Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,36 +5,33 @@ import threading
|
|
| 5 |
import queue
|
| 6 |
import gradio as gr
|
| 7 |
import httpx
|
|
|
|
| 8 |
from typing import Generator, Any, Dict, List, Optional
|
| 9 |
-
from functools import lru_cache
|
| 10 |
|
| 11 |
# -------------------- Configuration --------------------
|
| 12 |
-
logging.basicConfig(
|
| 13 |
-
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 14 |
-
)
|
| 15 |
|
| 16 |
# -------------------- External Model Call (with Caching and Retry) --------------------
|
| 17 |
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str:
|
| 18 |
-
"""
|
| 19 |
-
Sends a prompt to the OpenAI API endpoint with retries and exponential backoff.
|
| 20 |
-
"""
|
| 21 |
if api_key is None:
|
| 22 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 23 |
if api_key is None:
|
| 24 |
-
raise ValueError("OpenAI API key not
|
| 25 |
url = "https://api.openai.com/v1/chat/completions"
|
| 26 |
headers = {
|
| 27 |
"Authorization": f"Bearer {api_key}",
|
| 28 |
"Content-Type": "application/json",
|
| 29 |
}
|
| 30 |
-
payload = {
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
for attempt in range(max_retries):
|
| 33 |
try:
|
| 34 |
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
|
| 35 |
response = await client.post(url, headers=headers, json=payload)
|
| 36 |
response.raise_for_status()
|
| 37 |
-
response_json = response.json()
|
| 38 |
return response_json["choices"][0]["message"]["content"]
|
| 39 |
except httpx.HTTPStatusError as e:
|
| 40 |
logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}")
|
|
@@ -50,7 +47,7 @@ async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, ma
|
|
| 50 |
except Exception as e:
|
| 51 |
logging.error(f"Unexpected error (attempt {attempt+1}/{max_retries}): {e}")
|
| 52 |
raise
|
| 53 |
-
raise Exception(f"Failed to get response
|
| 54 |
|
| 55 |
# -------------------- Shared Context --------------------
|
| 56 |
class Context:
|
|
@@ -73,12 +70,8 @@ class Context:
|
|
| 73 |
self.conversation_history.append({"agent": agent_name, "message": message})
|
| 74 |
|
| 75 |
# -------------------- Agent Classes --------------------
|
| 76 |
-
|
| 77 |
class PromptOptimizerAgent:
|
| 78 |
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
|
| 79 |
-
"""
|
| 80 |
-
Optimizes the user’s original prompt.
|
| 81 |
-
"""
|
| 82 |
system_prompt = (
|
| 83 |
"Improve the prompt. Be clear, specific, and complete. "
|
| 84 |
"Keep original intent. Return ONLY the revised prompt."
|
|
@@ -90,21 +83,16 @@ class PromptOptimizerAgent:
|
|
| 90 |
return context
|
| 91 |
|
| 92 |
class OrchestratorAgent:
|
| 93 |
-
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue)
|
| 94 |
self.log_queue = log_queue
|
| 95 |
self.human_event = human_event
|
| 96 |
self.human_input_queue = human_input_queue
|
| 97 |
|
| 98 |
async def generate_plan(self, context: Context, api_key: str) -> Context:
|
| 99 |
-
"""
|
| 100 |
-
Generates (or revises) a plan using human feedback if necessary.
|
| 101 |
-
Uses an iterative approach instead of recursion.
|
| 102 |
-
"""
|
| 103 |
while True:
|
| 104 |
if context.plan:
|
| 105 |
prompt = (
|
| 106 |
-
f"You are a planner. Revise/complete the plan for '{context.original_task}'
|
| 107 |
-
f"{context.plan}\n\n"
|
| 108 |
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
|
| 109 |
)
|
| 110 |
else:
|
|
@@ -114,42 +102,28 @@ class OrchestratorAgent:
|
|
| 114 |
"Include review/revision steps, error handling, and documentation instructions.\n\n"
|
| 115 |
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
|
| 116 |
)
|
| 117 |
-
|
| 118 |
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 119 |
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
|
| 120 |
-
|
| 121 |
-
# Check if human feedback is requested.
|
| 122 |
if "REQUEST_HUMAN_FEEDBACK" in plan:
|
| 123 |
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
|
| 124 |
self.log_queue.put("[Orchestrator]: Requesting human feedback...")
|
| 125 |
-
self.log_queue.put(f"[Orchestrator]: Question
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
feedback_request_context = (
|
| 129 |
-
f"The orchestrator agent is requesting feedback on the following task:\n"
|
| 130 |
-
f"**{context.optimized_task}**\n\n"
|
| 131 |
-
f"Current plan:\n**{context.plan or 'None'}**\n\n"
|
| 132 |
-
f"Question:\n**{question}**"
|
| 133 |
)
|
| 134 |
self.human_event.set()
|
| 135 |
-
|
| 136 |
-
self.human_input_queue.
|
| 137 |
-
human_response = self.human_input_queue.get() # Blocking call for human response.
|
| 138 |
self.human_event.clear()
|
| 139 |
-
|
| 140 |
self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}")
|
| 141 |
-
|
| 142 |
-
context.plan = context.plan + "\n" + human_response if context.plan else human_response
|
| 143 |
else:
|
| 144 |
context.plan = plan
|
| 145 |
-
break
|
| 146 |
return context
|
| 147 |
|
| 148 |
class CoderAgent:
|
| 149 |
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
|
| 150 |
-
"""
|
| 151 |
-
Generates code based on the provided plan.
|
| 152 |
-
"""
|
| 153 |
prompt = (
|
| 154 |
"You are a coding agent. Output ONLY the code. "
|
| 155 |
"Adhere to best practices and include error handling.\n\n"
|
|
@@ -162,9 +136,6 @@ class CoderAgent:
|
|
| 162 |
|
| 163 |
class CodeReviewerAgent:
|
| 164 |
async def review_code(self, context: Context, api_key: str) -> Context:
|
| 165 |
-
"""
|
| 166 |
-
Reviews the generated code and returns either actionable feedback or 'APPROVE'.
|
| 167 |
-
"""
|
| 168 |
prompt = (
|
| 169 |
"You are a code reviewer. Provide CONCISE feedback focusing on correctness, efficiency, readability, error handling, and security. "
|
| 170 |
"If the code is acceptable, respond with ONLY 'APPROVE'. Do NOT generate code.\n\n"
|
|
@@ -172,8 +143,6 @@ class CodeReviewerAgent:
|
|
| 172 |
)
|
| 173 |
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 174 |
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
|
| 175 |
-
|
| 176 |
-
# Check for approval; if not approved, parse feedback.
|
| 177 |
if "APPROVE" not in review.upper():
|
| 178 |
structured_review = {"comments": []}
|
| 179 |
for line in review.splitlines():
|
|
@@ -188,9 +157,6 @@ class CodeReviewerAgent:
|
|
| 188 |
|
| 189 |
class QualityAssuranceTesterAgent:
|
| 190 |
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
|
| 191 |
-
"""
|
| 192 |
-
Generates test cases considering edge and error cases.
|
| 193 |
-
"""
|
| 194 |
prompt = (
|
| 195 |
"You are a testing agent. Generate comprehensive test cases considering edge cases and error scenarios. "
|
| 196 |
"Output in a clear format.\n\n"
|
|
@@ -202,9 +168,6 @@ class QualityAssuranceTesterAgent:
|
|
| 202 |
return context
|
| 203 |
|
| 204 |
async def run_tests(self, context: Context, api_key: str) -> Context:
|
| 205 |
-
"""
|
| 206 |
-
Runs the generated test cases and compares expected vs. actual outcomes.
|
| 207 |
-
"""
|
| 208 |
prompt = (
|
| 209 |
"Run the test cases. Compare actual vs expected outputs and state any discrepancies. "
|
| 210 |
"If all tests pass, output 'TESTS PASSED'.\n\n"
|
|
@@ -217,9 +180,6 @@ class QualityAssuranceTesterAgent:
|
|
| 217 |
|
| 218 |
class DocumentationAgent:
|
| 219 |
async def generate_documentation(self, context: Context, api_key: str) -> Context:
|
| 220 |
-
"""
|
| 221 |
-
Generates concise documentation including a --help message.
|
| 222 |
-
"""
|
| 223 |
prompt = (
|
| 224 |
"Generate clear documentation including a brief description, explanation, and a --help message.\n\n"
|
| 225 |
f"Code:\n{context.code}"
|
|
@@ -230,7 +190,6 @@ class DocumentationAgent:
|
|
| 230 |
return context
|
| 231 |
|
| 232 |
# -------------------- Agent Dispatcher --------------------
|
| 233 |
-
|
| 234 |
class AgentDispatcher:
|
| 235 |
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
|
| 236 |
self.log_queue = log_queue
|
|
@@ -246,49 +205,34 @@ class AgentDispatcher:
|
|
| 246 |
}
|
| 247 |
|
| 248 |
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
|
| 249 |
-
"""
|
| 250 |
-
Dispatches the task to the specified agent.
|
| 251 |
-
"""
|
| 252 |
-
agent = self.agents.get(agent_name)
|
| 253 |
-
if not agent:
|
| 254 |
-
raise ValueError(f"Unknown agent: {agent_name}")
|
| 255 |
-
|
| 256 |
self.log_queue.put(f"[{agent_name.replace('_', ' ').title()}]: Starting task...")
|
| 257 |
if agent_name == "prompt_optimizer":
|
| 258 |
-
context = await
|
| 259 |
elif agent_name == "orchestrator":
|
| 260 |
-
context = await
|
| 261 |
elif agent_name == "coder":
|
| 262 |
-
context = await
|
| 263 |
elif agent_name == "code_reviewer":
|
| 264 |
-
context = await
|
| 265 |
elif agent_name == "qa_tester":
|
| 266 |
if kwargs.get("generate_tests", False):
|
| 267 |
-
context = await
|
| 268 |
elif kwargs.get("run_tests", False):
|
| 269 |
-
context = await
|
| 270 |
elif agent_name == "documentation_agent":
|
| 271 |
-
context = await
|
| 272 |
else:
|
| 273 |
-
raise ValueError(f"Unknown
|
| 274 |
return context
|
| 275 |
|
| 276 |
async def determine_next_agent(self, context: Context, api_key: str) -> str:
|
| 277 |
-
"""
|
| 278 |
-
Determines the next agent to run based on the current context.
|
| 279 |
-
"""
|
| 280 |
if not context.optimized_task:
|
| 281 |
return "prompt_optimizer"
|
| 282 |
if not context.plan:
|
| 283 |
return "orchestrator"
|
| 284 |
if not context.code:
|
| 285 |
return "coder"
|
| 286 |
-
|
| 287 |
-
if not any(
|
| 288 |
-
"APPROVE" in comment.get("issue", "").upper()
|
| 289 |
-
for review in context.review_comments
|
| 290 |
-
for comment in review.get("comments", [])
|
| 291 |
-
):
|
| 292 |
return "code_reviewer"
|
| 293 |
if not context.test_cases:
|
| 294 |
return "qa_tester"
|
|
@@ -296,23 +240,15 @@ class AgentDispatcher:
|
|
| 296 |
return "qa_tester"
|
| 297 |
if not context.documentation:
|
| 298 |
return "documentation_agent"
|
| 299 |
-
|
| 300 |
-
return "done" # All tasks are complete
|
| 301 |
|
| 302 |
# -------------------- Multi-Agent Conversation --------------------
|
| 303 |
-
|
| 304 |
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str,
|
| 305 |
human_event: threading.Event, human_input_queue: queue.Queue) -> None:
|
| 306 |
-
"""
|
| 307 |
-
Orchestrates the multi-agent conversation.
|
| 308 |
-
"""
|
| 309 |
context = Context(original_task=task_message)
|
| 310 |
dispatcher = AgentDispatcher(log_queue, human_event, human_input_queue)
|
| 311 |
-
|
| 312 |
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 313 |
-
# Prevent endless revisions by tracking coder iterations.
|
| 314 |
coder_iterations = 0
|
| 315 |
-
|
| 316 |
while next_agent != "done":
|
| 317 |
if next_agent == "qa_tester":
|
| 318 |
if not context.test_cases:
|
|
@@ -321,34 +257,24 @@ async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, ap
|
|
| 321 |
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
|
| 322 |
elif next_agent == "coder" and (context.review_comments or context.test_results):
|
| 323 |
coder_iterations += 1
|
| 324 |
-
# Switch to a different model after the first iteration.
|
| 325 |
context = await dispatcher.dispatch(next_agent, context, api_key, model="gpt-3.5-turbo-16k")
|
| 326 |
else:
|
| 327 |
context = await dispatcher.dispatch(next_agent, context, api_key)
|
| 328 |
-
|
| 329 |
-
# Check for approval in code review if applicable.
|
| 330 |
if next_agent == "code_reviewer":
|
| 331 |
-
approved = any(
|
| 332 |
-
"APPROVE" in comment.get("issue", "").upper()
|
| 333 |
-
for review in context.review_comments
|
| 334 |
-
for comment in review.get("comments", [])
|
| 335 |
-
)
|
| 336 |
if not approved:
|
| 337 |
-
# If not approved, we continue with coder to improve the code.
|
| 338 |
next_agent = "coder"
|
| 339 |
else:
|
| 340 |
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 341 |
else:
|
| 342 |
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 343 |
-
|
| 344 |
if next_agent == "coder" and coder_iterations > 5:
|
| 345 |
log_queue.put("Maximum revision iterations reached. Exiting.")
|
| 346 |
break
|
| 347 |
-
|
| 348 |
log_queue.put("Conversation complete.")
|
| 349 |
log_queue.put(("result", context.conversation_history))
|
| 350 |
|
| 351 |
-
# -------------------- Process Generator
|
| 352 |
def process_conversation_generator(task_message: str, api_key: str,
|
| 353 |
human_event: threading.Event, human_input_queue: queue.Queue,
|
| 354 |
log_queue: queue.Queue) -> Generator[str, None, None]:
|
|
@@ -359,86 +285,53 @@ def process_conversation_generator(task_message: str, api_key: str,
|
|
| 359 |
def run_conversation():
|
| 360 |
asyncio.run(multi_agent_conversation(task_message, log_queue, api_key, human_event, human_input_queue))
|
| 361 |
|
| 362 |
-
# Start the asynchronous conversation in a separate thread.
|
| 363 |
conversation_thread = threading.Thread(target=run_conversation)
|
| 364 |
conversation_thread.start()
|
| 365 |
|
| 366 |
-
# Continuously yield log messages until the conversation is complete.
|
| 367 |
while conversation_thread.is_alive() or not log_queue.empty():
|
| 368 |
try:
|
| 369 |
msg = log_queue.get(timeout=0.1)
|
| 370 |
if isinstance(msg, tuple) and msg[0] == "result":
|
| 371 |
-
# Update the chat box with the final conversation history.
|
| 372 |
yield gr.Chatbot.update(value=msg[1], visible=True)
|
| 373 |
else:
|
| 374 |
yield msg
|
| 375 |
except queue.Empty:
|
| 376 |
pass
|
| 377 |
-
|
| 378 |
if human_event.is_set():
|
| 379 |
yield "Waiting for human feedback..."
|
| 380 |
-
|
| 381 |
-
# Small sleep to prevent busy-waiting.
|
| 382 |
time.sleep(0.1)
|
| 383 |
|
| 384 |
yield "Conversation complete."
|
| 385 |
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
Constructs the Gradio interface to collect human feedback.
|
| 389 |
-
"""
|
| 390 |
-
with gr.Blocks() as human_feedback_interface:
|
| 391 |
-
with gr.Row():
|
| 392 |
-
human_input = gr.Textbox(lines=4, label="Human Feedback", placeholder=placeholder_text)
|
| 393 |
-
with gr.Row():
|
| 394 |
-
submit_button = gr.Button("Submit Feedback")
|
| 395 |
-
|
| 396 |
-
def submit_feedback(input_text: str):
|
| 397 |
-
human_input_queue.put(input_text)
|
| 398 |
-
return ""
|
| 399 |
-
|
| 400 |
-
submit_button.click(fn=submit_feedback, inputs=human_input, outputs=human_input)
|
| 401 |
-
return human_feedback_interface
|
| 402 |
-
|
| 403 |
-
# -------------------- Chat Function for Gradio --------------------
|
| 404 |
-
|
| 405 |
-
def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = None) -> Generator[Any, None, None]:
|
| 406 |
-
"""
|
| 407 |
-
Gradio chat function that runs the multi-agent conversation.
|
| 408 |
-
"""
|
| 409 |
if not openai_api_key:
|
| 410 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 411 |
if not openai_api_key:
|
| 412 |
yield "Error: API key not provided."
|
| 413 |
return
|
| 414 |
-
|
| 415 |
human_event = threading.Event()
|
| 416 |
human_input_queue = queue.Queue()
|
| 417 |
log_queue = queue.Queue()
|
| 418 |
-
|
| 419 |
yield from process_conversation_generator(message, openai_api_key, human_event, human_input_queue, log_queue)
|
| 420 |
|
| 421 |
-
# --------------------
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
)
|
| 438 |
-
|
| 439 |
-
# Dummy interface to prevent Gradio errors.
|
| 440 |
-
dummy_iface = gr.Interface(lambda x: x, "textbox", "textbox")
|
| 441 |
|
| 442 |
if __name__ == "__main__":
|
| 443 |
-
demo = gr.TabbedInterface([iface, dummy_iface], ["Chatbot", "Dummy"])
|
| 444 |
demo.launch(share=True)
|
|
|
|
| 5 |
import queue
|
| 6 |
import gradio as gr
|
| 7 |
import httpx
|
| 8 |
+
import time
|
| 9 |
from typing import Generator, Any, Dict, List, Optional
|
|
|
|
| 10 |
|
| 11 |
# -------------------- Configuration --------------------
|
| 12 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# -------------------- External Model Call (with Caching and Retry) --------------------
|
| 15 |
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str:
|
|
|
|
|
|
|
|
|
|
| 16 |
if api_key is None:
|
| 17 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 18 |
if api_key is None:
|
| 19 |
+
raise ValueError("OpenAI API key not provided.")
|
| 20 |
url = "https://api.openai.com/v1/chat/completions"
|
| 21 |
headers = {
|
| 22 |
"Authorization": f"Bearer {api_key}",
|
| 23 |
"Content-Type": "application/json",
|
| 24 |
}
|
| 25 |
+
payload = {
|
| 26 |
+
"model": model,
|
| 27 |
+
"messages": [{"role": "user", "content": prompt}],
|
| 28 |
+
}
|
| 29 |
for attempt in range(max_retries):
|
| 30 |
try:
|
| 31 |
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
|
| 32 |
response = await client.post(url, headers=headers, json=payload)
|
| 33 |
response.raise_for_status()
|
| 34 |
+
response_json = response.json()
|
| 35 |
return response_json["choices"][0]["message"]["content"]
|
| 36 |
except httpx.HTTPStatusError as e:
|
| 37 |
logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}")
|
|
|
|
| 47 |
except Exception as e:
|
| 48 |
logging.error(f"Unexpected error (attempt {attempt+1}/{max_retries}): {e}")
|
| 49 |
raise
|
| 50 |
+
raise Exception(f"Failed to get response after {max_retries} attempts.")
|
| 51 |
|
| 52 |
# -------------------- Shared Context --------------------
|
| 53 |
class Context:
|
|
|
|
| 70 |
self.conversation_history.append({"agent": agent_name, "message": message})
|
| 71 |
|
| 72 |
# -------------------- Agent Classes --------------------
|
|
|
|
| 73 |
class PromptOptimizerAgent:
|
| 74 |
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
|
|
|
|
|
|
|
|
|
|
| 75 |
system_prompt = (
|
| 76 |
"Improve the prompt. Be clear, specific, and complete. "
|
| 77 |
"Keep original intent. Return ONLY the revised prompt."
|
|
|
|
| 83 |
return context
|
| 84 |
|
| 85 |
class OrchestratorAgent:
|
| 86 |
+
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
|
| 87 |
self.log_queue = log_queue
|
| 88 |
self.human_event = human_event
|
| 89 |
self.human_input_queue = human_input_queue
|
| 90 |
|
| 91 |
async def generate_plan(self, context: Context, api_key: str) -> Context:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
while True:
|
| 93 |
if context.plan:
|
| 94 |
prompt = (
|
| 95 |
+
f"You are a planner. Revise/complete the plan for '{context.original_task}'. "
|
|
|
|
| 96 |
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
|
| 97 |
)
|
| 98 |
else:
|
|
|
|
| 102 |
"Include review/revision steps, error handling, and documentation instructions.\n\n"
|
| 103 |
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
|
| 104 |
)
|
|
|
|
| 105 |
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 106 |
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
|
|
|
|
|
|
|
| 107 |
if "REQUEST_HUMAN_FEEDBACK" in plan:
|
| 108 |
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
|
| 109 |
self.log_queue.put("[Orchestrator]: Requesting human feedback...")
|
| 110 |
+
self.log_queue.put(f"[Orchestrator]: Question: {question}")
|
| 111 |
+
feedback_context = (
|
| 112 |
+
f"Task: {context.optimized_task}\nCurrent Plan: {context.plan or 'None'}\nQuestion: {question}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
| 114 |
self.human_event.set()
|
| 115 |
+
self.human_input_queue.put(feedback_context)
|
| 116 |
+
human_response = self.human_input_queue.get() # blocking call waiting for human response
|
|
|
|
| 117 |
self.human_event.clear()
|
|
|
|
| 118 |
self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}")
|
| 119 |
+
context.plan = (context.plan + "\n" + human_response) if context.plan else human_response
|
|
|
|
| 120 |
else:
|
| 121 |
context.plan = plan
|
| 122 |
+
break
|
| 123 |
return context
|
| 124 |
|
| 125 |
class CoderAgent:
|
| 126 |
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
|
|
|
|
|
|
|
|
|
|
| 127 |
prompt = (
|
| 128 |
"You are a coding agent. Output ONLY the code. "
|
| 129 |
"Adhere to best practices and include error handling.\n\n"
|
|
|
|
| 136 |
|
| 137 |
class CodeReviewerAgent:
|
| 138 |
async def review_code(self, context: Context, api_key: str) -> Context:
|
|
|
|
|
|
|
|
|
|
| 139 |
prompt = (
|
| 140 |
"You are a code reviewer. Provide CONCISE feedback focusing on correctness, efficiency, readability, error handling, and security. "
|
| 141 |
"If the code is acceptable, respond with ONLY 'APPROVE'. Do NOT generate code.\n\n"
|
|
|
|
| 143 |
)
|
| 144 |
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 145 |
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
|
|
|
|
|
|
|
| 146 |
if "APPROVE" not in review.upper():
|
| 147 |
structured_review = {"comments": []}
|
| 148 |
for line in review.splitlines():
|
|
|
|
| 157 |
|
| 158 |
class QualityAssuranceTesterAgent:
|
| 159 |
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
|
|
|
|
|
|
|
|
|
|
| 160 |
prompt = (
|
| 161 |
"You are a testing agent. Generate comprehensive test cases considering edge cases and error scenarios. "
|
| 162 |
"Output in a clear format.\n\n"
|
|
|
|
| 168 |
return context
|
| 169 |
|
| 170 |
async def run_tests(self, context: Context, api_key: str) -> Context:
|
|
|
|
|
|
|
|
|
|
| 171 |
prompt = (
|
| 172 |
"Run the test cases. Compare actual vs expected outputs and state any discrepancies. "
|
| 173 |
"If all tests pass, output 'TESTS PASSED'.\n\n"
|
|
|
|
| 180 |
|
| 181 |
class DocumentationAgent:
|
| 182 |
async def generate_documentation(self, context: Context, api_key: str) -> Context:
|
|
|
|
|
|
|
|
|
|
| 183 |
prompt = (
|
| 184 |
"Generate clear documentation including a brief description, explanation, and a --help message.\n\n"
|
| 185 |
f"Code:\n{context.code}"
|
|
|
|
| 190 |
return context
|
| 191 |
|
| 192 |
# -------------------- Agent Dispatcher --------------------
|
|
|
|
| 193 |
class AgentDispatcher:
|
| 194 |
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
|
| 195 |
self.log_queue = log_queue
|
|
|
|
| 205 |
}
|
| 206 |
|
| 207 |
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
self.log_queue.put(f"[{agent_name.replace('_', ' ').title()}]: Starting task...")
|
| 209 |
if agent_name == "prompt_optimizer":
|
| 210 |
+
context = await self.agents[agent_name].optimize_prompt(context, api_key)
|
| 211 |
elif agent_name == "orchestrator":
|
| 212 |
+
context = await self.agents[agent_name].generate_plan(context, api_key)
|
| 213 |
elif agent_name == "coder":
|
| 214 |
+
context = await self.agents[agent_name].generate_code(context, api_key, **kwargs)
|
| 215 |
elif agent_name == "code_reviewer":
|
| 216 |
+
context = await self.agents[agent_name].review_code(context, api_key)
|
| 217 |
elif agent_name == "qa_tester":
|
| 218 |
if kwargs.get("generate_tests", False):
|
| 219 |
+
context = await self.agents[agent_name].generate_test_cases(context, api_key)
|
| 220 |
elif kwargs.get("run_tests", False):
|
| 221 |
+
context = await self.agents[agent_name].run_tests(context, api_key)
|
| 222 |
elif agent_name == "documentation_agent":
|
| 223 |
+
context = await self.agents[agent_name].generate_documentation(context, api_key)
|
| 224 |
else:
|
| 225 |
+
raise ValueError(f"Unknown agent: {agent_name}")
|
| 226 |
return context
|
| 227 |
|
| 228 |
async def determine_next_agent(self, context: Context, api_key: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 229 |
if not context.optimized_task:
|
| 230 |
return "prompt_optimizer"
|
| 231 |
if not context.plan:
|
| 232 |
return "orchestrator"
|
| 233 |
if not context.code:
|
| 234 |
return "coder"
|
| 235 |
+
if not any("APPROVE" in comment.get("issue", "").upper() for review in context.review_comments for comment in review.get("comments", [])):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
return "code_reviewer"
|
| 237 |
if not context.test_cases:
|
| 238 |
return "qa_tester"
|
|
|
|
| 240 |
return "qa_tester"
|
| 241 |
if not context.documentation:
|
| 242 |
return "documentation_agent"
|
| 243 |
+
return "done"
|
|
|
|
| 244 |
|
| 245 |
# -------------------- Multi-Agent Conversation --------------------
|
|
|
|
| 246 |
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str,
|
| 247 |
human_event: threading.Event, human_input_queue: queue.Queue) -> None:
|
|
|
|
|
|
|
|
|
|
| 248 |
context = Context(original_task=task_message)
|
| 249 |
dispatcher = AgentDispatcher(log_queue, human_event, human_input_queue)
|
|
|
|
| 250 |
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
|
|
|
| 251 |
coder_iterations = 0
|
|
|
|
| 252 |
while next_agent != "done":
|
| 253 |
if next_agent == "qa_tester":
|
| 254 |
if not context.test_cases:
|
|
|
|
| 257 |
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
|
| 258 |
elif next_agent == "coder" and (context.review_comments or context.test_results):
|
| 259 |
coder_iterations += 1
|
|
|
|
| 260 |
context = await dispatcher.dispatch(next_agent, context, api_key, model="gpt-3.5-turbo-16k")
|
| 261 |
else:
|
| 262 |
context = await dispatcher.dispatch(next_agent, context, api_key)
|
|
|
|
|
|
|
| 263 |
if next_agent == "code_reviewer":
|
| 264 |
+
approved = any("APPROVE" in comment.get("issue", "").upper() for review in context.review_comments for comment in review.get("comments", []))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
if not approved:
|
|
|
|
| 266 |
next_agent = "coder"
|
| 267 |
else:
|
| 268 |
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 269 |
else:
|
| 270 |
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
|
|
|
| 271 |
if next_agent == "coder" and coder_iterations > 5:
|
| 272 |
log_queue.put("Maximum revision iterations reached. Exiting.")
|
| 273 |
break
|
|
|
|
| 274 |
log_queue.put("Conversation complete.")
|
| 275 |
log_queue.put(("result", context.conversation_history))
|
| 276 |
|
| 277 |
+
# -------------------- Process Conversation Generator --------------------
|
| 278 |
def process_conversation_generator(task_message: str, api_key: str,
|
| 279 |
human_event: threading.Event, human_input_queue: queue.Queue,
|
| 280 |
log_queue: queue.Queue) -> Generator[str, None, None]:
|
|
|
|
| 285 |
def run_conversation():
|
| 286 |
asyncio.run(multi_agent_conversation(task_message, log_queue, api_key, human_event, human_input_queue))
|
| 287 |
|
|
|
|
| 288 |
conversation_thread = threading.Thread(target=run_conversation)
|
| 289 |
conversation_thread.start()
|
| 290 |
|
|
|
|
| 291 |
while conversation_thread.is_alive() or not log_queue.empty():
|
| 292 |
try:
|
| 293 |
msg = log_queue.get(timeout=0.1)
|
| 294 |
if isinstance(msg, tuple) and msg[0] == "result":
|
|
|
|
| 295 |
yield gr.Chatbot.update(value=msg[1], visible=True)
|
| 296 |
else:
|
| 297 |
yield msg
|
| 298 |
except queue.Empty:
|
| 299 |
pass
|
|
|
|
| 300 |
if human_event.is_set():
|
| 301 |
yield "Waiting for human feedback..."
|
|
|
|
|
|
|
| 302 |
time.sleep(0.1)
|
| 303 |
|
| 304 |
yield "Conversation complete."
|
| 305 |
|
| 306 |
+
# -------------------- Multi-Agent Chat Function --------------------
|
| 307 |
+
def multi_agent_chat(message: str, openai_api_key: str = None) -> Generator[Any, None, None]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
if not openai_api_key:
|
| 309 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 310 |
if not openai_api_key:
|
| 311 |
yield "Error: API key not provided."
|
| 312 |
return
|
|
|
|
| 313 |
human_event = threading.Event()
|
| 314 |
human_input_queue = queue.Queue()
|
| 315 |
log_queue = queue.Queue()
|
|
|
|
| 316 |
yield from process_conversation_generator(message, openai_api_key, human_event, human_input_queue, log_queue)
|
| 317 |
|
| 318 |
+
# -------------------- Custom Gradio Blocks Interface --------------------
|
| 319 |
+
with gr.Blocks() as demo:
|
| 320 |
+
gr.Markdown("## Multi-Agent Task Solver with Human-in-the-Loop")
|
| 321 |
+
|
| 322 |
+
with gr.Row():
|
| 323 |
+
chat_output = gr.Chatbot(label="Conversation")
|
| 324 |
+
|
| 325 |
+
with gr.Row():
|
| 326 |
+
with gr.Column(scale=8):
|
| 327 |
+
message_input = gr.Textbox(label="Enter your task", placeholder="Type your task here...", lines=3)
|
| 328 |
+
with gr.Column(scale=2):
|
| 329 |
+
api_key_input = gr.Textbox(label="API Key (optional)", type="password", placeholder="Leave blank to use env variable")
|
| 330 |
+
|
| 331 |
+
send_button = gr.Button("Send")
|
| 332 |
+
|
| 333 |
+
# When Send is clicked, the multi_agent_chat generator is called and its output is streamed to the chat.
|
| 334 |
+
send_button.click(fn=multi_agent_chat, inputs=[message_input, api_key_input], outputs=chat_output, stream=True)
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
if __name__ == "__main__":
|
|
|
|
| 337 |
demo.launch(share=True)
|