape[:2], 8, 32)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def encoder_layer(in_c, out_c, k=3, s=2, p=1):
|
| 34 |
-
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p),
|
| 35 |
-
nn.BatchNorm2d(out_c),
|
| 36 |
-
nn.ReLU(True))
|
| 37 |
-
|
| 38 |
-
def decoder_layer(in_c, out_c, k=3, s=1, p=1, mode='nearest', scale_factor=None, size=None):
|
| 39 |
-
align_corners = None if mode=='nearest' else True
|
| 40 |
-
return nn.Sequential(nn.Upsample(size=size, scale_factor=scale_factor,
|
| 41 |
-
mode=mode, align_corners=align_corners),
|
| 42 |
-
nn.Conv2d(in_c, out_c, k, s, p),
|
| 43 |
-
nn.BatchNorm2d(out_c),
|
| 44 |
-
nn.ReLU(True))
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class PositionAttention(nn.Module):
|
| 48 |
-
def __init__(self, max_length, in_channels=512, num_channels=64,
|
| 49 |
-
h=8, w=32, mode='nearest', **kwargs):
|
| 50 |
-
super().__init__()
|
| 51 |
-
self.max_length = max_length
|
| 52 |
-
self.k_encoder = nn.Sequential(
|
| 53 |
-
encoder_layer(in_channels, num_channels, s=(1, 2)),
|
| 54 |
-
encoder_layer(num_channels, num_channels, s=(2, 2)),
|
| 55 |
-
encoder_layer(num_channels, num_channels, s=(2, 2)),
|
| 56 |
-
encoder_layer(num_channels, num_channels, s=(2, 2))
|
| 57 |
-
)
|
| 58 |
-
self.k_decoder = nn.Sequential(
|
| 59 |
-
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
| 60 |
-
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
| 61 |
-
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
| 62 |
-
decoder_layer(num_channels, in_channels, size=(h, w), mode=mode)
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
self.pos_encoder = PositionalEncoding(in_channels, dropout=0, max_len=max_length)
|
| 66 |
-
self.project = nn.Linear(in_channels, in_channels)
|
| 67 |
-
|
| 68 |
-
def forward(self, x):
|
| 69 |
-
N, E, H, W = x.size()
|
| 70 |
-
k, v = x, x # (N, E, H, W)
|
| 71 |
-
|
| 72 |
-
# calculate key vector
|
| 73 |
-
features = []
|
| 74 |
-
for i in range(0, len(self.k_encoder)):
|
| 75 |
-
k = self.k_encoder[i](k)
|
| 76 |
-
features.append(k)
|
| 77 |
-
for i in range(0, len(self.k_decoder) - 1):
|
| 78 |
-
k = self.k_decoder[i](k)
|
| 79 |
-
k = k + features[len(self.k_decoder) - 2 - i]
|
| 80 |
-
k = self.k_decoder[-1](k)
|
| 81 |
-
|
| 82 |
-
# calculate query vector
|
| 83 |
-
# TODO q=f(q,k)
|
| 84 |
-
zeros = x.new_zeros((self.max_length, N, E)) # (T, N, E)
|
| 85 |
-
q = self.pos_encoder(zeros) # (T, N, E)
|
| 86 |
-
q = q.permute(1, 0, 2) # (N, T, E)
|
| 87 |
-
q = self.project(q) # (N, T, E)
|
| 88 |
-
|
| 89 |
-
# calculate attention
|
| 90 |
-
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
|
| 91 |
-
attn_scores = attn_scores / (E ** 0.5)
|
| 92 |
-
attn_scores = torch.softmax(attn_scores, dim=-1)
|
| 93 |
-
|
| 94 |
-
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
|
| 95 |
-
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
|
| 96 |
-
|
| 97 |
-
return attn_vecs, attn_scores.view(N, -1, H, W)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/backbone.py
DELETED
|
@@ -1,36 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from fastai.vision import *
|
| 4 |
-
|
| 5 |
-
from modules.model import _default_tfmer_cfg
|
| 6 |
-
from modules.resnet import resnet45
|
| 7 |
-
from modules.transformer import (PositionalEncoding,
|
| 8 |
-
TransformerEncoder,
|
| 9 |
-
TransformerEncoderLayer)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class ResTranformer(nn.Module):
|
| 13 |
-
def __init__(self, config):
|
| 14 |
-
super().__init__()
|
| 15 |
-
self.resnet = resnet45()
|
| 16 |
-
|
| 17 |
-
self.d_model = ifnone(config.model_vision_d_model, _default_tfmer_cfg['d_model'])
|
| 18 |
-
nhead = ifnone(config.model_vision_nhead, _default_tfmer_cfg['nhead'])
|
| 19 |
-
d_inner = ifnone(config.model_vision_d_inner, _default_tfmer_cfg['d_inner'])
|
| 20 |
-
dropout = ifnone(config.model_vision_dropout, _default_tfmer_cfg['dropout'])
|
| 21 |
-
activation = ifnone(config.model_vision_activation, _default_tfmer_cfg['activation'])
|
| 22 |
-
num_layers = ifnone(config.model_vision_backbone_ln, 2)
|
| 23 |
-
|
| 24 |
-
self.pos_encoder = PositionalEncoding(self.d_model, max_len=8*32)
|
| 25 |
-
encoder_layer = TransformerEncoderLayer(d_model=self.d_model, nhead=nhead,
|
| 26 |
-
dim_feedforward=d_inner, dropout=dropout, activation=activation)
|
| 27 |
-
self.transformer = TransformerEncoder(encoder_layer, num_layers)
|
| 28 |
-
|
| 29 |
-
def forward(self, images):
|
| 30 |
-
feature = self.resnet(images)
|
| 31 |
-
n, c, h, w = feature.shape
|
| 32 |
-
feature = feature.view(n, c, -1).permute(2, 0, 1)
|
| 33 |
-
feature = self.pos_encoder(feature)
|
| 34 |
-
feature = self.transformer(feature)
|
| 35 |
-
feature = feature.permute(1, 2, 0).view(n, c, h, w)
|
| 36 |
-
return feature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/model.py
DELETED
|
@@ -1,50 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
|
| 4 |
-
from utils import CharsetMapper
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
_default_tfmer_cfg = dict(d_model=512, nhead=8, d_inner=2048, # 1024
|
| 8 |
-
dropout=0.1, activation='relu')
|
| 9 |
-
|
| 10 |
-
class Model(nn.Module):
|
| 11 |
-
|
| 12 |
-
def __init__(self, config):
|
| 13 |
-
super().__init__()
|
| 14 |
-
self.max_length = config.dataset_max_length + 1
|
| 15 |
-
self.charset = CharsetMapper(config.dataset_charset_path, max_length=self.max_length)
|
| 16 |
-
|
| 17 |
-
def load(self, source, device=None, strict=True):
|
| 18 |
-
state = torch.load(source, map_location=device)
|
| 19 |
-
self.load_state_dict(state['model'], strict=strict)
|
| 20 |
-
|
| 21 |
-
def _get_length(self, logit, dim=-1):
|
| 22 |
-
""" Greed decoder to obtain length from logit"""
|
| 23 |
-
out = (logit.argmax(dim=-1) == self.charset.null_label)
|
| 24 |
-
abn = out.any(dim)
|
| 25 |
-
out = ((out.cumsum(dim) == 1) & out).max(dim)[1]
|
| 26 |
-
out = out + 1 # additional end token
|
| 27 |
-
out = torch.where(abn, out, out.new_tensor(logit.shape[1]))
|
| 28 |
-
return out
|
| 29 |
-
|
| 30 |
-
@staticmethod
|
| 31 |
-
def _get_padding_mask(length, max_length):
|
| 32 |
-
length = length.unsqueeze(-1)
|
| 33 |
-
grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
|
| 34 |
-
return grid >= length
|
| 35 |
-
|
| 36 |
-
@staticmethod
|
| 37 |
-
def _get_square_subsequent_mask(sz, device, diagonal=0, fw=True):
|
| 38 |
-
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
| 39 |
-
Unmasked positions are filled with float(0.0).
|
| 40 |
-
"""
|
| 41 |
-
mask = (torch.triu(torch.ones(sz, sz, device=device), diagonal=diagonal) == 1)
|
| 42 |
-
if fw: mask = mask.transpose(0, 1)
|
| 43 |
-
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
| 44 |
-
return mask
|
| 45 |
-
|
| 46 |
-
@staticmethod
|
| 47 |
-
def _get_location_mask(sz, device=None):
|
| 48 |
-
mask = torch.eye(sz, device=device)
|
| 49 |
-
mask = mask.float().masked_fill(mask == 1, float('-inf'))
|
| 50 |
-
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/model_abinet.py
DELETED
|
@@ -1,30 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from fastai.vision import *
|
| 4 |
-
|
| 5 |
-
from .model_vision import BaseVision
|
| 6 |
-
from .model_language import BCNLanguage
|
| 7 |
-
from .model_alignment import BaseAlignment
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class ABINetModel(nn.Module):
|
| 11 |
-
def __init__(self, config):
|
| 12 |
-
super().__init__()
|
| 13 |
-
self.use_alignment = ifnone(config.model_use_alignment, True)
|
| 14 |
-
self.max_length = config.dataset_max_length + 1 # additional stop token
|
| 15 |
-
self.vision = BaseVision(config)
|
| 16 |
-
self.language = BCNLanguage(config)
|
| 17 |
-
if self.use_alignment: self.alignment = BaseAlignment(config)
|
| 18 |
-
|
| 19 |
-
def forward(self, images, *args):
|
| 20 |
-
v_res = self.vision(images)
|
| 21 |
-
v_tokens = torch.softmax(v_res['logits'], dim=-1)
|
| 22 |
-
v_lengths = v_res['pt_lengths'].clamp_(2, self.max_length) # TODO:move to langauge model
|
| 23 |
-
|
| 24 |
-
l_res = self.language(v_tokens, v_lengths)
|
| 25 |
-
if not self.use_alignment:
|
| 26 |
-
return l_res, v_res
|
| 27 |
-
l_feature, v_feature = l_res['feature'], v_res['feature']
|
| 28 |
-
|
| 29 |
-
a_res = self.alignment(l_feature, v_feature)
|
| 30 |
-
return a_res, l_res, v_res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/model_abinet_iter.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from fastai.vision import *
|
| 4 |
-
|
| 5 |
-
from .model_vision import BaseVision
|
| 6 |
-
from .model_language import BCNLanguage
|
| 7 |
-
from .model_alignment import BaseAlignment
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class ABINetIterModel(nn.Module):
|
| 11 |
-
def __init__(self, config):
|
| 12 |
-
super().__init__()
|
| 13 |
-
self.iter_size = ifnone(config.model_iter_size, 1)
|
| 14 |
-
self.max_length = config.dataset_max_length + 1 # additional stop token
|
| 15 |
-
self.vision = BaseVision(config)
|
| 16 |
-
self.language = BCNLanguage(config)
|
| 17 |
-
self.alignment = BaseAlignment(config)
|
| 18 |
-
|
| 19 |
-
def forward(self, images, *args):
|
| 20 |
-
v_res = self.vision(images)
|
| 21 |
-
a_res = v_res
|
| 22 |
-
all_l_res, all_a_res = [], []
|
| 23 |
-
for _ in range(self.iter_size):
|
| 24 |
-
tokens = torch.softmax(a_res['logits'], dim=-1)
|
| 25 |
-
lengths = a_res['pt_lengths']
|
| 26 |
-
lengths.clamp_(2, self.max_length) # TODO:move to langauge model
|
| 27 |
-
l_res = self.language(tokens, lengths)
|
| 28 |
-
all_l_res.append(l_res)
|
| 29 |
-
a_res = self.alignment(l_res['feature'], v_res['feature'])
|
| 30 |
-
all_a_res.append(a_res)
|
| 31 |
-
if self.training:
|
| 32 |
-
return all_a_res, all_l_res, v_res
|
| 33 |
-
else:
|
| 34 |
-
return a_res, all_l_res[-1], v_res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/model_alignment.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from fastai.vision import *
|
| 4 |
-
|
| 5 |
-
from modules.model import Model, _default_tfmer_cfg
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class BaseAlignment(Model):
|
| 9 |
-
def __init__(self, config):
|
| 10 |
-
super().__init__(config)
|
| 11 |
-
d_model = ifnone(config.model_alignment_d_model, _default_tfmer_cfg['d_model'])
|
| 12 |
-
|
| 13 |
-
self.loss_weight = ifnone(config.model_alignment_loss_weight, 1.0)
|
| 14 |
-
self.max_length = config.dataset_max_length + 1 # additional stop token
|
| 15 |
-
self.w_att = nn.Linear(2 * d_model, d_model)
|
| 16 |
-
self.cls = nn.Linear(d_model, self.charset.num_classes)
|
| 17 |
-
|
| 18 |
-
def forward(self, l_feature, v_feature):
|
| 19 |
-
"""
|
| 20 |
-
Args:
|
| 21 |
-
l_feature: (N, T, E) where T is length, N is batch size and d is dim of model
|
| 22 |
-
v_feature: (N, T, E) shape the same as l_feature
|
| 23 |
-
l_lengths: (N,)
|
| 24 |
-
v_lengths: (N,)
|
| 25 |
-
"""
|
| 26 |
-
f = torch.cat((l_feature, v_feature), dim=2)
|
| 27 |
-
f_att = torch.sigmoid(self.w_att(f))
|
| 28 |
-
output = f_att * v_feature + (1 - f_att) * l_feature
|
| 29 |
-
|
| 30 |
-
logits = self.cls(output) # (N, T, C)
|
| 31 |
-
pt_lengths = self._get_length(logits)
|
| 32 |
-
|
| 33 |
-
return {'logits': logits, 'pt_lengths': pt_lengths, 'loss_weight':self.loss_weight,
|
| 34 |
-
'name': 'alignment'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/model_language.py
DELETED
|
@@ -1,67 +0,0 @@
|
|
| 1 |
-
import logging
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from fastai.vision import *
|
| 4 |
-
|
| 5 |
-
from modules.model import _default_tfmer_cfg
|
| 6 |
-
from modules.model import Model
|
| 7 |
-
from modules.transformer import (PositionalEncoding,
|
| 8 |
-
TransformerDecoder,
|
| 9 |
-
TransformerDecoderLayer)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class BCNLanguage(Model):
|
| 13 |
-
def __init__(self, config):
|
| 14 |
-
super().__init__(config)
|
| 15 |
-
d_model = ifnone(config.model_language_d_model, _default_tfmer_cfg['d_model'])
|
| 16 |
-
nhead = ifnone(config.model_language_nhead, _default_tfmer_cfg['nhead'])
|
| 17 |
-
d_inner = ifnone(config.model_language_d_inner, _default_tfmer_cfg['d_inner'])
|
| 18 |
-
dropout = ifnone(config.model_language_dropout, _default_tfmer_cfg['dropout'])
|
| 19 |
-
activation = ifnone(config.model_language_activation, _default_tfmer_cfg['activation'])
|
| 20 |
-
num_layers = ifnone(config.model_language_num_layers, 4)
|
| 21 |
-
self.d_model = d_model
|
| 22 |
-
self.detach = ifnone(config.model_language_detach, True)
|
| 23 |
-
self.use_self_attn = ifnone(config.model_language_use_self_attn, False)
|
| 24 |
-
self.loss_weight = ifnone(config.model_language_loss_weight, 1.0)
|
| 25 |
-
self.max_length = config.dataset_max_length + 1 # additional stop token
|
| 26 |
-
self.debug = ifnone(config.global_debug, False)
|
| 27 |
-
|
| 28 |
-
self.proj = nn.Linear(self.charset.num_classes, d_model, False)
|
| 29 |
-
self.token_encoder = PositionalEncoding(d_model, max_len=self.max_length)
|
| 30 |
-
self.pos_encoder = PositionalEncoding(d_model, dropout=0, max_len=self.max_length)
|
| 31 |
-
decoder_layer = TransformerDecoderLayer(d_model, nhead, d_inner, dropout,
|
| 32 |
-
activation, self_attn=self.use_self_attn, debug=self.debug)
|
| 33 |
-
self.model = TransformerDecoder(decoder_layer, num_layers)
|
| 34 |
-
|
| 35 |
-
self.cls = nn.Linear(d_model, self.charset.num_classes)
|
| 36 |
-
|
| 37 |
-
if config.model_language_checkpoint is not None:
|
| 38 |
-
logging.info(f'Read language model from {config.model_language_checkpoint}.')
|
| 39 |
-
self.load(config.model_language_checkpoint)
|
| 40 |
-
|
| 41 |
-
def forward(self, tokens, lengths):
|
| 42 |
-
"""
|
| 43 |
-
Args:
|
| 44 |
-
tokens: (N, T, C) where T is length, N is batch size and C is classes number
|
| 45 |
-
lengths: (N,)
|
| 46 |
-
"""
|
| 47 |
-
if self.detach: tokens = tokens.detach()
|
| 48 |
-
embed = self.proj(tokens) # (N, T, E)
|
| 49 |
-
embed = embed.permute(1, 0, 2) # (T, N, E)
|
| 50 |
-
embed = self.token_encoder(embed) # (T, N, E)
|
| 51 |
-
padding_mask = self._get_padding_mask(lengths, self.max_length)
|
| 52 |
-
|
| 53 |
-
zeros = embed.new_zeros(*embed.shape)
|
| 54 |
-
qeury = self.pos_encoder(zeros)
|
| 55 |
-
location_mask = self._get_location_mask(self.max_length, tokens.device)
|
| 56 |
-
output = self.model(qeury, embed,
|
| 57 |
-
tgt_key_padding_mask=padding_mask,
|
| 58 |
-
memory_mask=location_mask,
|
| 59 |
-
memory_key_padding_mask=padding_mask) # (T, N, E)
|
| 60 |
-
output = output.permute(1, 0, 2) # (N, T, E)
|
| 61 |
-
|
| 62 |
-
logits = self.cls(output) # (N, T, C)
|
| 63 |
-
pt_lengths = self._get_length(logits)
|
| 64 |
-
|
| 65 |
-
res = {'feature': output, 'logits': logits, 'pt_lengths': pt_lengths,
|
| 66 |
-
'loss_weight':self.loss_weight, 'name': 'language'}
|
| 67 |
-
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/model_vision.py
DELETED
|
@@ -1,47 +0,0 @@
|
|
| 1 |
-
import logging
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from fastai.vision import *
|
| 4 |
-
|
| 5 |
-
from modules.attention import *
|
| 6 |
-
from modules.backbone import ResTranformer
|
| 7 |
-
from modules.model import Model
|
| 8 |
-
from modules.resnet import resnet45
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class BaseVision(Model):
|
| 12 |
-
def __init__(self, config):
|
| 13 |
-
super().__init__(config)
|
| 14 |
-
self.loss_weight = ifnone(config.model_vision_loss_weight, 1.0)
|
| 15 |
-
self.out_channels = ifnone(config.model_vision_d_model, 512)
|
| 16 |
-
|
| 17 |
-
if config.model_vision_backbone == 'transformer':
|
| 18 |
-
self.backbone = ResTranformer(config)
|
| 19 |
-
else: self.backbone = resnet45()
|
| 20 |
-
|
| 21 |
-
if config.model_vision_attention == 'position':
|
| 22 |
-
mode = ifnone(config.model_vision_attention_mode, 'nearest')
|
| 23 |
-
self.attention = PositionAttention(
|
| 24 |
-
max_length=config.dataset_max_length + 1, # additional stop token
|
| 25 |
-
mode=mode,
|
| 26 |
-
)
|
| 27 |
-
elif config.model_vision_attention == 'attention':
|
| 28 |
-
self.attention = Attention(
|
| 29 |
-
max_length=config.dataset_max_length + 1, # additional stop token
|
| 30 |
-
n_feature=8*32,
|
| 31 |
-
)
|
| 32 |
-
else:
|
| 33 |
-
raise Exception(f'{config.model_vision_attention} is not valid.')
|
| 34 |
-
self.cls = nn.Linear(self.out_channels, self.charset.num_classes)
|
| 35 |
-
|
| 36 |
-
if config.model_vision_checkpoint is not None:
|
| 37 |
-
logging.info(f'Read vision model from {config.model_vision_checkpoint}.')
|
| 38 |
-
self.load(config.model_vision_checkpoint)
|
| 39 |
-
|
| 40 |
-
def forward(self, images, *args):
|
| 41 |
-
features = self.backbone(images) # (N, E, H, W)
|
| 42 |
-
attn_vecs, attn_scores = self.attention(features) # (N, T, E), (N, T, H, W)
|
| 43 |
-
logits = self.cls(attn_vecs) # (N, T, C)
|
| 44 |
-
pt_lengths = self._get_length(logits)
|
| 45 |
-
|
| 46 |
-
return {'feature': attn_vecs, 'logits': logits, 'pt_lengths': pt_lengths,
|
| 47 |
-
'attn_scores': attn_scores, 'loss_weight':self.loss_weight, 'name': 'vision'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/resnet.py
DELETED
|
@@ -1,104 +0,0 @@
|
|
| 1 |
-
import math
|
| 2 |
-
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
import torch.utils.model_zoo as model_zoo
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
def conv1x1(in_planes, out_planes, stride=1):
|
| 9 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def conv3x3(in_planes, out_planes, stride=1):
|
| 13 |
-
"3x3 convolution with padding"
|
| 14 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
| 15 |
-
padding=1, bias=False)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class BasicBlock(nn.Module):
|
| 19 |
-
expansion = 1
|
| 20 |
-
|
| 21 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 22 |
-
super(BasicBlock, self).__init__()
|
| 23 |
-
self.conv1 = conv1x1(inplanes, planes)
|
| 24 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
| 25 |
-
self.relu = nn.ReLU(inplace=True)
|
| 26 |
-
self.conv2 = conv3x3(planes, planes, stride)
|
| 27 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
| 28 |
-
self.downsample = downsample
|
| 29 |
-
self.stride = stride
|
| 30 |
-
|
| 31 |
-
def forward(self, x):
|
| 32 |
-
residual = x
|
| 33 |
-
|
| 34 |
-
out = self.conv1(x)
|
| 35 |
-
out = self.bn1(out)
|
| 36 |
-
out = self.relu(out)
|
| 37 |
-
|
| 38 |
-
out = self.conv2(out)
|
| 39 |
-
out = self.bn2(out)
|
| 40 |
-
|
| 41 |
-
if self.downsample is not None:
|
| 42 |
-
residual = self.downsample(x)
|
| 43 |
-
|
| 44 |
-
out += residual
|
| 45 |
-
out = self.relu(out)
|
| 46 |
-
|
| 47 |
-
return out
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
class ResNet(nn.Module):
|
| 51 |
-
|
| 52 |
-
def __init__(self, block, layers):
|
| 53 |
-
self.inplanes = 32
|
| 54 |
-
super(ResNet, self).__init__()
|
| 55 |
-
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1,
|
| 56 |
-
bias=False)
|
| 57 |
-
self.bn1 = nn.BatchNorm2d(32)
|
| 58 |
-
self.relu = nn.ReLU(inplace=True)
|
| 59 |
-
|
| 60 |
-
self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
|
| 61 |
-
self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
|
| 62 |
-
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
|
| 63 |
-
self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
|
| 64 |
-
self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
|
| 65 |
-
|
| 66 |
-
for m in self.modules():
|
| 67 |
-
if isinstance(m, nn.Conv2d):
|
| 68 |
-
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 69 |
-
m.weight.data.normal_(0, math.sqrt(2. / n))
|
| 70 |
-
elif isinstance(m, nn.BatchNorm2d):
|
| 71 |
-
m.weight.data.fill_(1)
|
| 72 |
-
m.bias.data.zero_()
|
| 73 |
-
|
| 74 |
-
def _make_layer(self, block, planes, blocks, stride=1):
|
| 75 |
-
downsample = None
|
| 76 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 77 |
-
downsample = nn.Sequential(
|
| 78 |
-
nn.Conv2d(self.inplanes, planes * block.expansion,
|
| 79 |
-
kernel_size=1, stride=stride, bias=False),
|
| 80 |
-
nn.BatchNorm2d(planes * block.expansion),
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
layers = []
|
| 84 |
-
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 85 |
-
self.inplanes = planes * block.expansion
|
| 86 |
-
for i in range(1, blocks):
|
| 87 |
-
layers.append(block(self.inplanes, planes))
|
| 88 |
-
|
| 89 |
-
return nn.Sequential(*layers)
|
| 90 |
-
|
| 91 |
-
def forward(self, x):
|
| 92 |
-
x = self.conv1(x)
|
| 93 |
-
x = self.bn1(x)
|
| 94 |
-
x = self.relu(x)
|
| 95 |
-
x = self.layer1(x)
|
| 96 |
-
x = self.layer2(x)
|
| 97 |
-
x = self.layer3(x)
|
| 98 |
-
x = self.layer4(x)
|
| 99 |
-
x = self.layer5(x)
|
| 100 |
-
return x
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def resnet45():
|
| 104 |
-
return ResNet(BasicBlock, [3, 4, 6, 6, 3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/transformer.py
DELETED
|
@@ -1,901 +0,0 @@
|
|
| 1 |
-
# pytorch 1.5.0
|
| 2 |
-
import copy
|
| 3 |
-
import math
|
| 4 |
-
import warnings
|
| 5 |
-
from typing import Optional
|
| 6 |
-
|
| 7 |
-
import torch
|
| 8 |
-
import torch.nn as nn
|
| 9 |
-
from torch import Tensor
|
| 10 |
-
from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter
|
| 11 |
-
from torch.nn import functional as F
|
| 12 |
-
from torch.nn.init import constant_, xavier_uniform_
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def multi_head_attention_forward(query, # type: Tensor
|
| 16 |
-
key, # type: Tensor
|
| 17 |
-
value, # type: Tensor
|
| 18 |
-
embed_dim_to_check, # type: int
|
| 19 |
-
num_heads, # type: int
|
| 20 |
-
in_proj_weight, # type: Tensor
|
| 21 |
-
in_proj_bias, # type: Tensor
|
| 22 |
-
bias_k, # type: Optional[Tensor]
|
| 23 |
-
bias_v, # type: Optional[Tensor]
|
| 24 |
-
add_zero_attn, # type: bool
|
| 25 |
-
dropout_p, # type: float
|
| 26 |
-
out_proj_weight, # type: Tensor
|
| 27 |
-
out_proj_bias, # type: Tensor
|
| 28 |
-
training=True, # type: bool
|
| 29 |
-
key_padding_mask=None, # type: Optional[Tensor]
|
| 30 |
-
need_weights=True, # type: bool
|
| 31 |
-
attn_mask=None, # type: Optional[Tensor]
|
| 32 |
-
use_separate_proj_weight=False, # type: bool
|
| 33 |
-
q_proj_weight=None, # type: Optional[Tensor]
|
| 34 |
-
k_proj_weight=None, # type: Optional[Tensor]
|
| 35 |
-
v_proj_weight=None, # type: Optional[Tensor]
|
| 36 |
-
static_k=None, # type: Optional[Tensor]
|
| 37 |
-
static_v=None # type: Optional[Tensor]
|
| 38 |
-
):
|
| 39 |
-
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
|
| 40 |
-
r"""
|
| 41 |
-
Args:
|
| 42 |
-
query, key, value: map a query and a set of key-value pairs to an output.
|
| 43 |
-
See "Attention Is All You Need" for more details.
|
| 44 |
-
embed_dim_to_check: total dimension of the model.
|
| 45 |
-
num_heads: parallel attention heads.
|
| 46 |
-
in_proj_weight, in_proj_bias: input projection weight and bias.
|
| 47 |
-
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
| 48 |
-
add_zero_attn: add a new batch of zeros to the key and
|
| 49 |
-
value sequences at dim=1.
|
| 50 |
-
dropout_p: probability of an element to be zeroed.
|
| 51 |
-
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
| 52 |
-
training: apply dropout if is ``True``.
|
| 53 |
-
key_padding_mask: if provided, specified padding elements in the key will
|
| 54 |
-
be ignored by the attention. This is an binary mask. When the value is True,
|
| 55 |
-
the corresponding value on the attention layer will be filled with -inf.
|
| 56 |
-
need_weights: output attn_output_weights.
|
| 57 |
-
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
| 58 |
-
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
| 59 |
-
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
| 60 |
-
and value in different forms. If false, in_proj_weight will be used, which is
|
| 61 |
-
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
| 62 |
-
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
| 63 |
-
static_k, static_v: static key and value used for attention operators.
|
| 64 |
-
Shape:
|
| 65 |
-
Inputs:
|
| 66 |
-
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
| 67 |
-
the embedding dimension.
|
| 68 |
-
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
| 69 |
-
the embedding dimension.
|
| 70 |
-
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
| 71 |
-
the embedding dimension.
|
| 72 |
-
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
| 73 |
-
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
| 74 |
-
will be unchanged. If a BoolTensor is provided, the positions with the
|
| 75 |
-
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
| 76 |
-
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
| 77 |
-
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
| 78 |
-
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
| 79 |
-
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
| 80 |
-
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
| 81 |
-
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
| 82 |
-
is provided, it will be added to the attention weight.
|
| 83 |
-
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
| 84 |
-
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
| 85 |
-
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
| 86 |
-
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
| 87 |
-
Outputs:
|
| 88 |
-
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
| 89 |
-
E is the embedding dimension.
|
| 90 |
-
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
| 91 |
-
L is the target sequence length, S is the source sequence length.
|
| 92 |
-
"""
|
| 93 |
-
# if not torch.jit.is_scripting():
|
| 94 |
-
# tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
|
| 95 |
-
# out_proj_weight, out_proj_bias)
|
| 96 |
-
# if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
|
| 97 |
-
# return handle_torch_function(
|
| 98 |
-
# multi_head_attention_forward, tens_ops, query, key, value,
|
| 99 |
-
# embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
|
| 100 |
-
# bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
|
| 101 |
-
# out_proj_bias, training=training, key_padding_mask=key_padding_mask,
|
| 102 |
-
# need_weights=need_weights, attn_mask=attn_mask,
|
| 103 |
-
# use_separate_proj_weight=use_separate_proj_weight,
|
| 104 |
-
# q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
|
| 105 |
-
# v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v)
|
| 106 |
-
tgt_len, bsz, embed_dim = query.size()
|
| 107 |
-
assert embed_dim == embed_dim_to_check
|
| 108 |
-
assert key.size() == value.size()
|
| 109 |
-
|
| 110 |
-
head_dim = embed_dim // num_heads
|
| 111 |
-
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
|
| 112 |
-
scaling = float(head_dim) ** -0.5
|
| 113 |
-
|
| 114 |
-
if not use_separate_proj_weight:
|
| 115 |
-
if torch.equal(query, key) and torch.equal(key, value):
|
| 116 |
-
# self-attention
|
| 117 |
-
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
|
| 118 |
-
|
| 119 |
-
elif torch.equal(key, value):
|
| 120 |
-
# encoder-decoder attention
|
| 121 |
-
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
| 122 |
-
_b = in_proj_bias
|
| 123 |
-
_start = 0
|
| 124 |
-
_end = embed_dim
|
| 125 |
-
_w = in_proj_weight[_start:_end, :]
|
| 126 |
-
if _b is not None:
|
| 127 |
-
_b = _b[_start:_end]
|
| 128 |
-
q = F.linear(query, _w, _b)
|
| 129 |
-
|
| 130 |
-
if key is None:
|
| 131 |
-
assert value is None
|
| 132 |
-
k = None
|
| 133 |
-
v = None
|
| 134 |
-
else:
|
| 135 |
-
|
| 136 |
-
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
| 137 |
-
_b = in_proj_bias
|
| 138 |
-
_start = embed_dim
|
| 139 |
-
_end = None
|
| 140 |
-
_w = in_proj_weight[_start:, :]
|
| 141 |
-
if _b is not None:
|
| 142 |
-
_b = _b[_start:]
|
| 143 |
-
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
|
| 144 |
-
|
| 145 |
-
else:
|
| 146 |
-
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
| 147 |
-
_b = in_proj_bias
|
| 148 |
-
_start = 0
|
| 149 |
-
_end = embed_dim
|
| 150 |
-
_w = in_proj_weight[_start:_end, :]
|
| 151 |
-
if _b is not None:
|
| 152 |
-
_b = _b[_start:_end]
|
| 153 |
-
q = F.linear(query, _w, _b)
|
| 154 |
-
|
| 155 |
-
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
| 156 |
-
_b = in_proj_bias
|
| 157 |
-
_start = embed_dim
|
| 158 |
-
_end = embed_dim * 2
|
| 159 |
-
_w = in_proj_weight[_start:_end, :]
|
| 160 |
-
if _b is not None:
|
| 161 |
-
_b = _b[_start:_end]
|
| 162 |
-
k = F.linear(key, _w, _b)
|
| 163 |
-
|
| 164 |
-
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
| 165 |
-
_b = in_proj_bias
|
| 166 |
-
_start = embed_dim * 2
|
| 167 |
-
_end = None
|
| 168 |
-
_w = in_proj_weight[_start:, :]
|
| 169 |
-
if _b is not None:
|
| 170 |
-
_b = _b[_start:]
|
| 171 |
-
v = F.linear(value, _w, _b)
|
| 172 |
-
else:
|
| 173 |
-
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
|
| 174 |
-
len1, len2 = q_proj_weight_non_opt.size()
|
| 175 |
-
assert len1 == embed_dim and len2 == query.size(-1)
|
| 176 |
-
|
| 177 |
-
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
|
| 178 |
-
len1, len2 = k_proj_weight_non_opt.size()
|
| 179 |
-
assert len1 == embed_dim and len2 == key.size(-1)
|
| 180 |
-
|
| 181 |
-
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
|
| 182 |
-
len1, len2 = v_proj_weight_non_opt.size()
|
| 183 |
-
assert len1 == embed_dim and len2 == value.size(-1)
|
| 184 |
-
|
| 185 |
-
if in_proj_bias is not None:
|
| 186 |
-
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
|
| 187 |
-
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
|
| 188 |
-
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
|
| 189 |
-
else:
|
| 190 |
-
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
|
| 191 |
-
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
|
| 192 |
-
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
|
| 193 |
-
q = q * scaling
|
| 194 |
-
|
| 195 |
-
if attn_mask is not None:
|
| 196 |
-
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
|
| 197 |
-
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
|
| 198 |
-
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
|
| 199 |
-
if attn_mask.dtype == torch.uint8:
|
| 200 |
-
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
| 201 |
-
attn_mask = attn_mask.to(torch.bool)
|
| 202 |
-
|
| 203 |
-
if attn_mask.dim() == 2:
|
| 204 |
-
attn_mask = attn_mask.unsqueeze(0)
|
| 205 |
-
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
| 206 |
-
raise RuntimeError('The size of the 2D attn_mask is not correct.')
|
| 207 |
-
elif attn_mask.dim() == 3:
|
| 208 |
-
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
|
| 209 |
-
raise RuntimeError('The size of the 3D attn_mask is not correct.')
|
| 210 |
-
else:
|
| 211 |
-
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
|
| 212 |
-
# attn_mask's dim is 3 now.
|
| 213 |
-
|
| 214 |
-
# # convert ByteTensor key_padding_mask to bool
|
| 215 |
-
# if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
| 216 |
-
# warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
| 217 |
-
# key_padding_mask = key_padding_mask.to(torch.bool)
|
| 218 |
-
|
| 219 |
-
if bias_k is not None and bias_v is not None:
|
| 220 |
-
if static_k is None and static_v is None:
|
| 221 |
-
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
| 222 |
-
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
| 223 |
-
if attn_mask is not None:
|
| 224 |
-
attn_mask = pad(attn_mask, (0, 1))
|
| 225 |
-
if key_padding_mask is not None:
|
| 226 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
| 227 |
-
else:
|
| 228 |
-
assert static_k is None, "bias cannot be added to static key."
|
| 229 |
-
assert static_v is None, "bias cannot be added to static value."
|
| 230 |
-
else:
|
| 231 |
-
assert bias_k is None
|
| 232 |
-
assert bias_v is None
|
| 233 |
-
|
| 234 |
-
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
| 235 |
-
if k is not None:
|
| 236 |
-
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
| 237 |
-
if v is not None:
|
| 238 |
-
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
| 239 |
-
|
| 240 |
-
if static_k is not None:
|
| 241 |
-
assert static_k.size(0) == bsz * num_heads
|
| 242 |
-
assert static_k.size(2) == head_dim
|
| 243 |
-
k = static_k
|
| 244 |
-
|
| 245 |
-
if static_v is not None:
|
| 246 |
-
assert static_v.size(0) == bsz * num_heads
|
| 247 |
-
assert static_v.size(2) == head_dim
|
| 248 |
-
v = static_v
|
| 249 |
-
|
| 250 |
-
src_len = k.size(1)
|
| 251 |
-
|
| 252 |
-
if key_padding_mask is not None:
|
| 253 |
-
assert key_padding_mask.size(0) == bsz
|
| 254 |
-
assert key_padding_mask.size(1) == src_len
|
| 255 |
-
|
| 256 |
-
if add_zero_attn:
|
| 257 |
-
src_len += 1
|
| 258 |
-
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
|
| 259 |
-
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
|
| 260 |
-
if attn_mask is not None:
|
| 261 |
-
attn_mask = pad(attn_mask, (0, 1))
|
| 262 |
-
if key_padding_mask is not None:
|
| 263 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
| 264 |
-
|
| 265 |
-
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
| 266 |
-
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
|
| 267 |
-
|
| 268 |
-
if attn_mask is not None:
|
| 269 |
-
if attn_mask.dtype == torch.bool:
|
| 270 |
-
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
|
| 271 |
-
else:
|
| 272 |
-
attn_output_weights += attn_mask
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
if key_padding_mask is not None:
|
| 276 |
-
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
| 277 |
-
attn_output_weights = attn_output_weights.masked_fill(
|
| 278 |
-
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
| 279 |
-
float('-inf'),
|
| 280 |
-
)
|
| 281 |
-
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
|
| 282 |
-
|
| 283 |
-
attn_output_weights = F.softmax(
|
| 284 |
-
attn_output_weights, dim=-1)
|
| 285 |
-
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
|
| 286 |
-
|
| 287 |
-
attn_output = torch.bmm(attn_output_weights, v)
|
| 288 |
-
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
| 289 |
-
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
| 290 |
-
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
|
| 291 |
-
|
| 292 |
-
if need_weights:
|
| 293 |
-
# average attention weights over heads
|
| 294 |
-
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
| 295 |
-
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
| 296 |
-
else:
|
| 297 |
-
return attn_output, None
|
| 298 |
-
|
| 299 |
-
class MultiheadAttention(Module):
|
| 300 |
-
r"""Allows the model to jointly attend to information
|
| 301 |
-
from different representation subspaces.
|
| 302 |
-
See reference: Attention Is All You Need
|
| 303 |
-
.. math::
|
| 304 |
-
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
| 305 |
-
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
| 306 |
-
Args:
|
| 307 |
-
embed_dim: total dimension of the model.
|
| 308 |
-
num_heads: parallel attention heads.
|
| 309 |
-
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
| 310 |
-
bias: add bias as module parameter. Default: True.
|
| 311 |
-
add_bias_kv: add bias to the key and value sequences at dim=0.
|
| 312 |
-
add_zero_attn: add a new batch of zeros to the key and
|
| 313 |
-
value sequences at dim=1.
|
| 314 |
-
kdim: total number of features in key. Default: None.
|
| 315 |
-
vdim: total number of features in value. Default: None.
|
| 316 |
-
Note: if kdim and vdim are None, they will be set to embed_dim such that
|
| 317 |
-
query, key, and value have the same number of features.
|
| 318 |
-
Examples::
|
| 319 |
-
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
| 320 |
-
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
| 321 |
-
"""
|
| 322 |
-
# __annotations__ = {
|
| 323 |
-
# 'bias_k': torch._jit_internal.Optional[torch.Tensor],
|
| 324 |
-
# 'bias_v': torch._jit_internal.Optional[torch.Tensor],
|
| 325 |
-
# }
|
| 326 |
-
__constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight']
|
| 327 |
-
|
| 328 |
-
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
|
| 329 |
-
super(MultiheadAttention, self).__init__()
|
| 330 |
-
self.embed_dim = embed_dim
|
| 331 |
-
self.kdim = kdim if kdim is not None else embed_dim
|
| 332 |
-
self.vdim = vdim if vdim is not None else embed_dim
|
| 333 |
-
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 334 |
-
|
| 335 |
-
self.num_heads = num_heads
|
| 336 |
-
self.dropout = dropout
|
| 337 |
-
self.head_dim = embed_dim // num_heads
|
| 338 |
-
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
| 339 |
-
|
| 340 |
-
if self._qkv_same_embed_dim is False:
|
| 341 |
-
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
|
| 342 |
-
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
|
| 343 |
-
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
|
| 344 |
-
self.register_parameter('in_proj_weight', None)
|
| 345 |
-
else:
|
| 346 |
-
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
|
| 347 |
-
self.register_parameter('q_proj_weight', None)
|
| 348 |
-
self.register_parameter('k_proj_weight', None)
|
| 349 |
-
self.register_parameter('v_proj_weight', None)
|
| 350 |
-
|
| 351 |
-
if bias:
|
| 352 |
-
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
|
| 353 |
-
else:
|
| 354 |
-
self.register_parameter('in_proj_bias', None)
|
| 355 |
-
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
|
| 356 |
-
|
| 357 |
-
if add_bias_kv:
|
| 358 |
-
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
|
| 359 |
-
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
|
| 360 |
-
else:
|
| 361 |
-
self.bias_k = self.bias_v = None
|
| 362 |
-
|
| 363 |
-
self.add_zero_attn = add_zero_attn
|
| 364 |
-
|
| 365 |
-
self._reset_parameters()
|
| 366 |
-
|
| 367 |
-
def _reset_parameters(self):
|
| 368 |
-
if self._qkv_same_embed_dim:
|
| 369 |
-
xavier_uniform_(self.in_proj_weight)
|
| 370 |
-
else:
|
| 371 |
-
xavier_uniform_(self.q_proj_weight)
|
| 372 |
-
xavier_uniform_(self.k_proj_weight)
|
| 373 |
-
xavier_uniform_(self.v_proj_weight)
|
| 374 |
-
|
| 375 |
-
if self.in_proj_bias is not None:
|
| 376 |
-
constant_(self.in_proj_bias, 0.)
|
| 377 |
-
constant_(self.out_proj.bias, 0.)
|
| 378 |
-
if self.bias_k is not None:
|
| 379 |
-
xavier_normal_(self.bias_k)
|
| 380 |
-
if self.bias_v is not None:
|
| 381 |
-
xavier_normal_(self.bias_v)
|
| 382 |
-
|
| 383 |
-
def __setstate__(self, state):
|
| 384 |
-
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
| 385 |
-
if '_qkv_same_embed_dim' not in state:
|
| 386 |
-
state['_qkv_same_embed_dim'] = True
|
| 387 |
-
|
| 388 |
-
super(MultiheadAttention, self).__setstate__(state)
|
| 389 |
-
|
| 390 |
-
def forward(self, query, key, value, key_padding_mask=None,
|
| 391 |
-
need_weights=True, attn_mask=None):
|
| 392 |
-
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
|
| 393 |
-
r"""
|
| 394 |
-
Args:
|
| 395 |
-
query, key, value: map a query and a set of key-value pairs to an output.
|
| 396 |
-
See "Attention Is All You Need" for more details.
|
| 397 |
-
key_padding_mask: if provided, specified padding elements in the key will
|
| 398 |
-
be ignored by the attention. This is an binary mask. When the value is True,
|
| 399 |
-
the corresponding value on the attention layer will be filled with -inf.
|
| 400 |
-
need_weights: output attn_output_weights.
|
| 401 |
-
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
| 402 |
-
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
| 403 |
-
Shape:
|
| 404 |
-
- Inputs:
|
| 405 |
-
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
| 406 |
-
the embedding dimension.
|
| 407 |
-
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
| 408 |
-
the embedding dimension.
|
| 409 |
-
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
| 410 |
-
the embedding dimension.
|
| 411 |
-
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
| 412 |
-
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
| 413 |
-
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
| 414 |
-
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
| 415 |
-
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
| 416 |
-
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
| 417 |
-
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
| 418 |
-
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
| 419 |
-
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
| 420 |
-
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
| 421 |
-
is provided, it will be added to the attention weight.
|
| 422 |
-
- Outputs:
|
| 423 |
-
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
| 424 |
-
E is the embedding dimension.
|
| 425 |
-
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
| 426 |
-
L is the target sequence length, S is the source sequence length.
|
| 427 |
-
"""
|
| 428 |
-
if not self._qkv_same_embed_dim:
|
| 429 |
-
return multi_head_attention_forward(
|
| 430 |
-
query, key, value, self.embed_dim, self.num_heads,
|
| 431 |
-
self.in_proj_weight, self.in_proj_bias,
|
| 432 |
-
self.bias_k, self.bias_v, self.add_zero_attn,
|
| 433 |
-
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
| 434 |
-
training=self.training,
|
| 435 |
-
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
| 436 |
-
attn_mask=attn_mask, use_separate_proj_weight=True,
|
| 437 |
-
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
| 438 |
-
v_proj_weight=self.v_proj_weight)
|
| 439 |
-
else:
|
| 440 |
-
return multi_head_attention_forward(
|
| 441 |
-
query, key, value, self.embed_dim, self.num_heads,
|
| 442 |
-
self.in_proj_weight, self.in_proj_bias,
|
| 443 |
-
self.bias_k, self.bias_v, self.add_zero_attn,
|
| 444 |
-
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
| 445 |
-
training=self.training,
|
| 446 |
-
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
| 447 |
-
attn_mask=attn_mask)
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
class Transformer(Module):
|
| 451 |
-
r"""A transformer model. User is able to modify the attributes as needed. The architecture
|
| 452 |
-
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
|
| 453 |
-
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
|
| 454 |
-
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
|
| 455 |
-
Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805)
|
| 456 |
-
model with corresponding parameters.
|
| 457 |
-
|
| 458 |
-
Args:
|
| 459 |
-
d_model: the number of expected features in the encoder/decoder inputs (default=512).
|
| 460 |
-
nhead: the number of heads in the multiheadattention models (default=8).
|
| 461 |
-
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
|
| 462 |
-
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
|
| 463 |
-
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
| 464 |
-
dropout: the dropout value (default=0.1).
|
| 465 |
-
activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
|
| 466 |
-
custom_encoder: custom encoder (default=None).
|
| 467 |
-
custom_decoder: custom decoder (default=None).
|
| 468 |
-
|
| 469 |
-
Examples::
|
| 470 |
-
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
|
| 471 |
-
>>> src = torch.rand((10, 32, 512))
|
| 472 |
-
>>> tgt = torch.rand((20, 32, 512))
|
| 473 |
-
>>> out = transformer_model(src, tgt)
|
| 474 |
-
|
| 475 |
-
Note: A full example to apply nn.Transformer module for the word language model is available in
|
| 476 |
-
https://github.com/pytorch/examples/tree/master/word_language_model
|
| 477 |
-
"""
|
| 478 |
-
|
| 479 |
-
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
|
| 480 |
-
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
|
| 481 |
-
activation="relu", custom_encoder=None, custom_decoder=None):
|
| 482 |
-
super(Transformer, self).__init__()
|
| 483 |
-
|
| 484 |
-
if custom_encoder is not None:
|
| 485 |
-
self.encoder = custom_encoder
|
| 486 |
-
else:
|
| 487 |
-
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
|
| 488 |
-
encoder_norm = LayerNorm(d_model)
|
| 489 |
-
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
| 490 |
-
|
| 491 |
-
if custom_decoder is not None:
|
| 492 |
-
self.decoder = custom_decoder
|
| 493 |
-
else:
|
| 494 |
-
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
|
| 495 |
-
decoder_norm = LayerNorm(d_model)
|
| 496 |
-
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
|
| 497 |
-
|
| 498 |
-
self._reset_parameters()
|
| 499 |
-
|
| 500 |
-
self.d_model = d_model
|
| 501 |
-
self.nhead = nhead
|
| 502 |
-
|
| 503 |
-
def forward(self, src, tgt, src_mask=None, tgt_mask=None,
|
| 504 |
-
memory_mask=None, src_key_padding_mask=None,
|
| 505 |
-
tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
| 506 |
-
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor # noqa
|
| 507 |
-
r"""Take in and process masked source/target sequences.
|
| 508 |
-
|
| 509 |
-
Args:
|
| 510 |
-
src: the sequence to the encoder (required).
|
| 511 |
-
tgt: the sequence to the decoder (required).
|
| 512 |
-
src_mask: the additive mask for the src sequence (optional).
|
| 513 |
-
tgt_mask: the additive mask for the tgt sequence (optional).
|
| 514 |
-
memory_mask: the additive mask for the encoder output (optional).
|
| 515 |
-
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
|
| 516 |
-
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
|
| 517 |
-
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
|
| 518 |
-
|
| 519 |
-
Shape:
|
| 520 |
-
- src: :math:`(S, N, E)`.
|
| 521 |
-
- tgt: :math:`(T, N, E)`.
|
| 522 |
-
- src_mask: :math:`(S, S)`.
|
| 523 |
-
- tgt_mask: :math:`(T, T)`.
|
| 524 |
-
- memory_mask: :math:`(T, S)`.
|
| 525 |
-
- src_key_padding_mask: :math:`(N, S)`.
|
| 526 |
-
- tgt_key_padding_mask: :math:`(N, T)`.
|
| 527 |
-
- memory_key_padding_mask: :math:`(N, S)`.
|
| 528 |
-
|
| 529 |
-
Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked
|
| 530 |
-
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
| 531 |
-
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
| 532 |
-
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
| 533 |
-
is provided, it will be added to the attention weight.
|
| 534 |
-
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
|
| 535 |
-
the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero
|
| 536 |
-
positions will be unchanged. If a BoolTensor is provided, the positions with the
|
| 537 |
-
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
| 538 |
-
|
| 539 |
-
- output: :math:`(T, N, E)`.
|
| 540 |
-
|
| 541 |
-
Note: Due to the multi-head attention architecture in the transformer model,
|
| 542 |
-
the output sequence length of a transformer is same as the input sequence
|
| 543 |
-
(i.e. target) length of the decode.
|
| 544 |
-
|
| 545 |
-
where S is the source sequence length, T is the target sequence length, N is the
|
| 546 |
-
batch size, E is the feature number
|
| 547 |
-
|
| 548 |
-
Examples:
|
| 549 |
-
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
|
| 550 |
-
"""
|
| 551 |
-
|
| 552 |
-
if src.size(1) != tgt.size(1):
|
| 553 |
-
raise RuntimeError("the batch number of src and tgt must be equal")
|
| 554 |
-
|
| 555 |
-
if src.size(2) != self.d_model or tgt.size(2) != self.d_model:
|
| 556 |
-
raise RuntimeError("the feature number of src and tgt must be equal to d_model")
|
| 557 |
-
|
| 558 |
-
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
|
| 559 |
-
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
|
| 560 |
-
tgt_key_padding_mask=tgt_key_padding_mask,
|
| 561 |
-
memory_key_padding_mask=memory_key_padding_mask)
|
| 562 |
-
return output
|
| 563 |
-
|
| 564 |
-
def generate_square_subsequent_mask(self, sz):
|
| 565 |
-
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
| 566 |
-
Unmasked positions are filled with float(0.0).
|
| 567 |
-
"""
|
| 568 |
-
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
| 569 |
-
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
| 570 |
-
return mask
|
| 571 |
-
|
| 572 |
-
def _reset_parameters(self):
|
| 573 |
-
r"""Initiate parameters in the transformer model."""
|
| 574 |
-
|
| 575 |
-
for p in self.parameters():
|
| 576 |
-
if p.dim() > 1:
|
| 577 |
-
xavier_uniform_(p)
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
class TransformerEncoder(Module):
|
| 581 |
-
r"""TransformerEncoder is a stack of N encoder layers
|
| 582 |
-
|
| 583 |
-
Args:
|
| 584 |
-
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
| 585 |
-
num_layers: the number of sub-encoder-layers in the encoder (required).
|
| 586 |
-
norm: the layer normalization component (optional).
|
| 587 |
-
|
| 588 |
-
Examples::
|
| 589 |
-
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
| 590 |
-
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
|
| 591 |
-
>>> src = torch.rand(10, 32, 512)
|
| 592 |
-
>>> out = transformer_encoder(src)
|
| 593 |
-
"""
|
| 594 |
-
__constants__ = ['norm']
|
| 595 |
-
|
| 596 |
-
def __init__(self, encoder_layer, num_layers, norm=None):
|
| 597 |
-
super(TransformerEncoder, self).__init__()
|
| 598 |
-
self.layers = _get_clones(encoder_layer, num_layers)
|
| 599 |
-
self.num_layers = num_layers
|
| 600 |
-
self.norm = norm
|
| 601 |
-
|
| 602 |
-
def forward(self, src, mask=None, src_key_padding_mask=None):
|
| 603 |
-
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
|
| 604 |
-
r"""Pass the input through the encoder layers in turn.
|
| 605 |
-
|
| 606 |
-
Args:
|
| 607 |
-
src: the sequence to the encoder (required).
|
| 608 |
-
mask: the mask for the src sequence (optional).
|
| 609 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
| 610 |
-
|
| 611 |
-
Shape:
|
| 612 |
-
see the docs in Transformer class.
|
| 613 |
-
"""
|
| 614 |
-
output = src
|
| 615 |
-
|
| 616 |
-
for i, mod in enumerate(self.layers):
|
| 617 |
-
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
|
| 618 |
-
|
| 619 |
-
if self.norm is not None:
|
| 620 |
-
output = self.norm(output)
|
| 621 |
-
|
| 622 |
-
return output
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
class TransformerDecoder(Module):
|
| 626 |
-
r"""TransformerDecoder is a stack of N decoder layers
|
| 627 |
-
|
| 628 |
-
Args:
|
| 629 |
-
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
|
| 630 |
-
num_layers: the number of sub-decoder-layers in the decoder (required).
|
| 631 |
-
norm: the layer normalization component (optional).
|
| 632 |
-
|
| 633 |
-
Examples::
|
| 634 |
-
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
| 635 |
-
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
|
| 636 |
-
>>> memory = torch.rand(10, 32, 512)
|
| 637 |
-
>>> tgt = torch.rand(20, 32, 512)
|
| 638 |
-
>>> out = transformer_decoder(tgt, memory)
|
| 639 |
-
"""
|
| 640 |
-
__constants__ = ['norm']
|
| 641 |
-
|
| 642 |
-
def __init__(self, decoder_layer, num_layers, norm=None):
|
| 643 |
-
super(TransformerDecoder, self).__init__()
|
| 644 |
-
self.layers = _get_clones(decoder_layer, num_layers)
|
| 645 |
-
self.num_layers = num_layers
|
| 646 |
-
self.norm = norm
|
| 647 |
-
|
| 648 |
-
def forward(self, tgt, memory, memory2=None, tgt_mask=None,
|
| 649 |
-
memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None,
|
| 650 |
-
memory_key_padding_mask=None, memory_key_padding_mask2=None):
|
| 651 |
-
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
|
| 652 |
-
r"""Pass the inputs (and mask) through the decoder layer in turn.
|
| 653 |
-
|
| 654 |
-
Args:
|
| 655 |
-
tgt: the sequence to the decoder (required).
|
| 656 |
-
memory: the sequence from the last layer of the encoder (required).
|
| 657 |
-
tgt_mask: the mask for the tgt sequence (optional).
|
| 658 |
-
memory_mask: the mask for the memory sequence (optional).
|
| 659 |
-
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
| 660 |
-
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
| 661 |
-
|
| 662 |
-
Shape:
|
| 663 |
-
see the docs in Transformer class.
|
| 664 |
-
"""
|
| 665 |
-
output = tgt
|
| 666 |
-
|
| 667 |
-
for mod in self.layers:
|
| 668 |
-
output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask,
|
| 669 |
-
memory_mask=memory_mask, memory_mask2=memory_mask2,
|
| 670 |
-
tgt_key_padding_mask=tgt_key_padding_mask,
|
| 671 |
-
memory_key_padding_mask=memory_key_padding_mask,
|
| 672 |
-
memory_key_padding_mask2=memory_key_padding_mask2)
|
| 673 |
-
|
| 674 |
-
if self.norm is not None:
|
| 675 |
-
output = self.norm(output)
|
| 676 |
-
|
| 677 |
-
return output
|
| 678 |
-
|
| 679 |
-
class TransformerEncoderLayer(Module):
|
| 680 |
-
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
|
| 681 |
-
This standard encoder layer is based on the paper "Attention Is All You Need".
|
| 682 |
-
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
| 683 |
-
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
| 684 |
-
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
| 685 |
-
in a different way during application.
|
| 686 |
-
|
| 687 |
-
Args:
|
| 688 |
-
d_model: the number of expected features in the input (required).
|
| 689 |
-
nhead: the number of heads in the multiheadattention models (required).
|
| 690 |
-
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
| 691 |
-
dropout: the dropout value (default=0.1).
|
| 692 |
-
activation: the activation function of intermediate layer, relu or gelu (default=relu).
|
| 693 |
-
|
| 694 |
-
Examples::
|
| 695 |
-
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
| 696 |
-
>>> src = torch.rand(10, 32, 512)
|
| 697 |
-
>>> out = encoder_layer(src)
|
| 698 |
-
"""
|
| 699 |
-
|
| 700 |
-
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
| 701 |
-
activation="relu", debug=False):
|
| 702 |
-
super(TransformerEncoderLayer, self).__init__()
|
| 703 |
-
self.debug = debug
|
| 704 |
-
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 705 |
-
# Implementation of Feedforward model
|
| 706 |
-
self.linear1 = Linear(d_model, dim_feedforward)
|
| 707 |
-
self.dropout = Dropout(dropout)
|
| 708 |
-
self.linear2 = Linear(dim_feedforward, d_model)
|
| 709 |
-
|
| 710 |
-
self.norm1 = LayerNorm(d_model)
|
| 711 |
-
self.norm2 = LayerNorm(d_model)
|
| 712 |
-
self.dropout1 = Dropout(dropout)
|
| 713 |
-
self.dropout2 = Dropout(dropout)
|
| 714 |
-
|
| 715 |
-
self.activation = _get_activation_fn(activation)
|
| 716 |
-
|
| 717 |
-
def __setstate__(self, state):
|
| 718 |
-
if 'activation' not in state:
|
| 719 |
-
state['activation'] = F.relu
|
| 720 |
-
super(TransformerEncoderLayer, self).__setstate__(state)
|
| 721 |
-
|
| 722 |
-
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
| 723 |
-
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
|
| 724 |
-
r"""Pass the input through the encoder layer.
|
| 725 |
-
|
| 726 |
-
Args:
|
| 727 |
-
src: the sequence to the encoder layer (required).
|
| 728 |
-
src_mask: the mask for the src sequence (optional).
|
| 729 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
| 730 |
-
|
| 731 |
-
Shape:
|
| 732 |
-
see the docs in Transformer class.
|
| 733 |
-
"""
|
| 734 |
-
src2, attn = self.self_attn(src, src, src, attn_mask=src_mask,
|
| 735 |
-
key_padding_mask=src_key_padding_mask)
|
| 736 |
-
if self.debug: self.attn = attn
|
| 737 |
-
src = src + self.dropout1(src2)
|
| 738 |
-
src = self.norm1(src)
|
| 739 |
-
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
| 740 |
-
src = src + self.dropout2(src2)
|
| 741 |
-
src = self.norm2(src)
|
| 742 |
-
|
| 743 |
-
return src
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
class TransformerDecoderLayer(Module):
|
| 747 |
-
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
|
| 748 |
-
This standard decoder layer is based on the paper "Attention Is All You Need".
|
| 749 |
-
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
| 750 |
-
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
| 751 |
-
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
| 752 |
-
in a different way during application.
|
| 753 |
-
|
| 754 |
-
Args:
|
| 755 |
-
d_model: the number of expected features in the input (required).
|
| 756 |
-
nhead: the number of heads in the multiheadattention models (required).
|
| 757 |
-
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
| 758 |
-
dropout: the dropout value (default=0.1).
|
| 759 |
-
activation: the activation function of intermediate layer, relu or gelu (default=relu).
|
| 760 |
-
|
| 761 |
-
Examples::
|
| 762 |
-
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
| 763 |
-
>>> memory = torch.rand(10, 32, 512)
|
| 764 |
-
>>> tgt = torch.rand(20, 32, 512)
|
| 765 |
-
>>> out = decoder_layer(tgt, memory)
|
| 766 |
-
"""
|
| 767 |
-
|
| 768 |
-
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
| 769 |
-
activation="relu", self_attn=True, siamese=False, debug=False):
|
| 770 |
-
super(TransformerDecoderLayer, self).__init__()
|
| 771 |
-
self.has_self_attn, self.siamese = self_attn, siamese
|
| 772 |
-
self.debug = debug
|
| 773 |
-
if self.has_self_attn:
|
| 774 |
-
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 775 |
-
self.norm1 = LayerNorm(d_model)
|
| 776 |
-
self.dropout1 = Dropout(dropout)
|
| 777 |
-
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 778 |
-
# Implementation of Feedforward model
|
| 779 |
-
self.linear1 = Linear(d_model, dim_feedforward)
|
| 780 |
-
self.dropout = Dropout(dropout)
|
| 781 |
-
self.linear2 = Linear(dim_feedforward, d_model)
|
| 782 |
-
|
| 783 |
-
self.norm2 = LayerNorm(d_model)
|
| 784 |
-
self.norm3 = LayerNorm(d_model)
|
| 785 |
-
self.dropout2 = Dropout(dropout)
|
| 786 |
-
self.dropout3 = Dropout(dropout)
|
| 787 |
-
if self.siamese:
|
| 788 |
-
self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 789 |
-
|
| 790 |
-
self.activation = _get_activation_fn(activation)
|
| 791 |
-
|
| 792 |
-
def __setstate__(self, state):
|
| 793 |
-
if 'activation' not in state:
|
| 794 |
-
state['activation'] = F.relu
|
| 795 |
-
super(TransformerDecoderLayer, self).__setstate__(state)
|
| 796 |
-
|
| 797 |
-
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
|
| 798 |
-
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
| 799 |
-
memory2=None, memory_mask2=None, memory_key_padding_mask2=None):
|
| 800 |
-
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
|
| 801 |
-
r"""Pass the inputs (and mask) through the decoder layer.
|
| 802 |
-
|
| 803 |
-
Args:
|
| 804 |
-
tgt: the sequence to the decoder layer (required).
|
| 805 |
-
memory: the sequence from the last layer of the encoder (required).
|
| 806 |
-
tgt_mask: the mask for the tgt sequence (optional).
|
| 807 |
-
memory_mask: the mask for the memory sequence (optional).
|
| 808 |
-
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
| 809 |
-
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
| 810 |
-
|
| 811 |
-
Shape:
|
| 812 |
-
see the docs in Transformer class.
|
| 813 |
-
"""
|
| 814 |
-
if self.has_self_attn:
|
| 815 |
-
tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
|
| 816 |
-
key_padding_mask=tgt_key_padding_mask)
|
| 817 |
-
tgt = tgt + self.dropout1(tgt2)
|
| 818 |
-
tgt = self.norm1(tgt)
|
| 819 |
-
if self.debug: self.attn = attn
|
| 820 |
-
tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
|
| 821 |
-
key_padding_mask=memory_key_padding_mask)
|
| 822 |
-
if self.debug: self.attn2 = attn2
|
| 823 |
-
|
| 824 |
-
if self.siamese:
|
| 825 |
-
tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2,
|
| 826 |
-
key_padding_mask=memory_key_padding_mask2)
|
| 827 |
-
tgt = tgt + self.dropout2(tgt3)
|
| 828 |
-
if self.debug: self.attn3 = attn3
|
| 829 |
-
|
| 830 |
-
tgt = tgt + self.dropout2(tgt2)
|
| 831 |
-
tgt = self.norm2(tgt)
|
| 832 |
-
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
| 833 |
-
tgt = tgt + self.dropout3(tgt2)
|
| 834 |
-
tgt = self.norm3(tgt)
|
| 835 |
-
|
| 836 |
-
return tgt
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
def _get_clones(module, N):
|
| 840 |
-
return ModuleList([copy.deepcopy(module) for i in range(N)])
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
def _get_activation_fn(activation):
|
| 844 |
-
if activation == "relu":
|
| 845 |
-
return F.relu
|
| 846 |
-
elif activation == "gelu":
|
| 847 |
-
return F.gelu
|
| 848 |
-
|
| 849 |
-
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
class PositionalEncoding(nn.Module):
|
| 853 |
-
r"""Inject some information about the relative or absolute position of the tokens
|
| 854 |
-
in the sequence. The positional encodings have the same dimension as
|
| 855 |
-
the embeddings, so that the two can be summed. Here, we use sine and cosine
|
| 856 |
-
functions of different frequencies.
|
| 857 |
-
.. math::
|
| 858 |
-
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
|
| 859 |
-
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
|
| 860 |
-
\text{where pos is the word position and i is the embed idx)
|
| 861 |
-
Args:
|
| 862 |
-
d_model: the embed dim (required).
|
| 863 |
-
dropout: the dropout value (default=0.1).
|
| 864 |
-
max_len: the max. length of the incoming sequence (default=5000).
|
| 865 |
-
Examples:
|
| 866 |
-
>>> pos_encoder = PositionalEncoding(d_model)
|
| 867 |
-
"""
|
| 868 |
-
|
| 869 |
-
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
| 870 |
-
super(PositionalEncoding, self).__init__()
|
| 871 |
-
self.dropout = nn.Dropout(p=dropout)
|
| 872 |
-
|
| 873 |
-
pe = torch.zeros(max_len, d_model)
|
| 874 |
-
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
| 875 |
-
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
| 876 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
| 877 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
| 878 |
-
pe = pe.unsqueeze(0).transpose(0, 1)
|
| 879 |
-
self.register_buffer('pe', pe)
|
| 880 |
-
|
| 881 |
-
def forward(self, x):
|
| 882 |
-
r"""Inputs of forward function
|
| 883 |
-
Args:
|
| 884 |
-
x: the sequence fed to the positional encoder model (required).
|
| 885 |
-
Shape:
|
| 886 |
-
x: [sequence length, batch size, embed dim]
|
| 887 |
-
output: [sequence length, batch size, embed dim]
|
| 888 |
-
Examples:
|
| 889 |
-
>>> output = pos_encoder(x)
|
| 890 |
-
"""
|
| 891 |
-
|
| 892 |
-
x = x + self.pe[:x.size(0), :]
|
| 893 |
-
return self.dropout(x)
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
if __name__ == '__main__':
|
| 897 |
-
transformer_model = Transformer(nhead=16, num_encoder_layers=12)
|
| 898 |
-
src = torch.rand((10, 32, 512))
|
| 899 |
-
tgt = torch.rand((20, 32, 512))
|
| 900 |
-
out = transformer_model(src, tgt)
|
| 901 |
-
print(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
|
@@ -202,7 +202,7 @@ class Config(object):
|
|
| 202 |
assert os.path.exists(config_path), '%s does not exists!' % config_path
|
| 203 |
with open(config_path) as file:
|
| 204 |
config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
| 205 |
-
with open('configs/template.yaml') as file:
|
| 206 |
default_config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
| 207 |
__dict2attr(default_config_dict)
|
| 208 |
__dict2attr(config_dict)
|
|
|
|
| 202 |
assert os.path.exists(config_path), '%s does not exists!' % config_path
|
| 203 |
with open(config_path) as file:
|
| 204 |
config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
| 205 |
+
with open('configs/rec/template.yaml') as file:
|
| 206 |
default_config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
| 207 |
__dict2attr(default_config_dict)
|
| 208 |
__dict2attr(config_dict)
|