Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,16 +6,16 @@ import threading
|
|
| 6 |
import queue
|
| 7 |
import gradio as gr
|
| 8 |
import httpx
|
| 9 |
-
from typing import Generator, Any, Dict, List, Optional
|
|
|
|
| 10 |
|
| 11 |
# -------------------- Configuration --------------------
|
| 12 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 13 |
|
| 14 |
-
# -------------------- External Model Call --------------------
|
|
|
|
| 15 |
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None) -> str:
|
| 16 |
-
"""
|
| 17 |
-
Sends a prompt to the OpenAI API endpoint.
|
| 18 |
-
"""
|
| 19 |
if api_key is None:
|
| 20 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 21 |
if api_key is None:
|
|
@@ -35,18 +35,37 @@ async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None) ->
|
|
| 35 |
response_json = response.json()
|
| 36 |
return response_json["choices"][0]["message"]["content"]
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# -------------------- Agent Classes --------------------
|
|
|
|
| 39 |
class PromptOptimizerAgent:
|
| 40 |
-
async def optimize_prompt(self,
|
| 41 |
"""Optimizes the user's initial prompt."""
|
| 42 |
-
system_prompt =
|
| 43 |
-
|
| 44 |
-
"Be clear, specific, and complete. Maintain the user's original intent."
|
| 45 |
-
"Return ONLY the revised prompt."
|
| 46 |
-
)
|
| 47 |
-
full_prompt = f"{system_prompt}\n\nUser's initial prompt:\n{user_prompt}"
|
| 48 |
optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
|
| 51 |
class OrchestratorAgent:
|
| 52 |
def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None:
|
|
@@ -54,177 +73,221 @@ class OrchestratorAgent:
|
|
| 54 |
self.human_in_the_loop_event = human_in_the_loop_event
|
| 55 |
self.human_input_queue = human_input_queue
|
| 56 |
|
| 57 |
-
async def generate_plan(self,
|
| 58 |
-
|
| 59 |
-
Generates a plan, potentially requesting human feedback.
|
| 60 |
-
"""
|
| 61 |
-
if human_feedback: # Use human feedback if provided
|
| 62 |
-
prompt = (
|
| 63 |
-
f"You are a master planner. You previously generated a partial plan for the task: '{task}'.\n"
|
| 64 |
-
"You requested human feedback, and here's the feedback you received:\n"
|
| 65 |
-
f"{human_feedback}\n\n"
|
| 66 |
-
"Now, complete or revise the plan, incorporating the human feedback. "
|
| 67 |
-
"Output the plan as a numbered list."
|
| 68 |
-
)
|
| 69 |
-
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 70 |
-
return plan
|
| 71 |
|
|
|
|
| 72 |
prompt = (
|
| 73 |
-
f"You are a
|
| 74 |
-
"
|
| 75 |
-
"
|
| 76 |
-
"Include instructions for documentation.\n\n"
|
| 77 |
-
"HOWEVER, if at ANY point you are unsure how to proceed, you can request human feedback. "
|
| 78 |
-
"To do this, output ONLY the following phrase (and nothing else): 'REQUEST_HUMAN_FEEDBACK'\n"
|
| 79 |
-
"Followed by a newline and a clear and concise question for the human. Example:\n\nREQUEST_HUMAN_FEEDBACK\nShould the output be in JSON or XML format?"
|
| 80 |
-
"\n\nOutput the plan as a numbered list (or as much as you can before requesting feedback)."
|
| 81 |
)
|
| 82 |
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
self.log_queue.put("[Orchestrator]: Requesting human feedback...")
|
| 86 |
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
|
| 87 |
self.log_queue.put(f"[Orchestrator]: Question for human: {question}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
self.human_in_the_loop_event.set() # Signal the human input thread
|
| 89 |
-
|
|
|
|
| 90 |
self.human_in_the_loop_event.clear() # Reset the event
|
| 91 |
self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}")
|
| 92 |
-
|
|
|
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
class CoderAgent:
|
| 98 |
-
async def generate_code(self,
|
| 99 |
"""Generates code based on instructions."""
|
| 100 |
prompt = (
|
| 101 |
-
"You are a
|
| 102 |
"Adhere to best practices. Include error handling.\n\n"
|
| 103 |
-
f"Instructions:\n{
|
| 104 |
)
|
| 105 |
code = await call_model(prompt, model=model, api_key=api_key)
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
| 108 |
class CodeReviewerAgent:
|
| 109 |
-
async def review_code(self,
|
| 110 |
"""Reviews code. Provides concise, actionable feedback or 'APPROVE'."""
|
| 111 |
prompt = (
|
| 112 |
-
"You are a
|
| 113 |
"Focus on correctness, efficiency, readability, error handling, security, and adherence to the task. "
|
| 114 |
"Suggest improvements. If acceptable, respond with ONLY 'APPROVE'. "
|
| 115 |
"Do NOT generate code.\n\n"
|
| 116 |
-
f"Task: {
|
| 117 |
)
|
| 118 |
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
class QualityAssuranceTesterAgent:
|
| 122 |
-
async def generate_test_cases(self,
|
| 123 |
"""Generates test cases."""
|
| 124 |
prompt = (
|
| 125 |
-
"You are a
|
| 126 |
"Consider edge cases and error scenarios. Output in a clear format.\n\n"
|
| 127 |
-
f"Task: {
|
| 128 |
)
|
| 129 |
test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 130 |
-
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
async def run_tests(self,
|
| 133 |
"""Runs tests and reports results."""
|
| 134 |
prompt = (
|
| 135 |
-
"Run the
|
| 136 |
"State discrepancies. If all pass, output 'TESTS PASSED'.\n\n"
|
| 137 |
-
f"Code:\n{code}\n\nTest Cases:\n{test_cases}"
|
| 138 |
)
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
|
| 142 |
class DocumentationAgent:
|
| 143 |
-
async def generate_documentation(self,
|
| 144 |
"""Generates documentation, including a --help message."""
|
| 145 |
prompt = (
|
| 146 |
"Generate clear and concise documentation. "
|
| 147 |
"Include a brief description, explanation, and a --help message.\n\n"
|
| 148 |
-
f"Code:\n{code}"
|
| 149 |
)
|
| 150 |
documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None:
|
| 155 |
"""
|
| 156 |
-
Conducts the multi-agent conversation.
|
| 157 |
"""
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
# Step 3: Code Review and Revision
|
| 183 |
-
reviewer = CodeReviewerAgent()
|
| 184 |
-
tester = QualityAssuranceTesterAgent()
|
| 185 |
-
approval_keyword = "approve"
|
| 186 |
-
revision_iteration = 0
|
| 187 |
-
while True:
|
| 188 |
-
log_queue.put(f"[Code Reviewer]: Reviewing code (Iteration {revision_iteration})...")
|
| 189 |
-
review = await reviewer.review_code(code, optimized_task, api_key=api_key)
|
| 190 |
-
conversation.append({"agent": "Code Reviewer", "message": f"Review (Iteration {revision_iteration}):\n{review}"})
|
| 191 |
-
log_queue.put(f"[Code Reviewer]: Review (Iteration {revision_iteration}):\n{review}")
|
| 192 |
-
|
| 193 |
-
if approval_keyword in review.lower():
|
| 194 |
-
log_queue.put("[Code Reviewer]: Code approved.")
|
| 195 |
-
break
|
| 196 |
-
|
| 197 |
-
revision_iteration += 1
|
| 198 |
-
if revision_iteration >= 5:
|
| 199 |
-
log_queue.put("Unable to solve task satisfactorily.")
|
| 200 |
-
sys.exit("Unable to solve task satisfactorily.")
|
| 201 |
-
|
| 202 |
-
log_queue.put("[QA Tester]: Generating test cases...")
|
| 203 |
-
test_cases = await tester.generate_test_cases(code, optimized_task, api_key=api_key)
|
| 204 |
-
conversation.append({"agent": "QA Tester", "message": f"Test Cases:\n{test_cases}"})
|
| 205 |
-
log_queue.put(f"[QA Tester]: Test Cases:\n{test_cases}")
|
| 206 |
-
|
| 207 |
-
log_queue.put("[QA Tester]: Running tests...")
|
| 208 |
-
test_results = await tester.run_tests(code, test_cases, api_key)
|
| 209 |
-
conversation.append({"agent": "QA Tester", "message": f"Test Results:\n{test_results}"})
|
| 210 |
-
log_queue.put(f"[QA Tester]: Test Results:\n{test_results}")
|
| 211 |
-
|
| 212 |
-
log_queue.put(f"[Orchestrator]: Revising code (Iteration {revision_iteration})...")
|
| 213 |
-
update_instructions = f"Revise:\nReview:\n{review}\nTests:\n{test_results}\nPlan:\n{plan}"
|
| 214 |
-
revised_code = await coder.generate_code(update_instructions, api_key=api_key, model="gpt-3.5-turbo-16k")
|
| 215 |
-
conversation.append({"agent": "Coder", "message": f"Revised Code (Iteration {revision_iteration}):\n{revised_code}"})
|
| 216 |
-
log_queue.put(f"[Coder]: Revised (Iteration {revision_iteration}):\n{revised_code}")
|
| 217 |
-
code = revised_code
|
| 218 |
-
|
| 219 |
-
# Step 4: Generate Documentation
|
| 220 |
-
doc_agent = DocumentationAgent()
|
| 221 |
-
log_queue.put("[Documentation Agent]: Generating documentation...")
|
| 222 |
-
documentation = await doc_agent.generate_documentation(code, api_key=api_key)
|
| 223 |
-
conversation.append({"agent": "Documentation Agent", "message": f"Documentation:\n{documentation}"})
|
| 224 |
-
log_queue.put(f"[Documentation Agent]: Documentation generated:\n{documentation}")
|
| 225 |
|
| 226 |
log_queue.put("Conversation complete.")
|
| 227 |
-
log_queue.put(("result",
|
| 228 |
|
| 229 |
# -------------------- Process Generator and Human Input --------------------
|
| 230 |
def process_conversation_generator(task_message: str, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> Generator[str, None, None]:
|
|
@@ -262,7 +325,7 @@ def get_human_feedback(placeholder_text):
|
|
| 262 |
"""Gets human input using a Gradio Textbox."""
|
| 263 |
with gr.Blocks() as human_feedback_interface:
|
| 264 |
with gr.Row():
|
| 265 |
-
human_input = gr.Textbox(lines=4,
|
| 266 |
with gr.Row():
|
| 267 |
submit_button = gr.Button("Submit Feedback")
|
| 268 |
|
|
@@ -273,10 +336,12 @@ def get_human_feedback(placeholder_text):
|
|
| 273 |
return ""
|
| 274 |
|
| 275 |
submit_button.click(submit_feedback, inputs=human_input, outputs=human_input)
|
| 276 |
-
human_feedback_interface.load(None, [], []) #
|
| 277 |
|
| 278 |
return human_feedback_interface, feedback_queue
|
|
|
|
| 279 |
# -------------------- Chat Function for Gradio --------------------
|
|
|
|
| 280 |
def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = None) -> Generator[str, None, None]:
|
| 281 |
"""Chat function for Gradio."""
|
| 282 |
if not openai_api_key:
|
|
@@ -285,28 +350,27 @@ def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = Non
|
|
| 285 |
yield "Error: API key not provided."
|
| 286 |
return
|
| 287 |
human_in_the_loop_event = threading.Event()
|
| 288 |
-
human_input_queue = queue.Queue()
|
| 289 |
|
| 290 |
yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue)
|
| 291 |
|
| 292 |
while human_in_the_loop_event.is_set():
|
| 293 |
yield "Waiting for human feedback..."
|
| 294 |
-
placeholder = "Please provide your feedback."
|
| 295 |
-
human_interface, feedback_queue = get_human_feedback(placeholder)
|
| 296 |
-
#This is a hacky but currently only working way to make this work with gradio
|
| 297 |
-
yield gr.Textbox.update(visible=False), gr.update(visible=True)
|
| 298 |
try:
|
| 299 |
-
|
| 300 |
-
human_input_queue.put(human_feedback)
|
| 301 |
-
human_in_the_loop_event.clear()
|
| 302 |
-
yield gr.Textbox.update(visible=True), human_interface.close()
|
| 303 |
-
yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue)
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
# -------------------- Launch the Chatbot --------------------
|
| 312 |
|
|
@@ -316,15 +380,15 @@ iface = gr.ChatInterface(
|
|
| 316 |
additional_inputs=[gr.Textbox(label="OpenAI API Key (optional)", type="password", placeholder="Leave blank to use env variable")],
|
| 317 |
title="Multi-Agent Task Solver with Human-in-the-Loop",
|
| 318 |
description="""
|
| 319 |
-
- Collaborative workflow with Human-in-the-Loop
|
| 320 |
-
-
|
| 321 |
-
- Enter a task
|
| 322 |
-
- Max 5
|
| 323 |
-
- Provide
|
| 324 |
"""
|
| 325 |
)
|
| 326 |
|
| 327 |
-
#Need a dummy interface to
|
| 328 |
dummy_iface = gr.Interface(lambda x:x, "textbox", "textbox")
|
| 329 |
|
| 330 |
if __name__ == "__main__":
|
|
|
|
| 6 |
import queue
|
| 7 |
import gradio as gr
|
| 8 |
import httpx
|
| 9 |
+
from typing import Generator, Any, Dict, List, Optional, Callable
|
| 10 |
+
from functools import lru_cache
|
| 11 |
|
| 12 |
# -------------------- Configuration --------------------
|
| 13 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 14 |
|
| 15 |
+
# -------------------- External Model Call (with Caching) --------------------
|
| 16 |
+
@lru_cache(maxsize=128) # Cache up to 128 responses
|
| 17 |
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None) -> str:
|
| 18 |
+
"""Sends a prompt to the OpenAI API endpoint, with caching."""
|
|
|
|
|
|
|
| 19 |
if api_key is None:
|
| 20 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 21 |
if api_key is None:
|
|
|
|
| 35 |
response_json = response.json()
|
| 36 |
return response_json["choices"][0]["message"]["content"]
|
| 37 |
|
| 38 |
+
# -------------------- Shared Context --------------------
|
| 39 |
+
class Context:
|
| 40 |
+
def __init__(self, original_task: str, optimized_task: Optional[str] = None,
|
| 41 |
+
plan: Optional[str] = None, code: Optional[str] = None,
|
| 42 |
+
review_comments: Optional[List[Dict[str, str]]] = None,
|
| 43 |
+
test_cases: Optional[str] = None, test_results: Optional[str] = None,
|
| 44 |
+
documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None):
|
| 45 |
+
self.original_task = original_task
|
| 46 |
+
self.optimized_task = optimized_task
|
| 47 |
+
self.plan = plan
|
| 48 |
+
self.code = code
|
| 49 |
+
self.review_comments = review_comments or []
|
| 50 |
+
self.test_cases = test_cases
|
| 51 |
+
self.test_results = test_results
|
| 52 |
+
self.documentation = documentation
|
| 53 |
+
self.conversation_history = conversation_history or []
|
| 54 |
+
|
| 55 |
+
def add_conversation_entry(self, agent_name: str, message: str):
|
| 56 |
+
self.conversation_history.append({"agent": agent_name, "message": message})
|
| 57 |
+
|
| 58 |
# -------------------- Agent Classes --------------------
|
| 59 |
+
|
| 60 |
class PromptOptimizerAgent:
|
| 61 |
+
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
|
| 62 |
"""Optimizes the user's initial prompt."""
|
| 63 |
+
system_prompt = "Improve the prompt. Be clear, specific, and complete. Keep original intent. Return ONLY the revised prompt."
|
| 64 |
+
full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
|
| 66 |
+
context.optimized_task = optimized
|
| 67 |
+
context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}")
|
| 68 |
+
return context
|
| 69 |
|
| 70 |
class OrchestratorAgent:
|
| 71 |
def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None:
|
|
|
|
| 73 |
self.human_in_the_loop_event = human_in_the_loop_event
|
| 74 |
self.human_input_queue = human_input_queue
|
| 75 |
|
| 76 |
+
async def generate_plan(self, context: Context, api_key: str, human_feedback: Optional[str] = None) -> Context:
|
| 77 |
+
"""Generates a plan, potentially requesting human feedback."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
if human_feedback:
|
| 80 |
prompt = (
|
| 81 |
+
f"You are a planner. Revise/complete the plan for '{context.original_task}' using feedback:\n"
|
| 82 |
+
f"{human_feedback}\n\nCurrent Plan:\n{context.plan if context.plan else 'No plan yet.'}\n\n"
|
| 83 |
+
"Output the plan as a numbered list. If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 86 |
|
| 87 |
+
else:
|
| 88 |
+
prompt = (
|
| 89 |
+
f"You are a planner. Create a plan for: '{context.optimized_task}'. "
|
| 90 |
+
"Break down the task. Assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. "
|
| 91 |
+
"Include review/revision steps. Consider error handling. Include documentation instructions.\n\n"
|
| 92 |
+
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'\n\nOutput the plan as a numbered list."
|
| 93 |
+
)
|
| 94 |
+
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if "REQUEST_HUMAN_FEEDBACK" in plan:
|
| 98 |
self.log_queue.put("[Orchestrator]: Requesting human feedback...")
|
| 99 |
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
|
| 100 |
self.log_queue.put(f"[Orchestrator]: Question for human: {question}")
|
| 101 |
+
|
| 102 |
+
#Prepare detailed context for human
|
| 103 |
+
feedback_request_context = (f"The orchestrator agent is requesting feedback on the following task:\n **{context.optimized_task}**\n\n"
|
| 104 |
+
f"The current plan (if any):\n**{context.plan}**\n\n" if context.plan else "") + f"The specific question is:\n**{question}**"
|
| 105 |
+
|
| 106 |
self.human_in_the_loop_event.set() # Signal the human input thread
|
| 107 |
+
|
| 108 |
+
human_response = self.get_human_response(feedback_request_context) # Pass context to input function
|
| 109 |
self.human_in_the_loop_event.clear() # Reset the event
|
| 110 |
self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}")
|
| 111 |
+
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}\n\nHuman Feedback Requested. Question: {question}")
|
| 112 |
+
return await self.generate_plan(context, api_key, human_response) # Recursive call
|
| 113 |
|
| 114 |
+
context.plan = plan
|
| 115 |
+
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
|
| 116 |
+
return context
|
| 117 |
|
| 118 |
+
def get_human_response(self, feedback_request_context):
|
| 119 |
+
"""Gets human input, using the Gradio queue and event."""
|
| 120 |
+
self.human_input_queue.put(feedback_request_context) # Put the question into Gradio
|
| 121 |
+
human_response = self.human_input_queue.get() # Get the response
|
| 122 |
+
return human_response
|
| 123 |
|
| 124 |
class CoderAgent:
|
| 125 |
+
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
|
| 126 |
"""Generates code based on instructions."""
|
| 127 |
prompt = (
|
| 128 |
+
"You are a coding agent. Output ONLY the code. "
|
| 129 |
"Adhere to best practices. Include error handling.\n\n"
|
| 130 |
+
f"Instructions:\n{context.plan}"
|
| 131 |
)
|
| 132 |
code = await call_model(prompt, model=model, api_key=api_key)
|
| 133 |
+
context.code = code
|
| 134 |
+
context.add_conversation_entry("Coder", f"Code:\n{code}")
|
| 135 |
+
return context
|
| 136 |
|
| 137 |
class CodeReviewerAgent:
|
| 138 |
+
async def review_code(self, context: Context, api_key: str) -> Context:
|
| 139 |
"""Reviews code. Provides concise, actionable feedback or 'APPROVE'."""
|
| 140 |
prompt = (
|
| 141 |
+
"You are a code reviewer. Provide CONCISE feedback. "
|
| 142 |
"Focus on correctness, efficiency, readability, error handling, security, and adherence to the task. "
|
| 143 |
"Suggest improvements. If acceptable, respond with ONLY 'APPROVE'. "
|
| 144 |
"Do NOT generate code.\n\n"
|
| 145 |
+
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
|
| 146 |
)
|
| 147 |
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 148 |
+
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
|
| 149 |
+
|
| 150 |
+
# Structured Feedback (Example)
|
| 151 |
+
if "APPROVE" not in review.upper():
|
| 152 |
+
structured_review = {"comments": []}
|
| 153 |
+
#In a real implementation you might use a more advanced parsing technique here
|
| 154 |
+
for line in review.splitlines():
|
| 155 |
+
if line.strip(): #Simple example
|
| 156 |
+
structured_review["comments"].append({"issue": line.strip(), "line_number": "N/A", "severity": "Medium"}) #Dummy data
|
| 157 |
+
context.review_comments.append(structured_review)
|
| 158 |
+
|
| 159 |
+
return context
|
| 160 |
|
| 161 |
class QualityAssuranceTesterAgent:
|
| 162 |
+
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
|
| 163 |
"""Generates test cases."""
|
| 164 |
prompt = (
|
| 165 |
+
"You are a testing agent. Generate test cases. "
|
| 166 |
"Consider edge cases and error scenarios. Output in a clear format.\n\n"
|
| 167 |
+
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
|
| 168 |
)
|
| 169 |
test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 170 |
+
context.test_cases = test_cases
|
| 171 |
+
context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}")
|
| 172 |
+
return context
|
| 173 |
|
| 174 |
+
async def run_tests(self, context: Context, api_key: str) -> Context:
|
| 175 |
"""Runs tests and reports results."""
|
| 176 |
prompt = (
|
| 177 |
+
"Run the test cases. Compare actual vs expected output. "
|
| 178 |
"State discrepancies. If all pass, output 'TESTS PASSED'.\n\n"
|
| 179 |
+
f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}"
|
| 180 |
)
|
| 181 |
+
test_results = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 182 |
+
context.test_results = test_results
|
| 183 |
+
context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}")
|
| 184 |
+
return context
|
| 185 |
|
| 186 |
class DocumentationAgent:
|
| 187 |
+
async def generate_documentation(self, context: Context, api_key: str) -> Context:
|
| 188 |
"""Generates documentation, including a --help message."""
|
| 189 |
prompt = (
|
| 190 |
"Generate clear and concise documentation. "
|
| 191 |
"Include a brief description, explanation, and a --help message.\n\n"
|
| 192 |
+
f"Code:\n{context.code}"
|
| 193 |
)
|
| 194 |
documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
|
| 195 |
+
context.documentation = documentation
|
| 196 |
+
context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}")
|
| 197 |
+
return context
|
| 198 |
+
|
| 199 |
+
# -------------------- Agent Dispatcher (New) --------------------
|
| 200 |
|
| 201 |
+
class AgentDispatcher:
|
| 202 |
+
def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue):
|
| 203 |
+
self.log_queue = log_queue
|
| 204 |
+
self.human_in_the_loop_event = human_in_the_loop_event
|
| 205 |
+
self.human_input_queue = human_input_queue
|
| 206 |
+
self.agents = {
|
| 207 |
+
"prompt_optimizer": PromptOptimizerAgent(),
|
| 208 |
+
"orchestrator": OrchestratorAgent(log_queue, human_in_the_loop_event, human_input_queue),
|
| 209 |
+
"coder": CoderAgent(),
|
| 210 |
+
"code_reviewer": CodeReviewerAgent(),
|
| 211 |
+
"qa_tester": QualityAssuranceTesterAgent(),
|
| 212 |
+
"documentation_agent": DocumentationAgent(),
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
|
| 216 |
+
"""Dispatches the task to the specified agent."""
|
| 217 |
+
agent = self.agents.get(agent_name)
|
| 218 |
+
if not agent:
|
| 219 |
+
raise ValueError(f"Unknown agent: {agent_name}")
|
| 220 |
+
|
| 221 |
+
self.log_queue.put(f"[{agent_name.replace('_', ' ').title()}]: Starting task...")
|
| 222 |
+
if agent_name == "prompt_optimizer":
|
| 223 |
+
context = await agent.optimize_prompt(context, api_key)
|
| 224 |
+
elif agent_name == "orchestrator":
|
| 225 |
+
context = await agent.generate_plan(context, api_key) #Removed human_feedback
|
| 226 |
+
elif agent_name == "coder":
|
| 227 |
+
context = await agent.generate_code(context, api_key, **kwargs)
|
| 228 |
+
elif agent_name == "code_reviewer":
|
| 229 |
+
context = await agent.review_code(context, api_key)
|
| 230 |
+
elif agent_name == "qa_tester":
|
| 231 |
+
if kwargs.get("generate_tests", False):
|
| 232 |
+
context = await agent.generate_test_cases(context, api_key)
|
| 233 |
+
elif kwargs.get("run_tests", False):
|
| 234 |
+
context = await agent.run_tests(context, api_key)
|
| 235 |
+
elif agent_name == "documentation_agent":
|
| 236 |
+
context = await agent.generate_documentation(context, api_key)
|
| 237 |
+
else:
|
| 238 |
+
raise ValueError(f"Unknown Agent Name: {agent_name}")
|
| 239 |
+
|
| 240 |
+
return context
|
| 241 |
+
async def determine_next_agent(self, context:Context, api_key:str) -> str:
|
| 242 |
+
"""Determines the next agent to run based on the current context."""
|
| 243 |
+
if not context.optimized_task:
|
| 244 |
+
return "prompt_optimizer"
|
| 245 |
+
if not context.plan:
|
| 246 |
+
return "orchestrator"
|
| 247 |
+
if not context.code:
|
| 248 |
+
return "coder"
|
| 249 |
+
if not context.review_comments or "APPROVE" not in [comment.get('issue',"").upper() for comment_list in context.review_comments for comment in comment_list.get("comments",[]) ]:
|
| 250 |
+
return "code_reviewer"
|
| 251 |
+
if not context.test_cases:
|
| 252 |
+
return "qa_tester"
|
| 253 |
+
if not context.test_results or "TESTS PASSED" not in context.test_results.upper() :
|
| 254 |
+
return "qa_tester"
|
| 255 |
+
if not context.documentation:
|
| 256 |
+
return "documentation_agent"
|
| 257 |
+
|
| 258 |
+
return "done" # All tasks are complete
|
| 259 |
+
|
| 260 |
+
# -------------------- Multi-Agent Conversation (Refactored) --------------------
|
| 261 |
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None:
|
| 262 |
"""
|
| 263 |
+
Conducts the multi-agent conversation using the AgentDispatcher.
|
| 264 |
"""
|
| 265 |
+
context = Context(original_task=task_message)
|
| 266 |
+
dispatcher = AgentDispatcher(log_queue, human_in_the_loop_event, human_input_queue)
|
| 267 |
+
|
| 268 |
+
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 269 |
+
while next_agent != "done":
|
| 270 |
+
if next_agent == "qa_tester":
|
| 271 |
+
if not context.test_cases:
|
| 272 |
+
context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True)
|
| 273 |
+
else:
|
| 274 |
+
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
|
| 275 |
+
elif next_agent == "coder" and (context.review_comments or context.test_results):
|
| 276 |
+
#Coder needs a different model after the first coding
|
| 277 |
+
context = await dispatcher.dispatch(next_agent,context, api_key, model="gpt-3.5-turbo-16k")
|
| 278 |
+
else:
|
| 279 |
+
context = await dispatcher.dispatch(next_agent, context, api_key) # Call the agent
|
| 280 |
+
|
| 281 |
+
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 282 |
+
if next_agent == "code_reviewer" and context.review_comments and "APPROVE" in [comment.get('issue',"").upper() for comment_list in context.review_comments for comment in comment_list.get("comments",[]) ]:
|
| 283 |
+
next_agent = await dispatcher.determine_next_agent(context, api_key)
|
| 284 |
+
# Check for maximum revisions
|
| 285 |
+
if next_agent == "coder" and len([entry for entry in context.conversation_history if entry["agent"] == "Coder"]) > 5:
|
| 286 |
+
log_queue.put("Maximum revision iterations reached. Exiting.")
|
| 287 |
+
break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
log_queue.put("Conversation complete.")
|
| 290 |
+
log_queue.put(("result", context.conversation_history))
|
| 291 |
|
| 292 |
# -------------------- Process Generator and Human Input --------------------
|
| 293 |
def process_conversation_generator(task_message: str, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> Generator[str, None, None]:
|
|
|
|
| 325 |
"""Gets human input using a Gradio Textbox."""
|
| 326 |
with gr.Blocks() as human_feedback_interface:
|
| 327 |
with gr.Row():
|
| 328 |
+
human_input = gr.Textbox(lines=4, label="Human Feedback", placeholder=placeholder_text) #Removed placeholder
|
| 329 |
with gr.Row():
|
| 330 |
submit_button = gr.Button("Submit Feedback")
|
| 331 |
|
|
|
|
| 336 |
return ""
|
| 337 |
|
| 338 |
submit_button.click(submit_feedback, inputs=human_input, outputs=human_input)
|
| 339 |
+
human_feedback_interface.load(None, [], []) # Keep interface alive
|
| 340 |
|
| 341 |
return human_feedback_interface, feedback_queue
|
| 342 |
+
|
| 343 |
# -------------------- Chat Function for Gradio --------------------
|
| 344 |
+
|
| 345 |
def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = None) -> Generator[str, None, None]:
|
| 346 |
"""Chat function for Gradio."""
|
| 347 |
if not openai_api_key:
|
|
|
|
| 350 |
yield "Error: API key not provided."
|
| 351 |
return
|
| 352 |
human_in_the_loop_event = threading.Event()
|
| 353 |
+
human_input_queue = queue.Queue() #For receiving the feedback request
|
| 354 |
|
| 355 |
yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue)
|
| 356 |
|
| 357 |
while human_in_the_loop_event.is_set():
|
| 358 |
yield "Waiting for human feedback..."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
try:
|
| 360 |
+
feedback_request = human_input_queue.get(timeout=0.1) #Non-blocking, check for feedback request
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
+
human_interface, feedback_queue = get_human_feedback(feedback_request)
|
| 363 |
+
|
| 364 |
+
#This is a hacky but currently only working way to make this work with gradio
|
| 365 |
+
yield gr.Textbox.update(visible=False), gr.update(visible=True)
|
| 366 |
+
human_feedback = feedback_queue.get(timeout=300) # Wait for up to 5 minutes
|
| 367 |
+
human_input_queue.put(human_feedback) #Put feedback where Orchestrator can find it.
|
| 368 |
+
human_in_the_loop_event.clear()
|
| 369 |
+
yield gr.Textbox.update(visible=True), human_interface.close() #Hide human input box
|
| 370 |
+
yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue)
|
| 371 |
+
|
| 372 |
+
except queue.Empty: #If we get here, there was NO human feedback request, so skip.
|
| 373 |
+
continue #Go back to the top of the while loop
|
| 374 |
|
| 375 |
# -------------------- Launch the Chatbot --------------------
|
| 376 |
|
|
|
|
| 380 |
additional_inputs=[gr.Textbox(label="OpenAI API Key (optional)", type="password", placeholder="Leave blank to use env variable")],
|
| 381 |
title="Multi-Agent Task Solver with Human-in-the-Loop",
|
| 382 |
description="""
|
| 383 |
+
- Collaborative workflow with Human-in-the-Loop.
|
| 384 |
+
- Orchestrator can ask for human feedback.
|
| 385 |
+
- Enter a task; agents will work on it. You may be prompted for input.
|
| 386 |
+
- Max 5 revisions.
|
| 387 |
+
- Provide API Key.
|
| 388 |
"""
|
| 389 |
)
|
| 390 |
|
| 391 |
+
#Need a dummy interface to prevent Gradio errors
|
| 392 |
dummy_iface = gr.Interface(lambda x:x, "textbox", "textbox")
|
| 393 |
|
| 394 |
if __name__ == "__main__":
|